Boosting

Simple Model Selection
Cross Validation
Regularization

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 31, 2007 .

Boosting [Schapire, 1989]
. B

m Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote Cecodl T+
& * t
On each iteration t. \/ A’umm @/ Yot
weight each training example by t%w incorrectly it wa sified

=
Learn a hypothesis — h,
A strength for this hyﬁahesis -0

Final classifier: - G m? % A4 ALMW
inal classifier: H@(\/ 7 e

Practically useful
Theoretically interesting
neoretically interestin

AN ocst
Given: (z1,%1)y-- -, (Tm, ym) Where z; € X, y; € Y = {—1,+1} A=
Initialize Dy (i) = 1/m. € “niform oy

2!
P - (P
Fort=1,...,T: & twebon 45) 65 TN Pravies J/”Q\CKI
itn LA/Qv L\ N I/
e Train baseklearner using dlstrlbutlon D;.
e Get base classifier hty: X = R fo
L . LTV IS
e Choose oy € R. / W“j]ﬂ% h gzu[¢
T —

D(i) éxp (b)) | T 07

D (i) = 7 At>0

. o &)i
where Z; is a normalization factor Aermatzer | h (x) 5
Ou;(0=} Corveg -

DLI{(X§>O

Z Dy (i) exp(—ayihi(x;)) j
Output the final classifier: L_/j) A4 h@)co

T > ,D{H(D redw ced
H(z) = sign (Z atht(x))

e =
fheC) 55

t=1 | (ot

2 ~d4Y; Mz

Figure 1: The boosting algorithm AdaBoost. = Vel W

©Carlos Guestrin 2005-2007 \ N (rewsh

Given: (z1,%1)y-- -, (Tm, ym) Where z; € X, y; € Y = {—1,+1}
Initialize D1 (i) = 1/m.
Fort=1,...,T:

e Train base learner using distribution D;.
e Get base classifier by : X — R. 1—c¢€ "
In

e Choose oy € R. « o = %
e Update:

€t

O R)

) = ™ 7,
Er s (A/ijf((reor Vh{l ¢
*tm%ﬁ’\ . - Z 7
e €= Piup X # y]
as g D0, L =t T()zntma(ht(wz)#y»

as éjrﬂ i / 0<+ — T fw[hﬁ hers & OFT;GS‘HLL

€t =

‘ z O \ vbc -0 yond om C(agg‘,ﬁﬂus cre
\% 65(g / ba& > 2&5:\%@

©Carlos Guestrin 2005-2007

What o; to choose for hypothesis #,?

[Schapire, 1989]
- B

Training error of final classifier is bounded by:
12 1
— Y O(H(zi) #yi) < —Y exp(—yif(z) =] %
mi=1 mey t
Where f(z) = athi(z); H(z) = sign(f(z))
t

2%«§ O(cegn q

L g
If we minimize [], Z,,(we minimize our training error f‘ Lo,
_— 0<+) LL&

We can tighten this bound greedily, by choosing &; and 4, on each
iteration to minimize Z, -

Zi='3" Dy(i) exp(—aryshe(es)
1=1

©Carlos Guestrin 2005-2007

What o; to choose for hypothesis #,?

[Schapire, 1989]
S B

We can minimize this bound by choosing ¢; on each iteration to minimize Z,
m
Zy =) Di(3) exp(~aryihi(x;))
i=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

You'll prove this in your homework! ©

©Carlos Guestrin 2005-2007

Strong, weak classifiers
S B

m If each classifier is (at least slightly) better than random
£, <0.5

m AdaBoost will achieve zero training error (exponentially fast):

m T 2Ty
1 > 6(H(zi) #vi) <[[2t < exp (—2 > (12— et)z)\@z ’
M= ! %
\K‘\ - £e> & /w‘\}wm(f\

YTt
{{_ "‘Lﬁr‘ Lc\"ﬁlcﬂ.

