

What about continuous hypothesis spaces?

$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}$

- Continuous hypothesis space:
$\square|\mathrm{H}|=\infty$
\square Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

Shattering a set of points

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

VC dimension

Definition: The Vapnik-Chervonenkis
dimension, $V C(H)$, of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be shattered by H, then $V C(H) \equiv \infty$.

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as with decision trees with k leaves
Bound for infinite dimension hypothesis spaces:
$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

Examples of VC dimension

Linear classifiers:
$\mathrm{VC}(\mathrm{H})=\mathrm{d}+1$, for d features plus constant term b

- Neural networks
$\square \mathrm{VC}(\mathrm{H})=$ \#parameters
\square Local minima means NNs will probably not find best parameters

1-Nearest neighbor?

Another VC dim. example --What can we shatter?

- What's the VC dim. of decision stumps in 2d?

Another VC dim. example -- What can't we shatter?

What's the VC dim. of decision stumps in 2d?

What you need to know

- Finite hypothesis space
\square Derive results
\square Counting number of hypothesis
\square Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
\square Finite case - decision trees
\square Infinite case - VC dimension
- Bias-Variance tradeoff in learning theory
- Remember: will your algorithm find best classifier?

Webpage classification

Personal home page vs

University home page vs

Webpage classification 2

Today - Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

Causal structure

- Suppose we know the following:
\square The flu causes sinus inflammation
\square Allergies cause sinus inflammation
\square Sinus inflammation causes a runny nose
\square Sinus inflammation causes headaches
- How are these connected?

(Marginal) Independence

Flu and Allergy are (marginally) independent

Flu $=\mathrm{t}$	
Flu $=\mathrm{f}$	

- More Generally:

Allergy $=\mathrm{t}$	
Allergy $=\mathrm{f}$	

	Flu $=\mathrm{t}$	Flu $=\mathrm{f}$
Allergy $=\mathrm{t}$		
Allergy $=\mathrm{f}$		

Marginally independent random variables

- Sets of variables \mathbf{X}, \mathbf{Y}
- X is independent of Y if
$\square P \vDash(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y})$
- Shorthand:

Marginal independence: $P \vDash(\mathbf{X} \perp \mathbf{Y})$

■ Proposition: P statisfies $(\mathbf{X} \perp \mathbf{Y})$ if and only if $P(\mathbf{X}, \mathbf{Y})=P(\mathbf{X}) P(\mathbf{Y})$

Conditional independence

- Flu and Headache are not (marginally) independent

■ Flu and Headache are independent given Sinus infection

- More Generally:

Conditionally independent random variables

■ Sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$

- X is independent of Y given Z if

$$
\square P \vDash(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})
$$

- Shorthand:

Conditional independence: $P \vDash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
\square For $P \vDash(\mathbf{X} \perp \mathbf{Y} \mid \emptyset)$, write $\mathrm{P} \vDash(\mathbf{X} \perp \mathbf{Y})$

- Proposition: P statisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
$\square P(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Y} \mid \mathbf{Z})$

Properties of independence

- Symmetry:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{Y} \perp \mathbf{X} \mid \mathbf{Z})$
- Decomposition:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
■ Weak union:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W})$
■ Contraction:
$\square \mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
- Intersection:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
\square Only for positive distributions!
$\square \mathrm{P}(\alpha)>0, \forall \alpha, \alpha \neq \emptyset$

The chain rule of probabilities

- $P(A, B)=P(A) P(B \mid A)$

■ More generally:

$$
\square P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot \ldots \cdot P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Chain rule \& Joint distribution

Two (trivial) special cases

Edgeless graph
Fully-connected graph

The Representation Theorem Joint Distribution to BN

BN:

Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Obtain distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Joint probability

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
\square http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

A general Bayes net

Set of random variables

- Directed acyclic graph
\square Encodes independence assumptions
- CPTs
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

How many parameters in a BN ?

- Discrete variables X_{1}, \ldots, X_{n}
- Graph
\square Defines parents of $X_{i}, P a_{x_{i}}$
- CPTs - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Another example

- Variables:
\square B - Burglar
$\square \mathrm{E}$ - Earthquake
\square A - Burglar alarm
$\square \mathrm{N}$ - Neighbor calls
$\square \mathrm{R}$ - Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
- What are the independencies encoded by a BN?

Only assumption is local Markov
But many others can be derived using the algebra of conditional independencies!!!

An active trail - Example

When are A and H independent?

Active trails formalized

- A path $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\mathbf{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed if for each consecutive triplet in the trail:
$\square X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed ($\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}$)
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed ($\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}$)
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in \mathcal{O}$), or one of its descendents

Active trails and independence?

- Theorem: Variables $\mathbf{X}_{\mathbf{i}}$ and X_{j} are independent given $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

The BN Representation Theorem

| If conditional
 independencies
 in BN are subset of
 conditional
 independencies in \boldsymbol{P} | Obtain |
| :---: | :---: |\quad| Joint probability |
| :---: |
| distribution: |

Important because:
Every P has at least one BN structure G

If joint			
probability	Obtain		Then conditional
:---:			
independencies			
in BN are subset of			
instribution:	\quad	conditional	
:---:			
independencies in P			

Important because:
Read independenciess of P from BN structure G

"Simpler" BNs

A distribution can be represented by many BNs:

- Simpler BN, requires fewer parameters

Queries in Bayes nets

- Given BN, find:
\square Probability of X given some evidence, $\mathrm{P}(\mathrm{X} \mid \mathrm{e})$

Most probable explanation, $\max _{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}} \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \mid \mathrm{e}\right)$
\square Most informative query

Learn more about these next class

What you need to know

- Bayesian networks
\square A compact representation for large probability distributions
\square Not an algorithm
- Semantics of a BN
\square Conditional independence assumptions
- Representation
\square Variables
\square Graph
\square CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! :)

Acknowledgements

- JavaBayes applet
\square http://www.pmr.poli.usp.br/Itd/Software/javabayes/Ho me/index.html

