

■ Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote ■ On each iteration t: □ weight each training example by how incorrectly it was classified □ Learn a hypothesis ¬ h, □ A strength for this hypothesis α, ■ Final classifier: ■ Practically useful ■ Theoretically interesting

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\} dath fract initialize D_1(i)=1/m. Explain the final classifier:  \begin{array}{c} \text{Choose }\alpha_t\in\mathbb{R}. \\ \text{Output the final classifier:} \end{array} 
Eq.(1)
Eq.(2)
Eq.(3)
Eq.(4)
Eq.(4)
Eq.(4)
Eq.(4)
Eq.(6)
Eq.(6)
Eq.(7)
Eq.(7)
Eq.(7)
Eq.(8)
Eq.(8)
Eq.(9)
Eq.(1)
```

```
Given: (x_1,y_1),\ldots,(x_m,y_m) where x_i\in X,y_i\in Y=\{-1,+1\}

Initialize D_1(i)=1/m.

For t=1,\ldots,T:

• Train base learner using distribution D_t.

• Get base classifier h_t:X\to\mathbb{R}.

• Choose \alpha_t\in\mathbb{R}.

• Update:
D_{t+1}(i)=\frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}
Et is wighted error at item to the first of the
```

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\text{Prov}(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; H(x) = sign(f(x))

If we minimize $\prod_t Z_t$, we minimize our training error

Zt-1 doesn't depend on

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

©Carlos Guestrin 2005-2007

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$\underline{Z_t} = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

You'll prove this in your homework! ©

6

Strong, weak classifiers

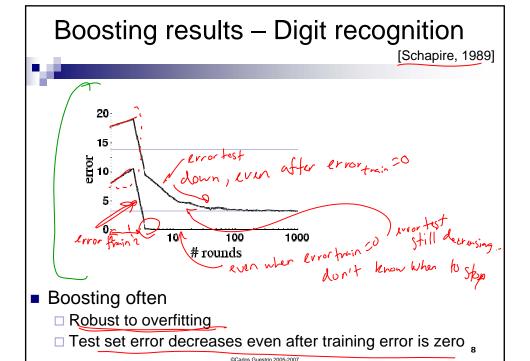
- If each classifier is (at least slightly) better than random $\epsilon_t < 0.5$
- AdaBoost will achieve zero training error (exponentially fast):

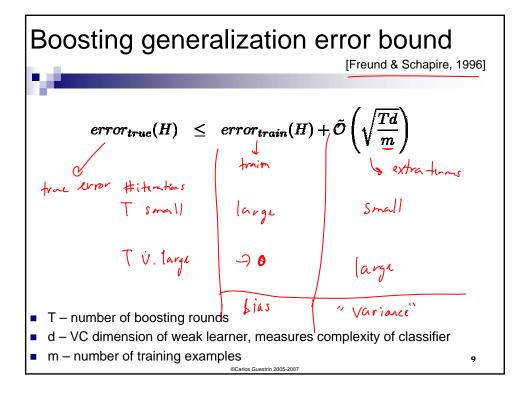
$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right) e^{2T\delta^2}$$

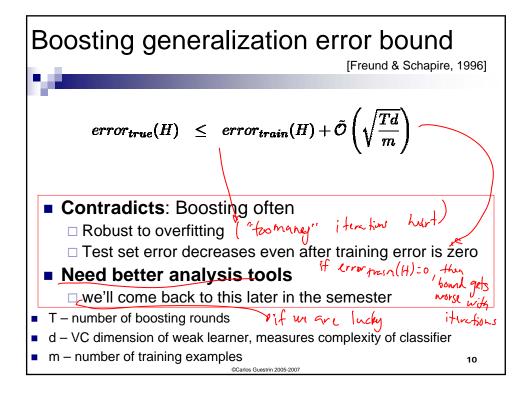
$$(1/2 - \epsilon_t)^2 \leftarrow \text{howards in lay}$$

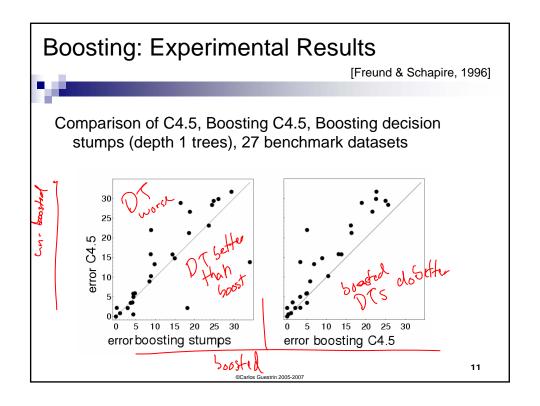
$$(1/2$$

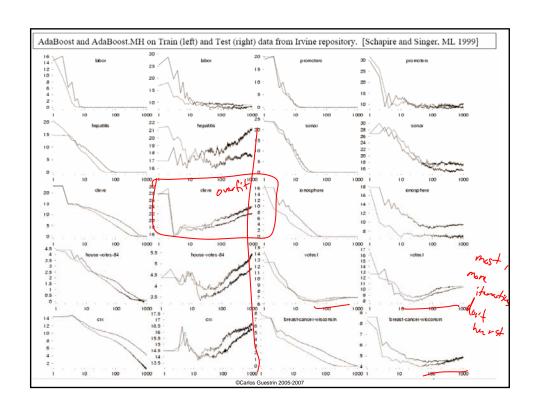
Is it hard to achieve better than random training $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

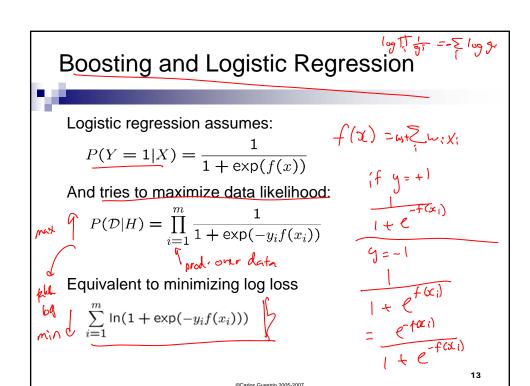


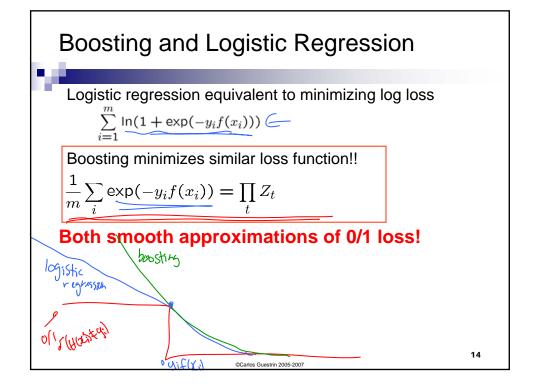












Logistic regression and Boosting

Logistic regression:

■ Minimize loss fn 69 65

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_{j} x_{j}$$