achieve better than random training érréﬁ?e (J/ s)
—g¢) > X
e

7

©Carlos Guestrin 2005-2007

Boosting results — Digit recognition
= [Schapire, 1989]
B

N m
10/ +

\on 1000 /0 ll &cwmj
rounds of i 7
Lvr
gL wher Ao r X Mrow WLW o 375

m Boosting often
obust to overfittin

Test set error decreases even after training error is zero _

©Carlos Guestrin 2005-2007

Boosting generalization error bound
[Freund & Schapire, 1996]
- |

m

~ Td
erroriye(H) < errortram(H)—k(’)(—>

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier
m m — number of training examples

©Carlos Guestrin 2005-2007

Boosting generalization error bound

[Freund & Schapire, 1996]
. B

~ Td
erroriye(H) < errortram(H)—k(’)(—>

m

m Contradicts: Boosting often

Robust to overfitting

Test set error decreases even after training error is zero
m Need better analysis tools

we’ll come back to this later in the semester

m T — number of boosting rounds

m d - VC dimension of weak learner, measures complexity of classifier
m m — number of training examples

©Carlos Guestrin 2005-2007

10

Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

.
30 . :Q
. /
25 /
° S
0 20 %
<
O 15 '. % R
5 .
g 10)
o 5 e
L4
L%) .
O® .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
errorboosting stumps error boosting C4.5

11

©Carlos Guestrin 2005-2007

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer. ML 1999] ‘

16 A 20
18 5\ tbor labor \ promoters EY promoters
2s \ \
12 \ \a 15 k 25 -\
e 20 Vi & \
s \ 10 " 2 |
B \ .
: N ° .
2 10 .
o - o y 0 S A T
1 10 100 1000 1 1 10 100 1000 1 0 100 1000
20
hepatitis 22 sonar o . sonar
s 21 25 ,,‘
R 20 =
10 19 22:
. 18 h - o
17 18 - Nt
s A
15 15 s
° . Rala el
10 100 1000 1 1 10 100 1000 1 10 100 1000
30 LI
cleve cleve 16 onosphere onosphere
28 =y 15
15 -
10 12 -
10 ~
s ey prirapenins
8 R
o .) A
1 ' 10 100 1000 1 10 100 1000
45 I
4 votes | 16 - votes |
3s 15
3 1 -
25 13
2 12
15 \ n
1 . 10
0s N\ — E)
o - = s -
1 1 10 100 1o 1 0 100 1000
4 bieastcance i-wisconsin s breastcancer-wisconsin
12 \
10 - |
. \
. B
B -
4 s
2 ~— v
2 -4 A

1 10 100 o001 10 100 1000 1 10 100 1000 1 10 100 1000

©Carlos Guestrin 2005-2007

Boosting and Logistic Regression
B

Logistic regression assumes:
1

14 exp(f(=))

And tries to maximize data likelihood:

m 1
P(D|H) = @1:—[1 1 4 exp(—y;f(z;))

P(Y =1|X) =

Equivalent to minimizing log loss

> In(L+ exp(—yif ()))

i=1

13

©Carlos Guestrin 2005-2007

Boosting and Logistic Regression
I

Logistic regression equivalent to minimizing log loss
Z In(1 4+ exp(—y;f(x;)))

i=1
Boosting minimizes similar loss function!!

LY exp(-yif @) =[] %
1 t

Both smooth approximations of 0/1 loss!

14

©Carlos Guestrin 2005-2007

Logistic regression and Boosting

. -
Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
; In(1 + exp(—yif(2:)) 3™ exp(—yif (z1))
i=1
m Define m Define
f@) =Y wa; f(@) = ; athi(z)
’ where 7,(x;) defined
where x; predefined dynamically to fit data

(not a linear classifier)

= Weights o learned
incrementally 15

©Carlos Guestrin 2005-2007

What you need to know about Boosting
- I

m Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error
AdaBoost algorithm
Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier

16

©Carlos Guestrin 2005-2007

OK... now we’ll learn to pick those
darned parameters...

m Selecting features (or basis functions)
Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Prior strength
= Naive Bayes, linear and logistic regression
Regularization strength
= Naive Bayes, linear and logistic regression
Decision trees
s MaxpChance, depth, number of leaves
Boosting
= Number of rounds
More generally, these are called Model Selection Problems
Today:
Describe basic idea
Introduce very important concept for tuning learning approaches: Cross-Validation

