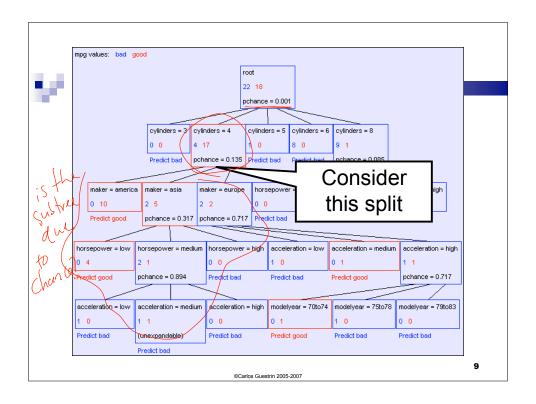
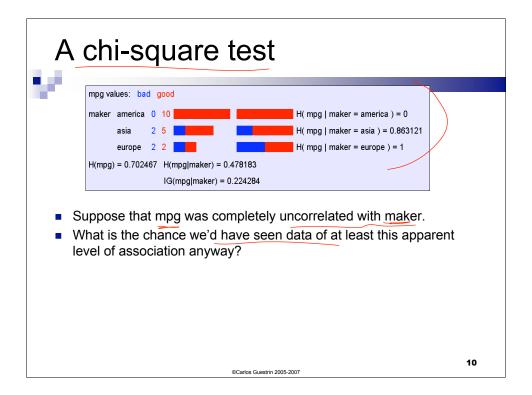


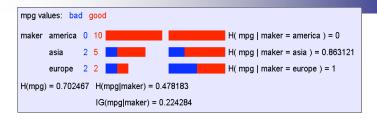
Decision trees will overfit

- Standard decision trees are have no learning biased
 - ☐ Training set error is always zero!
 - (If there is no label noise)
 - □ Lots of variance
 - □ Will definitely overfit!!!
 - ☐ Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - ☐ Fixed depth
 - □ Fixed number of leaves
 - □ Or something smarter...





A chi-square test



- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture,

©Carlos Guestrin 2005-2007

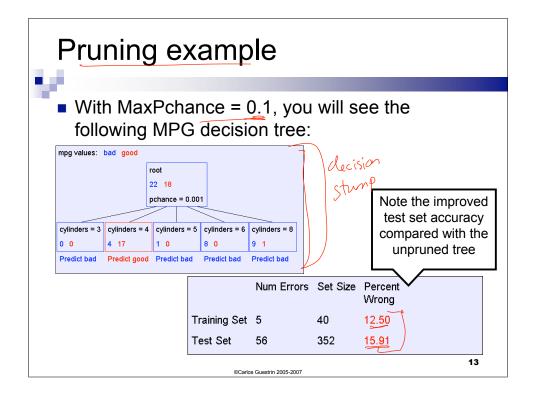
but in your homework, you'll have fun! :))