where x_i predefined

fearus in LR

Boosting:

■ Minimize loss fn <>p \(\lambda_{\mathbb{N}} \) \(\lambda_{\mathbb{S}} \)

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$
• Define
$$f(x) = \sum_{t} \alpha_t h_t(x)$$
where $h(x)$ defined

efine
$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_i(x_i)$ defined dynamically to fit data

(not a linear classifier)

Weights α_i learned incrementally

15

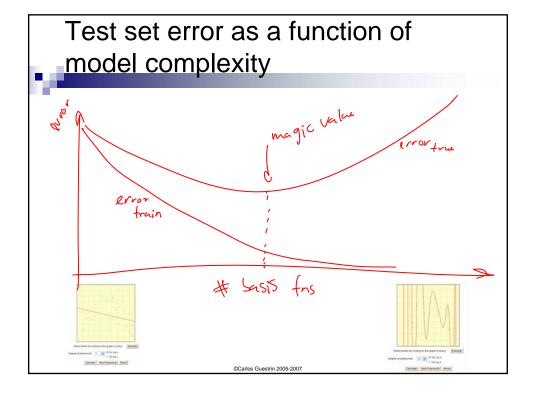
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - □ Weak classifier slightly better than random on training data
 - □ Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - □ Similar loss functions
 - ☐ Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - □ Boosted decision stumps!
 - □ Very simple to implement, very effective classifier

AWL (is out!

OK... now we'll learn to pick those darned parameters... Selecting features (or basis functions) Linear regression Naïve Bayes Logistic regression Selecting parameter value

- - Prior strength
 - Naïve Bayes, linear and logistic regression
 - □ Regularization strength
 - Naïve Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds
- More generally, these are called Model Selection Problems
- Today:
 - □ Describe basic idea
 - □ Introduce very important concept for tuning learning approaches: Cross-Validation



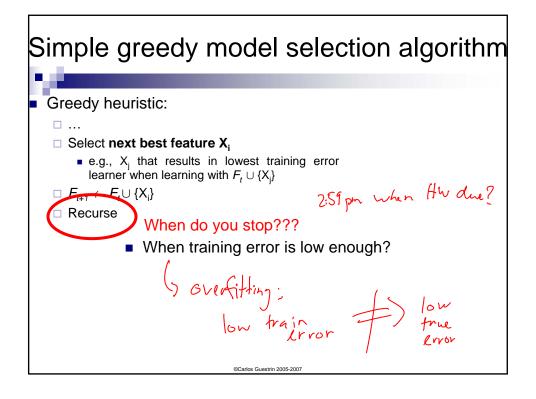
Simple greedy model selection algorithm

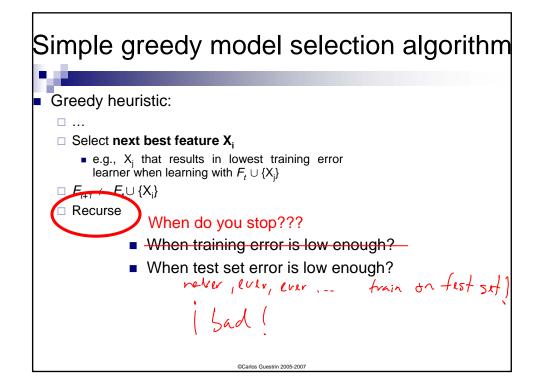
- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features $F_0 = \emptyset$
 - □ Run learning algorithm for current set of features F_t
 - Obtain h,
 - □ Select next best feature X;
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $\Box F_{t+1} \leftarrow F_t \cup \{X_i^{\overline{i}}\}$
 - □ Recurse

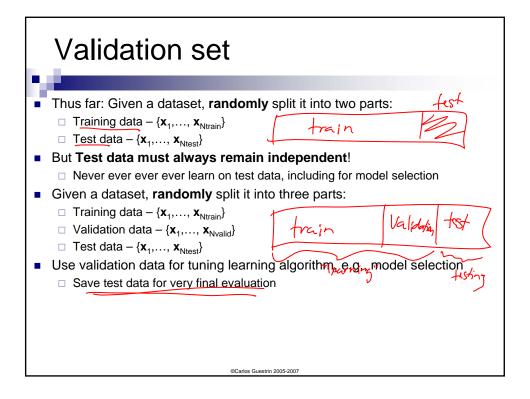
©Carlos Guestrin 2005-200

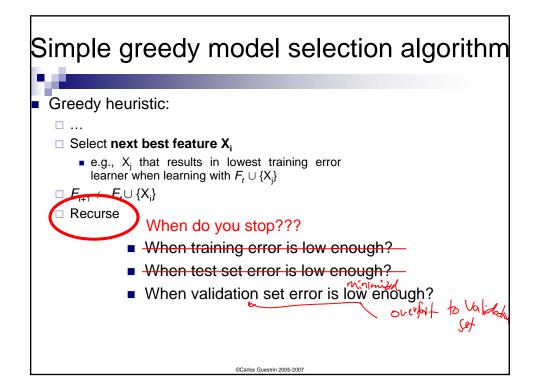
Greedy model selection

- Ŋ
- Applicable in many settings:
 - □/Linear regression: Selecting basis functions
 - \square Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - □ But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin '05] Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there

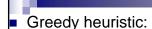




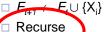




Simple greedy model selection algorithm



- ☐ Select next best feature X;
