```
EM (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

November 26<sup>th</sup>, 2007

©2005-2007 Carlos Guestrin
```

```
Silly Example
Let events be "grades in a class"
   w_1 = Gets an A
                                   P(A) = \frac{1}{2}
   w_2 = Gets a B
                                   P(B) = \mu
   w_3 = Gets a C
                                   P(C) = 2\mu
   w_4 = Gets a D
                                   P(D) = \frac{1}{2} - 3\mu
                           (Note 0 ≤ µ ≤1/6)
Assume we want to estimate p from data. In a given class there were
                          a A's b B's c C's d D's
What's the maximum likelihood estimate of \mu given a,b,c,d?
                Mnle
                                ©2005-2007 Carlos Guestrin
```


EM for simple case of GMMs: The M-step

- If we know prob. point x_i belongs to class y=i
 - \rightarrow MLE for μ_i is weighted average
 - imagine k copies of each x_j , each with weight $P(y=i|x_j)$: $\sum_{j=1}^{m} P(y=i|x_j)x_j$ Count equally

$$\mu_i = \frac{\sum_{j=1}^m P(y=i|x_j)x_j}{\sum_{j=1}^m P(y=i|x_j)}$$

E.M. for GMMs

Compute "expected" classes of

datapoint

for each class

each

$$p(y = i | x_j, \mu_1 ... \mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$

Just evaluate a Gaussian at

M-step

Compute Max. like $\underline{\mu}$ given our data's class membership distributions

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

©2005-2007 Carlos Guestrin

The general learning problem with missing data

Marginal likelihood – x is observed, z is missing:

$$\begin{aligned} & \text{variation} \\ & \text{variation} \\ & \text{formal } \\ & \text{formal }$$

©2005-2007 Carlos Guestri

29

E-step

- x is observed, z is missing
- Compute probability of missing data given current choice of θ
 Q(z|x_i) for each x_i
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \underline{\theta^{(t)}})$$

©2005-2007 Carlos Guestri

Jensen's inequality

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{z} \mid \mathbf{x}_{j}) P(\mathbf{x}_{j} \mid \theta)$$

■ Theorem: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

©2005-2007 Carlos Guestri

3

Applying Jensen's inequality log 4 = log 4 - log 5

■ Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$\ell(\theta^{(t)}:\mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$\geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \left(\log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})$$

©2005-2007 Carlos Guestrin

Convergence of EM

■ Define potential function
$$F(\theta, Q)$$
:
$$\ell(\theta : \mathcal{D}) \geq F(\theta, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

- EM corresponds to coordinate ascent on F
 - ☐ Thus, maximizes lower bound on marginal log likelihood

M-step is easy

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)$$

Using potential function

Using potential function
$$F(\theta,Q^{(t+1)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z},\mathbf{x}_{j} \mid \theta) + m.H.Q^{(t+1)})$$

$$MLF using weights detains$$

KL-divergence

Measures distance between distributions

$$\underbrace{KL(Q||P)} = \sum_{z} Q(z) \log \frac{Q(z)}{P(z)}$$

KL=zero if and only if Q=P

E-step also doesn't decrease potential function 2

Fixing
$$\underline{\theta}$$
 to $\underline{\theta}^{(t)}$:

$$\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$= \ell(\theta^{(t)}: \mathcal{D}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

as small as possible to max. $\ell(\theta: \mathcal{D})$

we know that

$$\ell(\theta) \geq \ell(\theta) \leq \ell(\theta)$$

E-step also doesn't decrease

potential function 3
$$\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

- Fixing θ to $\theta^{(t)}$
- Maximizing $F(\theta^{(t)},Q)$ over $Q \to \text{set } Q$ to posterior probability:

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \leftarrow P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Note that

