
1

©2005-2007 Carlos Guestrin 1

VC Dimension

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 29th, 2007

©2005-2007 Carlos Guestrin 2

What about continuous hypothesis
spaces?

 Continuous hypothesis space:
 |H| = ∞
 Infinite variance???

 As with decision trees, only care about the
maximum number of points that can be
classified exactly!



2

©2005-2007 Carlos Guestrin 3

How many points can a linear
boundary classify exactly? (1-D)
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How many points can a linear
boundary classify exactly? (2-D)
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How many points can a linear
boundary classify exactly? (d-D)
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
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Shattering a set of points
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VC dimension
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
 Bound for infinite dimension hypothesis spaces:
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Examples of VC dimension

 Linear classifiers:
 VC(H) = d+1, for d features plus constant term b

 Neural networks
 VC(H) = #parameters
 Local minima means NNs will probably not find best

parameters

 1-Nearest neighbor?
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Another VC dim. example -
What can we shatter?
 What’s the VC dim. of decision stumps in 2d?
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Another VC dim. example -
What can’t we shatter?
 What’s the VC dim. of decision stumps in 2d?
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What you need to know

 Finite hypothesis space
 Derive results
 Counting number of hypothesis
 Mistakes on Training data

 Complexity of the classifier depends on number of
points that can be classified exactly
 Finite case – decision trees
 Infinite case – VC dimension

 Bias-Variance tradeoff in learning theory
 Remember: will your algorithm find best classifier?
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Bayesian Networks –
Representation
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Handwriting recognition

Character recognition, e.g., kernel SVMs
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Webpage classification

Company home page

 vs

Personal home page

 vs

University home page

 vs

…
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Handwriting recognition 2
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Webpage classification 2



10

©2005-2007 Carlos Guestrin 19

Today – Bayesian networks

 One of the most exciting advancements in
statistical AI in the last 10-15 years

 Generalizes naïve Bayes and logistic regression
classifiers

 Compact representation for exponentially-large
probability distributions

 Exploit conditional independencies
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Causal structure

 Suppose we know the following:
 The flu causes sinus inflammation
 Allergies cause sinus inflammation
 Sinus inflammation causes a runny nose
 Sinus inflammation causes headaches

 How are these connected?
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Possible queries

Flu Allergy

Sinus

Headache Nose

 Inference

 Most probable
explanation

 Active data
collection
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Car starts BN

 18 binary attributes

 Inference
 P(BatteryAge|Starts=f)

 216 terms, why so fast?
 Not impressed?

 HailFinder BN – more than 354 =
58149737003040059690390169 terms
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Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose
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Number of parameters

Flu Allergy

Sinus

Headache Nose
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Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other
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(Marginal) Independence

 Flu and Allergy are (marginally) independent

 More Generally:

Allergy = f

Allergy = t

Flu = fFlu = t

Allergy = f

Allergy = t

Flu = f

Flu = t
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Marginally independent random
variables

 Sets of variables X, Y
 X is independent of Y if

 P ²(X=x⊥Y=y), 8 x2Val(X), y2Val(Y)

 Shorthand:
 Marginal independence: P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y) if and only if
 P(X,Y) = P(X) P(Y)
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Conditional independence

 Flu and Headache are not (marginally) independent

 Flu and Headache are independent given Sinus
infection

 More Generally:
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Conditionally independent random
variables

 Sets of variables X, Y, Z
 X is independent of Y given Z if

 P ²(X=x ⊥ Y=y|Z=z), 8 x2Val(X), y2Val(Y), z2Val(Z)

 Shorthand:
 Conditional independence: P ² (X ⊥ Y | Z)
 For P ² (X ⊥ Y | ;), write P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y | Z) if and only if
 P(X,Y|Z) = P(X|Z) P(Y|Z)
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Properties of independence

 Symmetry:
 (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

 Decomposition:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

 Weak union:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

 Contraction:
 (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

 Intersection:
 (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)
 Only for positive distributions!
 P(α)>0, 8α, α≠;
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The independence assumption

