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1-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Consistency of 1-NN

Consider an estimator fn trained on n examples
e.g., 1-NN, neural nets, regression,...

Estimator is consistent if true error goes to zero as 
amount of data increases

e.g., for no noise data, consistent if:

Regression is not consistent!
Representation bias

1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
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k-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

k
1. A weighting function (optional)

Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?



4

©2005-2007 Carlos Guestrin 7

Weighted k-NNs

Neighbors are not all the same
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Kernel regression

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly, far points 
weakly. The KW parameter is the Kernel Width. Very 
important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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Weighting functions

wi = exp(-D(xi, query)2 / Kw
2)

Typically optimize Kw
using gradient descent

(Our examples use Gaussian)
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Kernel regression predictions

Increasing the kernel width Kw means further away points get an 
opportunity to influence you.
As Kw ∞, the prediction tends to the global average.

KW=80KW=20KW=10
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Kernel regression on our test cases

KW=1/16 axis width.KW=1/32 of x-axis width.KW=1/32 of x-axis width.

Choosing a good Kw is important. Not just for Kernel Regression, but 
for all the locally weighted learners we’re about to see.
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Kernel regression can look bad

KW = Best.KW = Best.KW = Best.

Time to try something more powerful…
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Locally weighted regression

Kernel regression:
Take a very very conservative function approximator 
called AVERAGING. Locally weight it.

Locally weighted regression:
Take a conservative function approximator called 
LINEAR REGRESSION. Locally weight it.
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Locally weighted regression

Four things make a memory based learner:
A distance metric

Any
How many nearby neighbors to look at?

All of them
A weighting function (optional)

Kernels
wi = exp(-D(xi, query)2 / Kw2)

How to fit with the local points?
General weighted regression:
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How LWR works

Query

Linear regression
Same parameters for 
all queries

Locally weighted regression
Solve weighted linear regression
for each query
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Another view of LWR

Image from Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.
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LWR on our test cases

KW = 1/8 of x-axis width.KW = 1/32 of x-axis 
width.

KW = 1/16 of x-axis 
width.
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Locally weighted polynomial regression

LW Quadratic Regression
Kernel width KW at optimal 
level.

KW = 1/15 x-axis

LW Linear Regression
Kernel width KW at optimal 
level.

KW = 1/40 x-axis

Kernel Regression
Kernel width KW at optimal 
level.

KW = 1/100 x-axis

Local quadratic regression is easy: just add quadratic terms to the 
WXTWX matrix. As the regression degree increases, the kernel width 
can increase without introducing bias.



10

©2005-2007 Carlos Guestrin 19

Curse of dimensionality for 
instance-based learning

Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset – very slow!
We’ll see fast methods for dealing with large datasets

Instance-based learning often poor with noisy or irrelevant 
features
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Curse of the irrelevant feature



11

©2005-2007 Carlos Guestrin 21

What you need to know about 
instance-based learning

k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

Kernel regression
Set k to n (number of data points) and optimize weights by 
gradient descent
Smoother than k-NN

Locally weighted regression
Generalizes kernel regression, not just local average

Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches
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Support Vector 
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Linear classifiers – Which line is better?

Data:

Example i:

w.x = ∑j w(j) x(j)
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Pick the one with the largest margin!

w.x = ∑j w(j) x(j)

w
.x

+ 
b 

= 
0
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Maximize the margin

w
.x

+ 
b 

= 
0



14

©2005-2007 Carlos Guestrin 27

But there are a many planes…

w
.x

+ 
b 

= 
0
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w
.x

+ 
b 

= 
0

Review: Normal to a plane



15

©2005-2007 Carlos Guestrin 29

Normalized margin – Canonical 
hyperplanes

w
.x

+ 
b 

= 
+1

w
.x

+ 
b 

= 
-1

w
.x

+ 
b 

= 
0

margin 2γ

x-
x+

©2005-2007 Carlos Guestrin 30

Normalized margin – Canonical 
hyperplanes
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Margin maximization using 
canonical hyperplanes
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Support vector machines (SVMs)
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Solve efficiently by quadratic 
programming (QP)

Well-studied solution algorithms

Hyperplane defined by support 
vectors


