

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

October 3rd, 2007

©Carlos Guestrin 2005-2007

Boosting [Schapire, 1989]

w

Idea: given a <u>weak learner</u>, run it multiple times on (reweighted) training data, then let learned classifiers vote

On each iteration t:

- weight each training example by how incorrectly it was elassified
- □ Learn a hypothesis h_t
- $\ \square$ A strength for this hypothesis α_t

Final classifier:

 $H(X) = Sign \left\{ \sum_{t=1}^{T} X_t h_t(x) \right\}$

- Practically useful
- Theoretically interesting

1

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\} date from Initialize D_1(i)=1/m. Consider that D_1(i)=1/m is a normalization factor D_1(i)=1/m where D_1(i)=1/m is a normalization factor D_1(i)=1/m where D_1(i)=1/m is a normalization factor D_1(i)=1/m in D_1(i)=1/m of D_1(i)=1/m in D_1(i)=1/m in
```

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\}

Initialize D_1(i)=1/m.

For t=1,\ldots,T:

• Train base learner using distribution D_t.

• Get base classifier h_t:X\to\mathbb{R}.

• Choose \alpha_t\in\mathbb{R}.

• Update: D_{t+1}(i)=\frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}
Et is weighted error at item of h_t(x) if h_t
```

What α_t to choose for hypothesis h_t ?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where
$$f(x) = \sum_{t} \alpha_t h_t(x)$$
; $H(x) = sign(f(x))$

Zt-1 doesn't depend on

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

©Carlos Guestrin 2005-200

5

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t .

$$\underline{Z_t} = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework! ©

6

Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 ε_t < 0.5
- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right) e^{-2T\delta^2}$$

$$(\sqrt{2} - \xi_t)^2 \leftarrow \text{how much softer is } \xi \neq t \text{ for lands}$$

■ Is It hard to achieve better than random training error?

©Carlos Guestrin 2005-200

[Schapire, 1989]

- Boosting often
 - □ Robust to overfitting
 - ☐ Test set error decreases even after training error is zero

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

- T number of boosting rounds
- d VC dimension of weak learner, measures complexity of classifier
- m number of training examples

©Carlos Guestrin 2005-2007

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

- Contradicts: Boosting often
 - □ Robust to overfitting
 - ☐ Test set error decreases even after training error is zero
- Need better analysis tools
 - □ we'll come back to this later in the semester
- T number of boosting rounds
- d VC dimension of weak learner, measures complexity of classifier
- m number of training examples

10

Boosting and Logistic Regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

13

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Boosting minimizes similar loss function!!

$$\frac{1}{m}\sum_{i}\exp(-y_{i}f(x_{i})) = \prod_{t}Z_{t}$$

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:

Minimize loss fn

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_j x_j$$

where x_i predefined

Boosting:

Minimize loss fn

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

■ Define
$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_t(x_i)$ defined dynamically to fit data

(not a linear classifier)

• Weights α_i learned incrementally

15

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - □ Weak classifier slightly better than random on training data
 - □ Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - □ Similar loss functions
 - □ Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - □ Boosted decision stumps!
 - □ Very simple to implement, very effective classifier

OK... now we'll learn to pick those darned parameters...

- Linear regression
- □ Naïve Bayes
- Logistic regression

Selecting parameter value

- □ Prior strength
 - Naïve Bayes, linear and logistic regression
- □ Regularization strength
 - Naïve Bayes, linear and logistic regression
- Decision trees
 - MaxpChance, depth, number of leaves
- Boosting
 - Number of rounds
- More generally, these are called Model Selection Problems
- Today:
 - □ Describe basic idea
 - Introduce very important concept for tuning learning approaches: Cross-Validation

©Carlos Guestrin 2005-2007

Test set error as a function of model complexity

Simple greedy model selection algorithm

- **.**
- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features F₀ = Ø
 - □ Run learning algorithm for current set of features F_t
 - Obtain *h*,
 - ☐ Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with F_t ∪ {X_i}
 - $\Box F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - □ Recurse

©Carlos Guestrin 2005-2007

Greedy model selection

- Applicable in many settings:
 - □ Linear regression: Selecting basis functions
 - $\ \square$ Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - □ Logistic regression: Selecting features (basis functions)
 - □ Decision trees: Selecting leaves to expand
- Only a heuristic!
 - □ But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin '05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there

Validation set

- Thus far: Given a dataset, randomly split it into two parts:
 - □ Training data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntrain}\}$
 - □ Test data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntest}\}$
- But Test data must always remain independent!
 - □ Never ever ever ever learn on test data, including for model selection
- Given a dataset, randomly split it into three parts:
 - □ Training data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntrain}\}$
 - □ Validation data $\{\mathbf{x}_1, ..., \mathbf{x}_{Nvalid}\}$
 - □ Test data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntest}\}$
- Use validation data for tuning learning algorithm, e.g., model selection
 - □ Save test data for very final evaluation

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm

- Greedy heuristic:

 - □ Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Simple greedy model selection algorithm

Greedy heuristic:

☐ Select next best feature X_i

■ e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_i\}$

F,∪ {**∧**_i}

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- Man!!! OK, should I just repeat until I get tired???
 I am tired now...
 - □ No, "There is a better way!"