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

EM is coordinate ascent

■ **M-step**: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t)})$$

E-step: Fix θ , maximize F over Q:

$$\ell(\boldsymbol{\theta}^{(t)}: \mathcal{D}) \geq F(\boldsymbol{\theta}^{(t)}, Q) = \ell(\boldsymbol{\theta}^{(t)}: \mathcal{D}) - \psi \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \boldsymbol{\theta}^{(t)})\right)$$

□ "Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

©2005-2007 Carlos Guestria

4

What you should know

- K-means for clustering:
 - □ algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - ☐ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it DOES
-)EM is coordinate ascent
- General case for EM

©2005-2007 Carlos Guestrin

Acknowledgements

- K-means & Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
 - □ http://www.autonlab.org/tutorials/
- K-means Applet:
 - □ http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial http://www.elet.polimi.it/upload/matteucc/Clustering/tu
- Gaussian mixture models Applet:
 - □ http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM. html

©2005-2007 Carlos Guestrin

43

Dimensionality Reduction (P4) Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University November 26th, 2007 ©2005-2007 Carlos Guestrin

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - □ e.g., text data has 40k words
- **Dimensionality reduction**: represent data with fewer dimensions
 - □ easier learning fewer parameters
 - □ visualization hard to visualize more than 3D or 4D
 - □ discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

©2005-2007 Carlos Guestria

41

Feature selection

- Want to learn f:X→Y
 - □ X=<X1,...,Xn>= 40K
 - □ but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
 - □ Score each feature (or sets of features)
 - □ Select set of features with best score

©2005-2007 Carlos Guestrin

Simple greedy **forward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features $F_0 = \emptyset$
 - □ Run learning algorithm for current set of features F_t
 - Obtain h,
 - ☐ Select next best feature Xi
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_i\}$
 - $\Box F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - □ Recurse _____

©2005-2007 Carlos Guestrin

4

Simple greedy **backward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from all features $F_0 = F$
 - □ Run learning algorithm for current set of features *F*_t
 - Obtain h_t
 - ☐ Select next worst feature X_i
 - e.g., X_j that results in lowest crossvalidation error learner when learning with F_t - {X_i}
 - $\Box F_{t+1} \leftarrow F_t \{X_i\}$
 - □ Recurse ∠

©2005-2007 Carlos Guestrin

Impact of feature selection on classification of fMRI data [Pereira et al. '05]

Accuracy classifying category of word read by subject

	*								
₩voxels	mean	subjects							
_		233B	329B	332B	424B	474B	496B	77B	86B
50	0.735	0.783	0.817	0.55	0.783	0.75	0.8	0.65	0.75
100	0.742	0.767	0.8	0.533	0.817	0.85	0.783	0.6	0.783
200	0.737	0.783	0.783	0.517	0.817	0.883	0.75	0.583	0.783
300	0.75	0.8	0.817	0.567	0.833	0.883	0.75	0.583	0.767
400	0.742	0.8	0.783	0.583	0.85	0.833	0.75	0.583	0.75
800	0.735	0.833	0.817	0.567	0.833	0.833	0.7	0.55	0.75
1600	0.698	0.8	0.817	0.45	0.783	0.833	0.633	0.5	0.75
all (~ 2500)	$\sqrt{0.638}$	0.767	0.767	0.25	0.75	0.833	0.567	0.433	0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

©2005-2007 Carlos Guestrin

40

Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

R.g., fasture schotion: use XI, Xq, XII low. Cim. proj. X=0.15, +0.75, -0.35 z, ...

■ Let's see this in the unsupervised setting

□ just **X**, but no Y

©2005-2007 Carlos Guestrin

U.VE dot probat

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - \square point: $\underline{\mathbf{x}} = (\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_n)$
 - \square select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - $\square u_i \bullet u_i = 1$ and $u_i \bullet u_j = 0$ for $i \neq j$
 - \Box select a center $-\overline{x}$, defines offset of space
 - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\underline{x}-\underline{x}) \bullet u_i$
 - minimum squared error

X Ziz (X-X)·Mi

©2005-2007 Carlos Guestrin