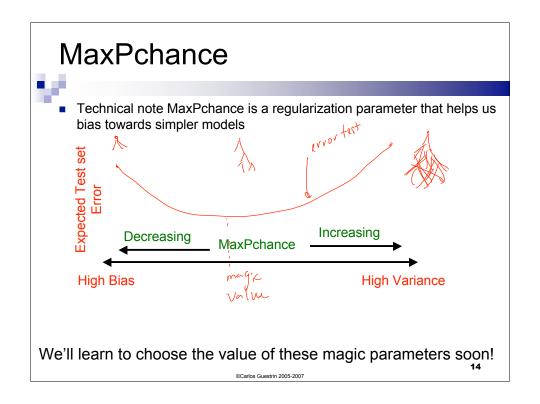
11

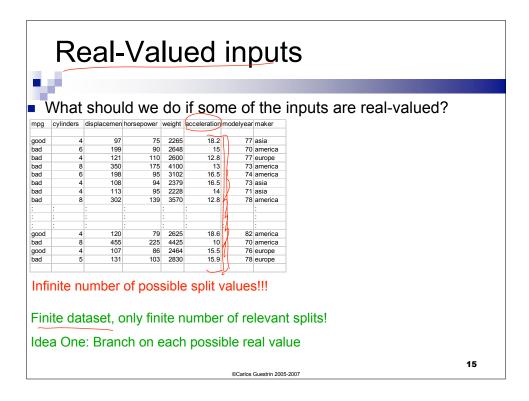
Using Chi-squared to avoid overfitting

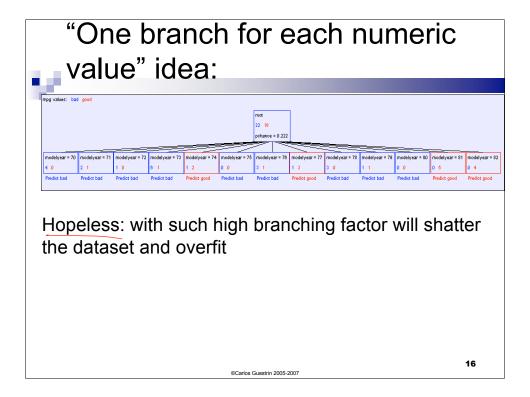
- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - □ Beginning at the bottom of the tree, delete splits in which $p_{chance} > MaxPchance$
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise









Threshold splits

- Binary tree, split on attribute X
 - □ One branch: X < t
 - \square Other branch: $X \ge t$

accel. year 218/282

©Carlos Guestrin 2005-2007

Choosing threshold split

- Binary tree, split on attribute X
 - □ One branch: X < t
 - □ Other branch: X ≥ t
- Search through possible values of t
 - □ Seems hard!!!
- But only finite number of *t*'s are important
 - □ Sort data according to X into $\{x_1,...,x_m\}$
 - \Box Consider split points of the form $x_i + (x_{i+1} x_i)/2$

18

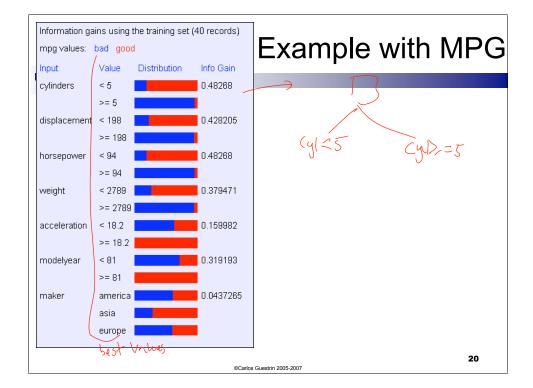
A better idea: thresholded splits

- Suppose X is real valued
- Define IG(Y|X:t) as H(Y) H(Y|X:t)
- Define $H(Y|X;t) = y^{x} + y^{x}$ H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t) Dynamic program
 - IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $IG^*(Y|X) = \max_t IG(Y|X:t)$
- For each real-valued attribute, use $IG^*(Y|X)$ for assessing its suitability as a split

La then pick best X = argmax IG*(YX:)

 Note, may split on an attribute multiple times, with different thresholds

©Carlos Guestrin 2005-2007



Example tree using reals mpg values: bad good 22 18 pchance = 0.000 pchance = 0.001 | pchance = 0.003 horsepower < 94 | horsepower >= 94 | acceleration < 19 | acceleration >= 19 3 0 18 0 1 17 0 1 pchance = 0.274 Predict bad Predict bad Predict good 0 5 0 10 1 2 Predict good pchance = 0.270 displacement < 116 displacement >= 116 1 0 Predict bad 21 ©Carlos Guestrin 2005-2007

What you need to know about decision trees

Decision trees are one of the most popular data mining tools

" interpretable"

- Easy to understand
- □ Easy to implement
- □ Easy to use
- □ Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - $\hfill\Box$ Zero bias classifier \to Lots of variance
 - ☐ Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

23

©Carlos Guestrin 2005-2007

Announcements

- Homework 1 due Wednesday beginning of class
 - □ started early, sta
- Exam dates set:

thisroom

- □ Midterm: Thursday, Oct. 25th, 5-6:30pm, MM A14
- ☐ Final: Tuesday, Dec. 11, 05:30PM-08:30PM

Somenhan

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good ∾
 - □ e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - ☐ Low variance, don't usually overfit
- Simple (a.k.a. weak) learners are bad
 - □ High bias, can't solve hard learning problems
- Can we make weak learners always good???
 - No!!!
 - But often yes.