©Carlos Guestrin 2005-2007

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - □ D training data
 - \Box D\i training data with *i* th data point moved to validation set
- Learn classifier $h_{D\setminus i}$ with $D\setminus i$ dataset
- Estimate true error as:
 - \Box 0 if h_{Di} classifies *i* th data point correctly
 - \Box 1 if $h_{D\setminus i}$ is wrong about *i* th data point
 - Seems really bad estimator, but wait!
- LOO cross validation: Average over all data points *i*:
 - $\hfill \square$ For each data point you leave out, learn a new classifier $h_{D\!\!\!\!\text{\tiny I}\!\!\text{\tiny I}}$
 - Estimate error as:

$$error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left(h_{\mathcal{D}\setminus i}(\mathbf{x}^i) \neq y^i\right)$$

LOO cross validation is (almost) unbiased estimate of true error!

- □ So it's not estimate of true error of learning with *m* data points!
- □ Usually pessimistic, though learning with less data typically gives worse answer

LOO is almost unbiased!

- \Box Let $error_{true,m-1}$ be true error of learner when you only get m-1 data points
- □ In homework, you'll prove that LOO is unbiased estimate of error_{true.m-1}:

$$E_{\mathcal{D}}[error_{LOO}] = error_{true,m-1}$$

- Great news!
 - ☐ Use LOO error for model selection!!!

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm

- Greedy heuristic:
 - □ Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_i\}$

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- STOP WHEN error_{LOO} IS LOW!!!

Using LOO error for model selection

Send such in 10 king on the park or press. Market

©Carlos Guestrin 2005-2007

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - □ Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - ☐ If you have to do for each choice of basis functions, it will take foooooreeeve'!!!
- Solution 1: Preferred, but not usually possible
 - □ Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO: (More typical) Use k-fold cross validation

- Randomly divide training data into k equal parts
 - \square $D_1,...,D_k$
- For each *i*
 - \Box Learn classifier $h_{D \setminus Di}$ using data point not in D_i

k-fold cross validation error is average over data splits:

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}$$

- k-fold cross validation properties:
 - □ Much faster to compute than LOO
 - \square More (pessimistically) biased using much less data, only m(k-1)/k
 - □ Usually, k = 10 ③

©Carlos Guestrin 2005-2007

Regularization – Revisited

- Model selection 1: Greedy
 - □ Pick subset of features that have yield low LOO error
- Model selection 2: Regularization
 - ☐ Include all possible features!
 - □ Penalize "complicated" hypothesis

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

$$-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + ...$$

■ Regularized least-squares (a.k.a. ridge regression), for $\lambda \ge 0$:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

©Carlos Guestrin 2005-2007

Other regularization examples

- Logistic regression regularization
 - ☐ Maximize data likelihood minus penalty for large parameters

$$\arg\max_{\mathbf{w}} \sum_{j} \ln P(y^{j}|\mathbf{x}^{j},\mathbf{w}) - \lambda \sum_{i} w_{i}^{2}$$

- □ Biases towards small parameter values
- Naïve Bayes regularization
 - □ **Prior** over likelihood of features
 - □ Biases away from zero probability outcomes
- Decision tree regularization
 - □ Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
 - □ Biases towards smaller trees

Regularization and Bayesian learning

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for w
- Similar interpretation for other learning approaches:
 - □ Linear regression: Also zero mean, Gaussian prior for w
 - $\hfill \square$ Naïve Bayes: Directly defined as prior over parameters
 - □ **Decision trees**: Trickier to define... but we'll get back to this

Occam's Razor

- William of Ockham (1285-1349) Principle of Parsimony:
 - □ "One should not increase, beyond what is necessary, the number of entities required to explain anything."
- Regularization penalizes for "complex explanations"
- Alternatively (but pretty much the same), use Minimum Description Length (MDL) Principle:
 - □ minimize *length*(misclassifications) + *length*(hypothesis)
- length(misclassifications) e.g., #wrong training examples
- *length*(hypothesis) e.g., size of decision tree

©Carlos Guestrin 2005-2007

Minimum Description Length Principle

MDL prefers small hypothesis that fit data well:

$$h_{MDL} = \arg\min_{h} L_{C_1}(\mathcal{D} \mid h) + L_{C_2}(h)$$

- \Box L_{C1}(D|h) description length of data under code C₁ given h
 - Only need to describe points that *h* doesn't explain (classify correctly)
- \Box L_{C2}(h) description length of hypothesis h
- Decision tree example
 - \Box L_{C1}(D|h) #bits required to describe data given h
 - If all points correctly classified, L_{C1}(D|h) = 0
 - \Box L_{C2}(h) #bits necessary to encode tree
 - □ Trade off quality of classification with tree size

Bayesian interpretation of MDL Principle

- MAP estimate $h_{MAP} = \underset{h}{\operatorname{argmax}} [P(\mathcal{D} \mid h)P(h)]$ = $\underset{h}{\operatorname{argmax}} [\log_2 P(\mathcal{D} \mid h) + \log_2 P(h)]$ = $\underset{h}{\operatorname{argmin}} [-\log_2 P(\mathcal{D} \mid h) - \log_2 P(h)]$
- Information theory fact:
 - \square Smallest code for event of probability p requires $-\log_2 p$ bits
- MDL interpretation of MAP:
 - \Box -log₂ P(D|h) length of D under hypothesis h
 - \Box -log₂ P(h) length of hypothesis h (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize length(misclassifications) + length(hypothesis)
- In general, Bayesian approach usually looks for simpler hypothesis – Acts as a regularizer

©Carlos Guestrin 2005-2007

What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - ☐ (Mostly) Unbiased estimate of true error
 - □ LOOCV is great, but hard to compute
 - □ k-fold much more practical
 - □ Use for selecting parameter values!
- Model selection
 - □ Search for a model with low cross validation error
- Regularization
 - Penalizes for complex models
 - □ Select parameter with cross validation
 - Really a Bayesian approach
- Minimum description length
 - □ Information theoretic interpretation of regularization
 - □ Relationship to MAP