

Learning Gaussian parameters MLE: $\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$ $\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$ BTW. MLE for the variance of a Gaussian is biased Expected result of estimation is not true parameter! Unbiased variance estimator: $\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$

