

Dual SVM formulation the non-separable case

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

Why did we learn about the dual SVM?

There are some quadratic programming algorithms that can solve the dual faster than the primal

- But, more importantly, the "kernel trick"!!!
\square Another little detour...

Dual formulation only depends on dot-products, not on w!

$\operatorname{maximize}_{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathrm{x}_{i} \mathrm{x}_{j}$

$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$\operatorname{maximize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$

$$
K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\Phi\left(\mathrm{x}_{i}\right) \cdot \Phi\left(\mathrm{x}_{j}\right)
$$

$$
\sum_{i} \alpha_{i} y_{i}=0
$$

$$
C \geq \alpha_{\text {dind }} \geq 0
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree d

Finally: the "kernel trick"!

maximize $_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)$
$\sum_{i} \alpha_{i} y_{i}=0$
$C \geq \alpha_{i} \geq 0$

- Never represent features explicitly
\square Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
$\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right)$
$b=y_{k}-\mathbf{w} . \Phi\left(\mathbf{x}_{k}\right)$
for any k where $C>\alpha_{k}>0$
- Very interesting theory - Reproducing Kernel Hilbert Spaces
\square Not covered in detail in 10701/15781, more in 10702

Polynomial kernels

All monomials of degree d in $\mathrm{O}(\mathrm{d})$ operations:
$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}=$ polynomials of degree d

- How about all monomials of degree up to d?

Solution 0:

Better solution:

Common kernels

- Polynomials of degree d $K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}$
- Polynomials of degree up to d $K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}$
- Gaussian kernels $K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|}{2 \sigma^{2}}\right)$
- Sigmoid $K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)$

Overfitting?

- Huge feature space with kernels, what about overfitting???
\square Maximizing margin leads to sparse set of support vectors
\square Some interesting theory says that SVMs search for simple hypothesis with large margin
\square Often robust to overfitting

What about at classification time

- For a new input \mathbf{x}, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x})+\mathrm{b})$

■ Using kernels we are cool!

$$
K(\mathbf{u}, \mathbf{v})=\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \\
& b=y_{k}-\mathbf{w} . \Phi\left(\mathbf{x}_{k}\right) \\
& \text { for any } k \text { where } C>\alpha_{k}>0
\end{aligned}
$$

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_{i}
- At classification time, compute:

$$
\left\lvert\, \begin{aligned}
& \mathbf{w} \cdot \Phi(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right) \\
& b=y_{k}-\sum_{i}^{i} \alpha_{i} y_{i} K\left(\mathbf{x}_{k}, \mathbf{x}_{i}\right) \\
& \text { for any } k \text { where } C>\alpha_{k}>0
\end{aligned}\right.
$$

Remember kernel regression

Remember kernel regression???

1. $w_{i}=\exp \left(-D\left(x_{i}, \text { query }\right)^{2} / K_{w}{ }^{2}\right)$
2. How to fit with the local points?

Predict the weighted average of the outputs:
predict $=\Sigma w_{i} y_{i} / \Sigma w_{i}$

SVMs v. Kernel Regression

SVMs

$\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x})+b)$
or
$\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)$

Kernel Regression
$\operatorname{sign}\left(\frac{\sum_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\sum_{j} K\left(\mathbf{x}, \mathbf{x}_{j}\right)}\right)$

SVMs v. Kernel Regression

SVMs

$\operatorname{sign}(\mathrm{w} \cdot \Phi(\mathrm{x})+b)$
or
Differences:

- SVMs:
\square Learn weights α_{i} (and bandwidth)
\square Often sparse solution
- KR:
\square Fixed "weights", learn bandwidth
\square Solution may not be sparse
\square Much simpler to implement

What's the difference between SVMs and Logistic Regression?		
SVMs Sogistic Regression		
Loss function		
High dimensional features with kernels	\square	

Kernels in logistic regression

$$
P(Y=1 \mid x, \mathbf{w})=\frac{1}{1+e^{-(\mathbf{w} \cdot \Phi(\mathbf{x})+b)}}
$$

- Define weights in terms of support vectors:

$$
\begin{aligned}
\mathbf{w} & =\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \\
P(Y=1 \mid x, \mathbf{w}) & =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} \Phi\left(\mathrm{x}_{i}\right) \cdot \Phi(\mathrm{x})+b\right)}} \\
& =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} K\left(\mathrm{x}, \mathbf{x}_{i}\right)+b\right)}}
\end{aligned}
$$

- Derive simple gradient descent rule on α_{i}

What's the difference between SVMs and Logistic Regression? (Revisited)		
	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Dual SVM formulation

How it's derived

- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

Announcements

- Midterm:

Thursday Oct. 25th, Thursday 5-6:30pm, MM A14

- All content up to, and including SVMs and Kernels \square Not learning theory
- Midterm review:

Tuesday, 5-6:30pm, location TBD

- You should read midterms for Spring 2006 and 2007 before the review session
- Then, you can ask about some of the questions in these midterms

PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
October 22 ${ }^{\text {nd }}, 2007$

What now...