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Naïve Bayes revisited

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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What about probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Headache Nose
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Joint distribution

Flu Allergy

Sinus

Headache Nose

Why can we decompose? Markov Assumption!
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The chain rule of probabilities

 P(A,B) = P(A)P(B|A)

 More generally:
 P(X1,…,Xn) = P(X1) · P(X2|X1) · … · P(Xn|X1,…,Xn-1)

Flu

Sinus
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Chain rule & Joint distribution

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Two (trivial) special cases

Edgeless graph Fully-connected 
graph
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The Representation Theorem –
Joint Distribution to BN

Joint probability
distribution:Obtain

BN: Encodes independence
assumptions

If conditional
independencies

in BN are subset of 
conditional 

independencies in P
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Real Bayesian networks
applications

 Diagnosis of lymph node disease
 Speech recognition
 Microsoft office and Windows

 http://www.research.microsoft.com/research/dtg/
 Study Human genome
 Robot mapping
 Robots to identify meteorites to study
 Modeling fMRI data
 Anomaly detection
 Fault dianosis
 Modeling sensor network data
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A general Bayes net

 Set of random variables

 Directed acyclic graph
 Encodes independence assumptions

 CPTs

 Joint distribution:
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How many parameters in a BN?

 Discrete variables X1, …, Xn

 Graph
 Defines parents of Xi, PaXi

 CPTs – P(Xi| PaXi)
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Another example

 Variables:
 B – Burglar
 E – Earthquake
 A – Burglar alarm
 N – Neighbor calls
 R – Radio report

 Both burglars and earthquakes can set off the
alarm

 If the alarm sounds, a neighbor may call
 An earthquake may be announced on the radio
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Another example – Building the BN

 B – Burglar
 E – Earthquake
 A – Burglar alarm
 N – Neighbor calls
 R – Radio report
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Independencies encoded in BN

 We said: All you need is the local Markov
assumption
 (Xi ⊥ NonDescendantsXi | PaXi)

 But then we talked about other (in)dependencies
 e.g., explaining away

 What are the independencies encoded by a BN?
 Only assumption is local Markov
 But many others can be derived using the algebra of

conditional independencies!!!
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Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents

Z YX

Z YX

Z
YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:
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Understanding independencies in BNs
– Some examples

A

H

C
E

G

D

B

F

K

J

I
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An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?
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Active trails formalized

 A path X1 – X2 – · · · –Xk is an active trail when
variables Oµ{X1,…,Xn} are observed if for each
consecutive triplet in the trail:
 Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1→Xi←Xi+1, and Xi is observed (Xi2O), or one of
its descendents
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Active trails and independence?

 Theorem: Variables Xi
and Xj are independent
given Zµ{X1,…,Xn} if the
is no active trail between
Xi and Xj when variables
Zµ{X1,…,Xn} are observed

A

H

C
E

G

D

B

F

K

J

I
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The BN Representation Theorem

If joint
probability

distribution:
Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of
conditional

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G
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“Simpler” BNs

 A distribution can be represented by many BNs:

 Simpler BN, requires fewer parameters
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Learning Bayes nets

Missing data

Fully observable
data

Unknown structureKnown structure

x(1)

…
 x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)
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Learning the CPTs

x(1)

…
 x(m)

Data
For each discrete variable Xi
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Queries in Bayes nets

 Given BN, find:
 Probability of X given some evidence, P(X|e)

 Most probable explanation, maxx1,…,xn
 P(x1,…,xn | e)

 Most informative query

 Learn more about these next class
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What you need to know
 Bayesian networks

 A compact representation for large probability distributions
 Not an algorithm

 Semantics of a BN
 Conditional independence assumptions

 Representation
 Variables
 Graph
 CPTs

 Why BNs are useful
 Learning CPTs from fully observable data
 Play with applet!!! 
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