©Carlos Guestrin 2005-2007

Test set error as a function of

model complexity

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm

3 -
m Pick a dictionary of features

e.g., polynomials for linear regression
m Greedy heuristic:

Start from empty (or simple) set of
features F, = &

Run learning algorithm for current set
of features F,

= Obtain h,
Select next best feature X,

= eqg., Xj that results in lowest training error
learner when learning with £, U {X}

Fieq +— F U {X}
Recurse

©Carlos Guestrin 2005-2007

Greedy model selection
- B
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X|Y)
Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand
m Only a heuristic!

But, sometimes you can prove something cool about it

m e.g., [Krause & Guestrin '05]: Near-optimal in some settings that
include Naive Bayes

m There are many more elaborate methods out there

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm
- e

m Greedy heuristic:

Select next best feature X;

= eg., X that results in lowest training error
learner when learning with £, U {X;}

U {Xi}
When do you stop???

m When training error is low enough?

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm
- e

m Greedy heuristic:

Select next best feature X;

= eg., X that results in lowest training error
learner when learning with £, U {X;}

U {X3}
When do you stop???

= When-training-erroris-low-enough?—

m When test set error is low enough?

©Carlos Guestrin 2005-2007

Validation set

- -
m Thus far: Given a dataset, randomly split it into two parts:

Training data — {x,,..., Xyyain}

Test data — {x,,..., Xytest}

But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection
Given a dataset, randomly split it into three parts:
Training data — {x;,..., Xyyain}
Validation data — {x;...., Xyyaia}
Test data — {x,,..., Xytest}
Use validation data for tuning learning algorithm, e.g., model selection
Save test data for very final evaluation

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm

. -
m Greedy heuristic:

Select next best feature X;

= eg., X that results in lowest training error
learner when learning with £, U {X;}

U {Xi}

@ When do you stop???

= When-training-erroris-low-enough?—
m When-test-set-errorislow-enough?—
m When validation set error is low enough?

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm

. -
m Greedy heuristic:

Select next best feature X;

= eg., X that results in lowest training error
learner when learning with £, U {X;}

U {Xi}

@ When do you stop???

Whentraining-errorislowencugh? —
Whentestseterrorislowehough?—
Wi lidat i | h?
Man!!! OK, should I just repeat until | get tired???
| am tired now...
No, “There is a better way!”

©Carlos Guestrin 2005-2007

(LOOQO) Leave-one-out cross validation
) -

m Consider a validation set with 1 example:
D — training data
D\i — training data with i th data point moved to validation set
m Learn classifier hj,; with D\i dataset
m Estimate true error as:
0 if hp, classifies ith data point correctly
1if hp, is wrong about i th data point
Seems really bad estimator, but wait!
m LOO cross validation: Average over all data points i:
For each data point you leave out, learn a new classifier h,;
Estimate error as:

1 m . .
errorLoo = > 1 <hD\i(XZ> 7 y2)
i=1

©Carlos Guestrin 2005-2007

LOO cross validation is (almost)
unbiased estimate of true error!

m When computing LOOCYV error, we only use m-1 data points
So it’s not estimate of true error of learning with m data points!
Usually pessimistic, though — learning with less data typically gives worse answer

= LOO is almost unbiased!
Let error,,, ., be true error of learner when you only get m-1 data points
In homework, you'll prove that LOO is unbiased estimate of error,,, ., +:

Ep [67“7“07"L00] — ETTOTtrye,m—1

m Great news!
Use LOO error for model selection!!!

©Carlos Guestrin 2005-2007

Simple greedy model selection algorithm
- e

m Greedy heuristic:

Select next best feature X;

= eg., X that results in lowest training error
learner when learning with £, U {X;}

U {Xi}

@ When do you stop???

Whentraining-errorislowencugh? —
Whentestseterrorislowenough?—

Wi lidati s | h?
STOP WHEN error, oo IS LOW!!