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$



When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- Man!!! OK, should I just repeat until I get tired??? □ I am tired now...
 - □ No, "There is a better way!"

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - □ D training data
 - □ D\i training data with *i*th data point moved to validation set
- Learn classifier $h_{D \setminus i}$ with $D \setminus i$ dataset
- Estimate true error as:
- □ 0 if h_{D_i} classifies *i*th data point correctly
 □ 1 if $\overline{h_{D_i}}$ is wrong about *i*th data point
 □ Some results be

 - □ Seems really bad estimator, but wait!
- LOO cross validation: Average over all data points i:
 - $\ \square$ For each data point you leave out, learn a new classifier h_{D_i}

$$error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left(h_{\mathcal{D}\setminus i}(\mathbf{x}^i) \neq y^i\right)$$

LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use m-1 data points & karn
 - □ So it's not estimate of true error of learning with *m* data points!
 - □ Usually pessimistic, though learning with less data typically gives worse answer
- LOO is almost unbiased!
 - \Box Let $error_{true,m-1}$ be true error of learner when you only get m-1 data points
 - □ In homework, you'll prove that LOO is unbiased estimate of error_{true,m-1}:

$$E_{\mathcal{D}}[error_{LOO}] = error_{true,m-1}$$

- Great news!
 - ☐ Use LOO error for model selection!!!

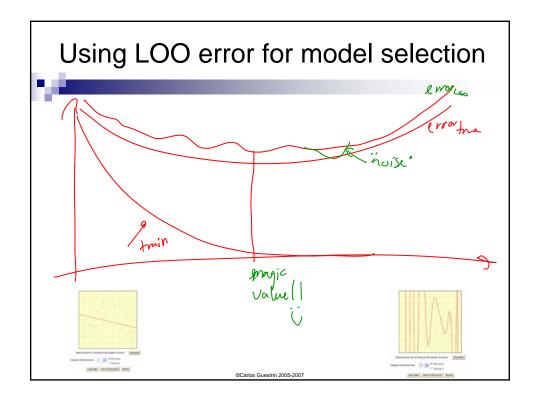
©Carlos Guestrin 2005-200

Simple greedy model selection algorithm

- Greedy heuristic:
- □ ...□ Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $\Box F_{i+1} \leftarrow F_i \cup \{X_i\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- STOP WHEN error_{LOO} IS LOW!!!



Computational cost of LOO

- ٧
- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - □ Learns in only <u>1 sec</u>ond
- Computing LOO will take about 1 day!!!
 - ☐ If you have to do for each choice of basis functions, it will take foooooreeeve'!!!
- Solution 1: Preferred, but not usually possible
 - ☐ Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO:

(More typical) Use k-fold cross validation

- Randomly divide training data into *k* equal parts
- D. Dz --- Dk

- □ $D_1,...,D_k$ For each i
 - \Box Learn classifier $h_{D \cup Di}$ using data point not in D_i