- We have explored many ways of learning from data
- But...
\square How good is our classifier, really?
\square How much data do I need to make it "good enough"?

A simple setting...

- Classification
m data points
Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
\square Gets zero error in training - error ${ }_{\text {train }}(h)=0$
- What is the probability that h has more than ε true error?
\square error $_{\text {true }}(h) \geq \varepsilon$

How likely is a bad hypothesis to get m data points right?

- Hypothesis h that is consistent with training data \rightarrow got m i.i.d. points right
$\square \mathrm{h}$ "bad" if it gets all this data right, but has high true error
- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets one data point right
- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data

How likely is learner to pick a bad one?

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data

How likely is learner to pick a bad one?

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

$$
P\left(\operatorname{error}_{\text {true }}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

Using a PAC bound

- Typically, 2 use cases: $\quad P\left(\right.$ error $\left._{\text {true }}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}$

1: Pick ε and δ, give you m
2: Pick m and δ, give you ε

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

$$
P\left(\operatorname{error}_{\text {true }}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

Limitations of Haussler ' 88 bound

- $P\left(\operatorname{error}_{\text {true }}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}$
- Consistent classifier
- Size of hypothesis space

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error $_{\text {train }}(h)$ in training set?

Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

- Chernoff bound: for m i.i.d. coin flips, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$, where $x_{i} \in\{0,1\}$. For $0<\varepsilon<1$:

$$
P\left(\theta-\frac{1}{m} \sum_{i} x_{i}>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

Using Chernoff bound to estimate error of a single hypothesis

$$
P\left(\theta-\frac{1}{m} \sum_{i} x_{i}>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

But we are comparing many hypothesis: Union bound

For each hypothesis h_{i} :

$$
P\left(\text { error }_{\text {true }}\left(h_{i}\right)-\text { error }_{\text {train }}\left(h_{i}\right)>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

What if I am comparing two hypothesis, h_{1} and h_{2} ?

Generalization bound for $|\mathrm{H}|$ hypothesis

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h :

$$
P\left(\text { error }_{\text {true }}(h)-\operatorname{error}_{\text {train }}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}
$$

PAC bound and Bias-Variance tradeoff
 $P\left(\right.$ error $\left._{t r u e}(h)-\operatorname{error}_{t r a i n}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}$

or, after moving some terms around,
with probability at least 1- δ :
error $_{\text {true }}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}$

- Important: PAC bound holds for all h,
but doesn't guarantee that algorithm finds best h!!!

What about the size of the hypothesis space?

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

- How large is the hypothesis space?

Boolean formulas with n binary features

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

Number of decision trees of depth k

```
                                    \(m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)\)
```

Recursive solution
Given n attributes
$H_{k}=$ Number of decision trees of depth k
$\mathrm{H}_{0}=2$
$\mathrm{H}_{\mathrm{k}+1}=$ (\#choices of root attribute) *
(\# possible left subtrees) *
(\# possible right subtrees)
$=n * H_{k}{ }^{*} H_{k}$
Write $L_{k}=\log _{2} H_{k}$
$\mathrm{L}_{0}=1$
$L_{k+1}=\log _{2} n+2 L_{k}$
So $L_{k}=\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1$

PAC bound for decision trees of depth k
 $$
m \geq \frac{\ln 2}{2 \epsilon^{2}}\left(\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1+\ln \frac{1}{\delta}\right)
$$

- Bad!!!
\square Number of points is exponential in depth!

■ But, for m data points, decision tree can't get too big...

Number of decision trees with k leaves

$\mathrm{H}_{\mathrm{k}}=$ Number of decision trees with
$\mathrm{H}_{0}=2$
$H_{k+1}=n \sum_{i=1}^{k} H_{i} H_{k+1-i}$

Loose bound:
$H_{k}=n^{k-1}(k+1)^{2 k-1}$

Reminder:
|DTs depth $k \mid=2 *(2 n)^{2^{k}-1}$

> PAC bound for decision trees with k leaves - Bias-Variance revisited
> $H_{k}=n^{k-1}(k+1)^{2 k-1} \quad \operatorname{error}_{t_{\text {rue }}(h)} \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}$
> $\operatorname{error}_{\text {true }}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}$

What did we learn from decision trees?

- Bias-Variance tradeoff formalized
$\operatorname{error}_{\text {true }}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}$
- Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum number of points that allows consistent classification
\square Complexity $m-$ no bias, lots of variance
\square Lower than m - some bias, less variance