©Carlos Guestrin 2005-2007

25

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space $H(X): X \mapsto Y$
- Output class: (Weighted) vote of each classifier
 - □ Classifiers that are most "sure" will vote with more conviction

- But how do you ???
- orce classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a <u>weak learner</u>, run it multiple times on (reweighted) training data, then let learned class<u>ifiers</u> vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified

©Carlos Guestrin 2005-2007

- □ Learn a hypothesis h,
- $\ \square$ A strength for this hypothesis α_t
- Final classifier:

- Practically useful
- Theoretically interesting

27

Learning from weighted data

- Sometimes not all data points are equal
 - □ Some data points are more equal than others
- Consider a weighted dataset
 - \Box D(i) weight of *i* th training example (\mathbf{x}^i, y^i)
 - Interpretations:
 - *i*th training example counts as D(i) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, i th training example counts as
 D(i) "examples"
 - □ e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

Wighted: \$ (Ycy) = 3

weighted count s $= \sum_{i=1}^{m} D(i) \prod_{j=1}^{m} (j-j)$

28

©Carlos Guestrin 2005-2007

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\} date from Initialize D_1(i)=1/m. Consider that D_1(i)=1/m. Consider the second of the seco
```

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\}

Initialize D_1(i)=1/m.

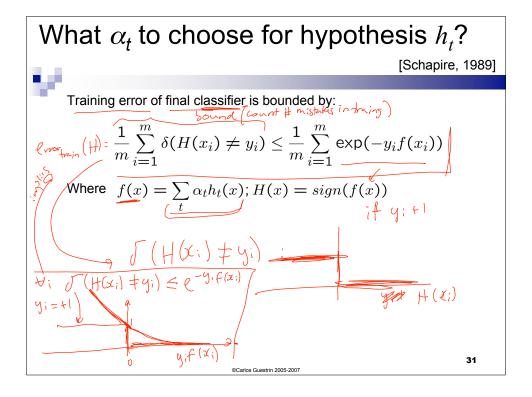
For t=1,\ldots,T:

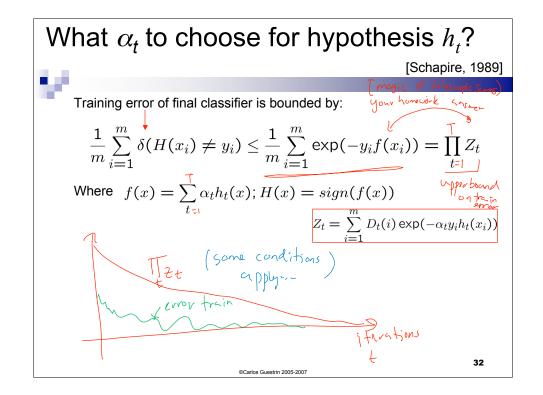
• Train base learner using distribution D_t.

• Get base classifier h_t:X\to\mathbb{R}.

• Choose \alpha_t\in\mathbb{R}.

• Update: D_{t+1}(i)=\frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}
Et is weighted error at item of h_t(x) if h_t(x) is an analysis of h_t(x) if h_t(x) is an analysis of h_t(x) is an analysis of h_t(x) if h_t(x) is an analysis of h_t(x) in h_t(x) in h_t(x) in h_t(x) is an analysis of h_t(x) in h_t(x) in
```





What α_t to choose for hypothesis h_t ?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; H(x) = sign(f(x))

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_{t}

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

33

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$\underline{Z_t} = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework! ©

Strong, weak classifiers

- If each classifier is (at least slightly) better than random \Box $\epsilon_t < 0.5$
- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right) e^{-2T\delta^2}$$

$$(\sqrt{2} - \epsilon_t)^2 \leftarrow \text{howard}$$

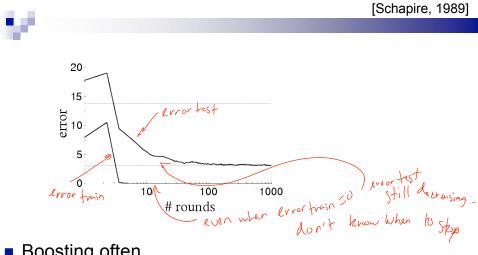
$$(\sqrt{2} - \epsilon_t)^2 \leftarrow \text{howard}$$

$$(\sqrt{2} - \epsilon_t)^2 \leftarrow \text{howard}$$

$$(\sqrt{2} + \epsilon_t)^2 \leftarrow \text{howard}$$

Is It hard to achieve better than random training error

Boosting results – Digit recognition



- Boosting often
 - □ Robust to overfitting
 - ☐ Test set error decreases even after training error is zero

©Carlos Guestrin 2005-2007