 - $\Box \quad \text{Estimate error of } \overline{h_{D|Di}} \text{ on validation set } D_i$

$$error_{\mathcal{D}_i} = \frac{k}{m} \sum_{(\mathbf{x}^j, y^j) \in \mathcal{D}_i} \mathbb{1} \left(h_{\mathcal{D} \setminus \mathcal{D}_i}(\mathbf{x}^j) \neq y^j \right)$$

k-fold cross validation error is average over data splits:

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}$$

- *k*-fold cross validation properties:
 - □ Much faster to compute than LOO
 - \square More (pessimistically) biased using much less data, only m(k-1)/k
 - ☐ Usually, **k = 10** ③

©Carlos Guestrin 2005-200

Regularization - Revisited

- Model selection 1: Greedy
 - □ Pick subset of features that have yield low LOO error
- Model selection 2: Regularization
 - □ Include all possible features!
 - □ Penalize "complicated" hypothesis

Regularization in linear regression

$$-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + ...$$

■ Regularized least-squares (a.k.a. ridge regression), for $\lambda \ge 0$:

$$\mathbf{w}^{*} = \arg\min_{\mathbf{w}} \underbrace{\sum_{j} \left(t(\mathbf{x}_{j}) - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j}) \right)^{2} + \lambda \sum_{i=1}^{k} w_{i}^{2}}_{Visubarizaho}$$

©Carlos Guestrin 2005-200

Other regularization examples

Logistic regression regularization

☐ Maximize data likelihood minus penalty for large parameters

$$\arg\max_{\mathbf{w}}\sum_{j}\ln P(y^{j}|\mathbf{x}^{j},\mathbf{w})-\lambda\sum_{i}w_{i}^{2}$$

□ Biases towards small parameter values

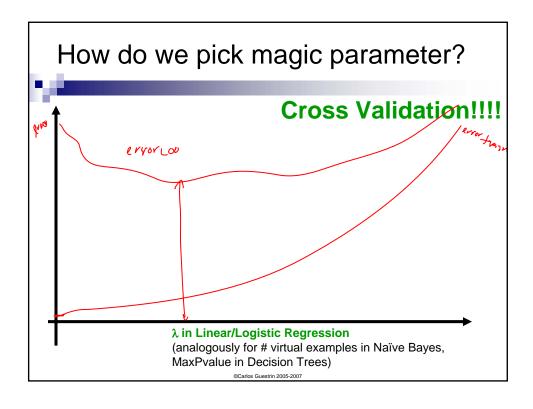
Naïve Bayes regularization

- □ **Prior** over likelihood of features
- ☐ Biases away from zero probability outcomes

P(Xi | Y)
never saw a ward
but addy a small

Decision tree regularization

- □ Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
- □ Biases towards smaller trees



Regularization and Bayesian learning

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for w
- Similar interpretation for other learning approaches:
 - □ Linear regression: Also zero mean, Gaussian prior for w
 - □ Naïve Bayes: Directly defined as prior over parameters
 - □ **Decision trees**: Trickier to <u>define</u>... but we'll get back to this

Occam's Razor

- William of Ockham (1285-1349) Principle of Parsimony:
