

The perceptron learning rule

$$w_i^{\ell+ij} \leftarrow w_i^{\ell+j} + \eta \sum_j x_i^j \delta^j$$

Compare to MLE:

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$
 $\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]^d$

$$\delta^{j} = \left[y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j}) \right]^{\delta}$$

Hidden layer

Perceptron:
$$out(\mathbf{x}) = g(w_0 + \sum_i w_i x_i)$$

1-hidden layer: $out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$

Gradient descent for 1-hidden layer —

Back-propagation: Computing
$$\frac{\partial \ell(W)}{\partial w_k}$$
 which $\frac{\partial \ell(W)}{\partial w_k}$ brought on $\frac{\partial \ell(W)}{\partial w_k}$ and $\frac{\partial \ell(W)}{\partial w_k}$ brought on $\frac{\partial \ell(W)}{\partial w_k}$ and $\frac{\partial \ell($

Gradient descent for 1-hidden layer — Back-propagation: Computing
$$\frac{\partial \ell(W)}{\partial w_i^k}$$
.

$$\ell(W) = \frac{1}{2} \sum_{j} [y^j - out(x^j)]^2$$

$$out(x) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{k'}^k x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_i^k} = \sum_{j=1}^m -[y - out(x^j)] \frac{\partial out(x^j)}{\partial w_i^k}$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f \cdot \partial h}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k$$

$$\frac{\partial g(f(h(\omega)) \cdot \partial g \cdot \partial f}{\partial w_i^k} \cdot \partial w_i^k} \cdot \partial w_i^k}$$

Forward propagation – prediction

- - Recursive algorithm
 - Start from input layer
 - Output of node V_k with parents U₁,U₂,...:

©2005-2007 Carlos Guestrin

Back-propagation – <u>learning</u>

- Just gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
 - □ Perform forward propagation
 - □ Start from output layer
 - \square Compute gradient of node V_k with parents $U_1, U_2, ...$
 - \square Update weight w_i^k

©2005-2007 Carlos Guestrin

13

Many possible response functions

- Sigmoid
- Linear
- g(taw; X;) = wot zw; X;
- Exponential
- Gaussian

...; Step/threshold:

g(2) = { 1 is 270 0 otherise

....

Overfitting Output fits training data "too well" Poor test set accuracy Overfitting the training data Related to bias-variance tradeoff One of central problems of ML Avoiding overfitting? More training data Regularization Early stopping

1-Nearest Neighbor is an example of....

Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

-Xill2

Four things make a memory based learner:

- A distance metric (what's hear?
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

©2005-2007 Carlos Guestrin

25

1-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

One

3. A weighting function (optional)

Unused

4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

©2005-2007 Carlos Guestrin

k-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

k

- 1. A weighting function (optional)
 Unused
- 2. How to fit with the local points?
 Just predict the average output among the k nearest neighbors.

©2005-2007 Carlos Guestrin

33

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

©2005-2007 Carlos Guestrin

Weighted k-NNs

Neighbors are not all the same

©2005-2007 Carlos Guestrin

35

Kernel regression

Four things make a memory based learner:

- A distance metric Euclidian (and many more)
- 2. How many nearby neighbors to look at?

 All of them
- 3. A weighting function (optional) $w_i = \exp(-D(x_i, query)^2 / K_w^2)$

Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

predict = $\sum w_i y_i / \sum w_i$

©2005-2007 Carlos Guestrin

Locally weighted regression

Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

©2005-2007 Carlos Guestrin

41

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

How many nearby neighbors to look at?

All of them

A weighting function (optional)

Kernels

- \Box wi = exp(-D(xi, query)² / Kw²)
- How to fit with the local points?

General weighted regression:

$$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (\mathbf{y}_k - \hat{\mathbf{a}}^T \mathbf{x}_k)^2$$

©2005-2007 Carlos Guestrin

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - □ For every test sample, must search through all dataset very slow!
 - □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

©2005-2007 Carlos Guestrin

47

Curse of the irrelevant feature

2005-2007 Carlos Guestrin

What you need to know about instance-based learning

- k-NN
 - ☐ Simplest learning algorithm
 - □ With sufficient data, very hard to beat "strawman" approach
 - ☐ Picking k?
- Kernel regression
 - □ Set k to n (number of data points) and optimize weights by gradient descent
 - ☐ Smoother than k-NN
- Locally weighted regression
 - ☐ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - ☐ Must remember (very large) dataset for prediction
 - ☐ Irrelevant features often killers for instance-based approaches

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

2005-2007 Carlos Guestrin