

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. For $t = 1, \dots, T$:

- Train base learner using distribution D_t .
- Get base classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

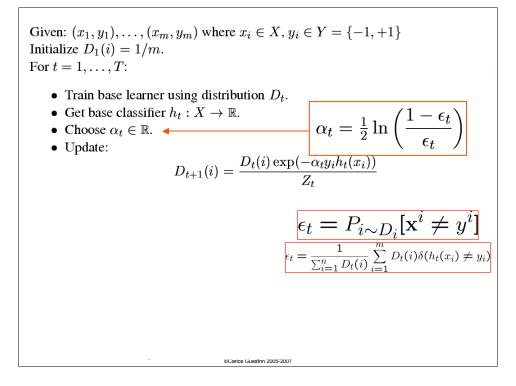
where Z_t is a normalization factor

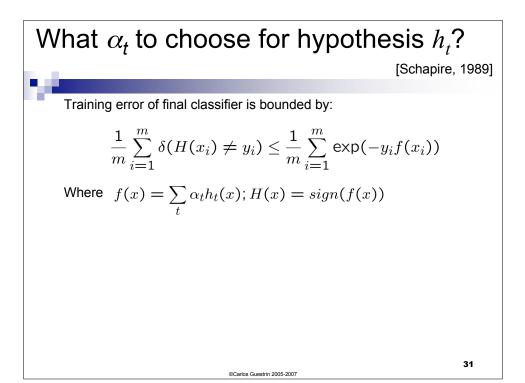
$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

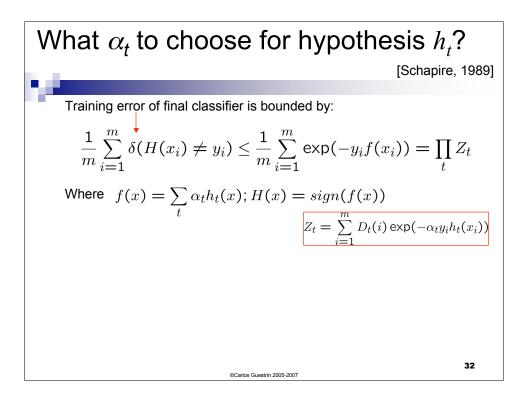
Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Figure 1: The boosting algorithm AdaBoost.







What
$$\alpha_t$$
 to choose for hypothesis h_t ?
[Schapire, 1989]
Training error of final classifier is bounded by:
 $\frac{1}{m}\sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m}\sum_{i} \exp(-y_i f(x_i)) = \prod_t Z_t$
Where $f(x) = \sum_t \alpha_t h_t(x)$; $H(x) = sign(f(x))$
If we minimize $\prod_t Z_t$, we minimize our training error
We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t .
 $Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$

What
$$\alpha_t$$
 to choose for hypothesis h_t ?
[Schapire, 1989]

 We can minimize this bound by choosing α_t on each iteration to minimize Z_t .
 $Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$

 For boolean target function, this is accomplished by [Freund & Schapire '97]:
 $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$

 You'll prove this in your homework! ③