 - "One should not increase, beyond what is necessary, the number of entities required to explain anything."
- Regularization penalizes for "complex explanations"
- Alternatively (but pretty much the same), use Minimum Description Length (MDL) Principle:
 - □ minimize length(misclassifications) + length(hypothesis)

- length(misclassifications) e.g., #wrong training examples
- *length*(hypothesis) e.g., size of decision tree

©Carlos Guestrin 2005-200

Minimum Description Length Principle

MDL prefers small hypothesis that fit data well:

$$\underbrace{h_{MDL}}_{h} = \arg\min_{h} L_{C_1}(\mathcal{D} \mid h) + L_{C_2}(h)$$

- \Box L_{C1}(D|h) description length of data under code C₁ given h
 - Only need to describe points that h doesn't explain (classify correctly)
- \Box L_{C2}(h) description length of hypothesis h
- Decision tree example
 - \Box L_{C1}(D|h) #bits required to describe data given h
 - If all points correctly classified, L_{C1}(D|h) = 0
 - □ L_{C2}(h) #bits necessary to encode tree
 - ☐ Trade off quality of classification with tree size

Bayesian interpretation of MDL Principle

- MAP estimate $\begin{array}{rcl} h_{MAP} &=& \arg\max\left[P(\mathcal{D}\mid h)P(h)\right] \\ &\stackrel{h}{\longleftarrow} &=& \arg\max\left[\log_2P(\mathcal{D}\mid h) + \log_2P(h)\right] \\ &=& \arg\min\left[-\log_2P(\mathcal{D}\mid h) \log_2P(h)\right] \end{array}$
- Information theory fact:
 - \square Smallest code for event of probability *p* requires $-\log_2 p$ bits
- MDL interpretation of MAP:
 - \Box -log₂ P(D|h) length of D under hypothesis h
 - \Box -log₂ P(h) length of hypothesis h (there is hidden parameter here)
 - □ MAP prefers simpler hypothesis:
 - minimize length(misclassifications) + length(hypothesis)
- In general, Bayesian approach usually looks for simpler hypothesis – Acts as a regularizer

©Carlos Guestrin 2005-2007

What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - ☐ (Mostly) Unbiased estimate of true error
 - □ LOOCV is great, but hard to compute
 - □ *k*-fold much more practical
 - ☐ Use for selecting parameter values!
- Model selection
 - Search for a model with low cross validation error
- Regularization
 - Penalizes for complex models
 - □ Select parameter with cross validation
 - □ Really a Bayesian approach
- Minimum description length
 - □ Information theoretic interpretation of regularization
 - □ Relationship to MAP