©Carlos Guestrin 2005-2007

Using LOO error for model selection
- I

Computational cost of LOO
. B
m Suppose you have 100,000 data points
m You implemented a great version of your learning
algorithm
Learns in only 1 second
m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation
|

B
m Randomly divide training data into k equal parts
D,.....D,
m Foreachi

Learn classifier h,,; using data point not in D,
Estimate error of hj,; on validation set D;:
errorp, = k o1 (hD\Di(Xj) * yj>
(x7,y9)€eD;
m k-fold cross validation error is average over data splits:
k

ETTOTEk— fold — E Z ETTOTD,
=1

k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k=10 ©

©Carlos Guestrin 2005-2007

Regularization — Revisited
S B
m Model selection 1: Greedy
Pick subset of features that have yield low LOO error
m Model selection 2: Regularization

Include all possible features!
Penalize “complicated” hypothesis

©Carlos Guestrin 2005-2007

Regularization in linear regression

3 -
m Overfitting usually leads to very large parameter choices, e.g.:

-2.2+3.1 X-0.30 X2 -1.1+4,700,910.7 X — 8,585,638.4 X2 + ...

i

! |

|

| |

!

| | \/
/

R

!

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg n&nz (t(Xj) - Z wihi(xj)> + /\Z w?
j i i=1

©Carlos Guestrin 2005-2007

Other regularization examples

. -
m Logistic regression regularization

Maximize data likelihood minus penalty for large parameters

J|xd _ 2
arg mvngInP(y |x7, w) AZwi
7 1
Biases towards small parameter values

m Naive Bayes regularization
Prior over likelihood of features
Biases away from zero probability outcomes

m Decision tree regularization

Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
Biases towards smaller trees

©Carlos Guestrin 2005-2007

How do we pick magic parameter?
3 -
4 Cross Validation!!!!
— — . >
A in Linear/Logistic Regression
(analogously for # virtual examples in Naive Bayes,
MaxPvalue in Decision Trees)

Regularization and Bayesian learning

- B
p(w ‘ Y,X) o« P(Y | X, w)p(w)

m We already saw that regularization for logistic
regression corresponds to MAP for zero mean,
Gaussian prior for w

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters
Decision trees: Trickier to define... but we’'ll get back to this

©Carlos Guestrin 2005-2007

Occam’s Razor

] _}
m William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything.”

Regularization penalizes for “complex explanations”

Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:
minimize length(misclassifications) + length(hypothesis)

length(misclassifications) — e.g., #wrong training examples
length(hypothesis) — e.g., size of decision tree

©Carlos Guestrin 2005-2007

Minimum Description Length Principle

. -
m MDL prefers small hypothesis that fit data well:
hMDL = arg mhin Lcl(D ’ h) + LCQ(h)

Lc4(Dlh) — description length of data under code C, given h
= Only need to describe points that h doesn’t explain (classify correctly)

Lc,(h) — description length of hypothesis h
m Decision tree example

L.4(D|h) — #bits required to describe data given h
= If all points correctly classified, Ls(DJh) =0

Ls,(h) — #bits necessary to encode tree
Trade off quality of classification with tree size

©Carlos Guestrin 2005-2007

Bayesian interpretation of MDL Principle
. B
m MAP estimate haap = argmax [P(D | h)P(h)]
= arg}anaX [logo P(D | h) + logp P(h)]
= arg}:nin [—logs P(D | h) — logp P(h)

Information theory fact:
Smallest code for event of probability p requires —log,p bits
MDL interpretation of MAP:
-log, P(D|h) — length of D under hypothesis h
-log, P(h) — length of hypothesis h (there is hidden parameter here)

MAP prefers simpler hypothesis:
= minimize length(misclassifications) + length(hypothesis)

In general, Bayesian approach usually looks for simpler
hypothesis — Acts as a regularizer

©Carlos Guestrin 2005-2007

What you need to know about Model Selection,
Regularization and Cross Validation
. -
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!
m Model selection
Search for a model with low cross validation error
m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach
m Minimum description length
Information theoretic interpretation of regularization
Relationship to MAP

©Carlos Guestrin 2005-2007

