

Why did we learn about the dual SVM?

- SVIV
 - There are some quadratic programming algorithms that can solve the dual faster than the primal
 - But, more importantly, the "kernel trick"!!!

□ Another little detour...

2005-2007 Carlos Guestrin

Reminder from last time: What if the data is not linearly separable?

Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

Feature space can get really large really quickly!

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

Dot-product of polynomials

$$\Phi(u) \cdot \Phi(v) = \text{polynomials of degree d}$$

2005-2007 Carlos Guestrin

Finally: the "kernel trick"!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \ge \alpha_{i} \ge 0$$

- Never represent features explicitlyCompute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - □ Not covered in detail in 10701/15781, more in 10702

 $\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$ $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

©2005-2007 Carlos Guestrin

Polynomial kernels

■ All monomials of degree d in O(d) operations:

 $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$ polynomials of degree d

- How about all monomials of degree up to d?
 - ☐ Solution 0:
 - □ Better solution:

©2005-2007 Carlos Guestrin

Common kernels

- Polynomials of degree d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomials of degree up to d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$
- Gaussian kernels $K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} \mathbf{v}||}{2\sigma^2}\right)$
- Sigmoid $K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$

©2005-2007 Carlos Guestrin

11

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - ☐ Some interesting theory says that SVMs search for simple hypothesis with large margin
 - □ Often robust to overfitting

©2005-2007 Carlos Guestrin

What about at classification time

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign(w.Ф(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$w = \sum_i \alpha_i y_i \Phi(\mathbf{x}_i)$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$
 for any k where $C > \alpha_k > 0$

13

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

$$b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)$$
 for any k where $C > \alpha_k > 0$

Remember kernel regression

Remember kernel regression???

- $w_i = \exp(-D(x_i, query)^2 / K_w^2)$
- How to fit with the local points? Predict the weighted average of the outputs: predict = $\sum w_i y_i / \sum w_i$

©2005-2007 Carlos Guestrin

SVMs v. Kernel Regression

SVMs

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$
 or

or
$$sign\left(\sum_{i}\alpha_{i}y_{i}K(\mathbf{x},\mathbf{x}_{i})+b\right)$$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

What's the difference between SVMs and Logistic Regression?			
	SVMs	Logistic Regression	
Loss function			
High dimensional features with kernels			
	©2005-2007 Carlos Guestrin	18	

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

 \blacksquare Derive simple gradient descent rule on $\alpha_{\mathbf{i}}$

©2005-2007 Carlos Guestrin

40

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Dual SVM formulation
 - ☐ How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

©2005-2007 Carlos Guestrin

21

Announcements

- Midterm:
 - ☐ Thursday Oct. 25th, Thursday 5-6:30pm, MM A14
 - All content up to, and including SVMs and Kernels
 - Not learning theory
- Midterm review:
 - □ Tuesday, 5-6:30pm, location TBD
 - You should read midterms for Spring 2006 and 2007 before the review session
 - Then, you can ask about some of the questions in these midterms

©2005-2007 Carlos Guestrin

What now... We have explored many ways of learning from data But... How good is our classifier, really? How much data do I need to make it "good enough"?

A simple setting...

- Classification
 - m data points
 - ☐ **Finite** number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
 - □ Gets zero error in training error_{train}(h) = 0
- What is the probability that h has more than ε true error?
 - \square error_{true} $(h) \ge \varepsilon$

©2005-2007 Carlos Guestrin

25

How likely is a bad hypothesis to get *m* data points right?

- Hypothesis h that is consistent with training data → got m i.i.d. points right
 - □ h "bad" if it gets all this data right, but has high true error
- Prob. h with error_{true}(h) ≥ ε gets one data point right
- Prob. h with error_{true}(h) ≥ ε gets m data points right

©2005-2007 Carlos Guestrin

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are *k* hypothesis consistent with data
 □ How likely is learner to pick a bad one?

©2005-2007 Carlos Guestrin

Union bound

■ P(A or B or C or D or ...)

©2005-2007 Carlos Guestrir

29

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are *k* hypothesis consistent with data
 - ☐ How likely is learner to pick a bad one?

©2005-2007 Carlos Guestrin

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

©2005-2007 Carlos Guestrin

31

Using a PAC bound

- Typically, 2 use cases: $P(\text{error}_{true}(h) > \epsilon) \leq |H|e^{-m\epsilon}$
 - \square 1: Pick ε and δ , give you m
 - \square 2: Pick m and $\delta,$ give you ϵ

©2005-2007 Carlos Guestrin

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler '88 bound

- $P(\mathsf{error}_{true}(h) > \epsilon) \leq |H|e^{-m\epsilon}$
 - Consistent classifier

Size of hypothesis space

©2005-2007 Carlos Guestrin

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with *error*_{train}(h) in training set?

©2005-2007 Carlos Guestrin

35

Simpler question: What's the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!
- Chernoff bound: for m i.i.d. coin flips, $x_1,...,x_m$, where $x_i \in \{0,1\}$. For $0 < \epsilon < 1$:

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \le e^{-2m\epsilon^{2}}$$

©2005-2007 Carlos Guestrin

Using Chernoff bound to estimate error of a single hypothesis

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \le e^{-2m\epsilon^{2}}$$

©2005-2007 Carlos Guestrin

37

But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P\left(\operatorname{error}_{true}(h_i) - \operatorname{error}_{train}(h_i) > \epsilon\right) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h₁ and h₂?

©2005-2007 Carlos Guestrin

Generalization bound for |H| hypothesis

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P\left(\mathsf{error}_{true}(h) - \mathsf{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

©2005-2007 Carlos Guestrin

39

PAC bound and Bias-Variance tradeoff

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around, with probability at least 1- δ :

error_{true}
$$(h) \le \operatorname{error}_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$$

■ Important: PAC bound holds for all *h*, but doesn't guarantee that algorithm finds best *h*!!!

©2005-2007 Carlos Guestrin

What about the size of the hypothesis space?

$$m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

■ How large is the hypothesis space?

©2005-2007 Carlos Guestrin

41

Boolean formulas with *n* binary features

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$

07 Carlos Guestrin

Number of decision trees of depth k

$$m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Recursive solution

Given *n* attributes

H_k = Number of decision trees of depth k

 $H_0 = 2$

 H_{k+1} = (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

$$= n * H_k * H_k$$

Write $L_k = log_2 H_k$

 $L_0 = 1$

 $L_{k+1} = \log_2 n + 2L_k$

So $L_k = (2^k-1)(1+\log_2 n) +1$

©2005-2007 Carlos Guestrin

43

PAC bound for decision trees of depth k

$$m \geq \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - □ Number of points is exponential in depth!
- But, for *m* data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves

 $m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$ H_k = Number of decision trees with k leaves

$$H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i}$$

Loose bound:

Loose bound:
$$H_k = n^{k-1}(k+1)^{2k-1}$$

Reminder:

|DTs depth $k| = 2*(2n)^{2^k-1}$

PAC bound for decision trees with k leaves – Bias-Variance revisited

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

What did we learn from decision trees?

■ Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- \Box Complexity m no bias, lots of variance
- \square Lower than m some bias, less variance

©2005-2007 Carlos Guestrin

<u>47</u>