Bayesian Networks Inference

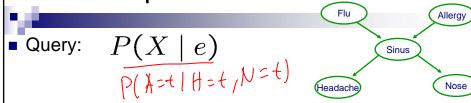
Machine Learning - 10701/15781

Carlos Guestrin

Carnegie Mellon University

November 5th, 2007

General probabilistic inference



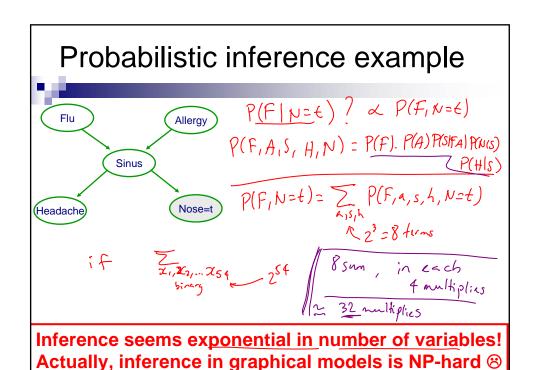
$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

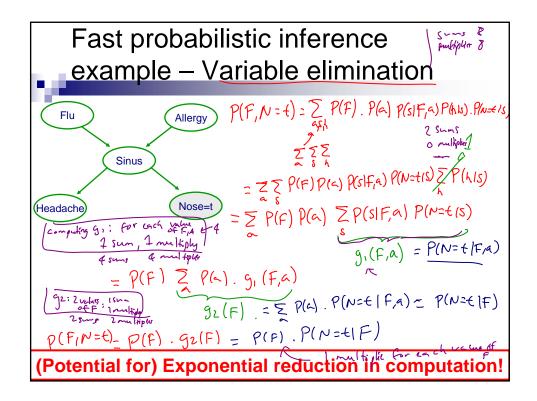
$$P(X \mid e) \propto P(X, e)$$

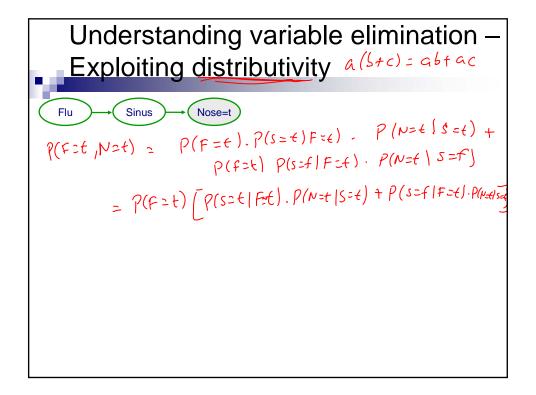
■ Using Bayes rule: (Duh. (ond prob.))
$$P(X \mid e) = \frac{P(X,e)}{P(e)}$$
■ Normalization:
$$P(X \mid e) \propto P(X,e)$$

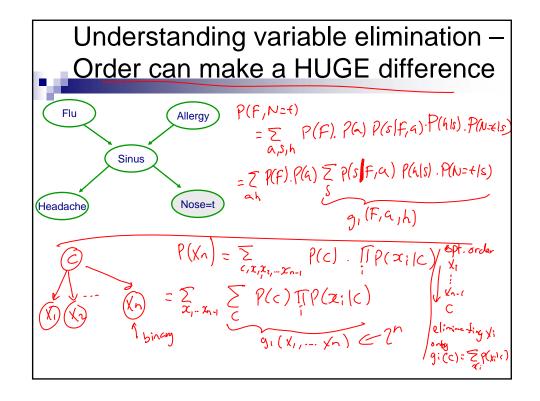
Marginalization

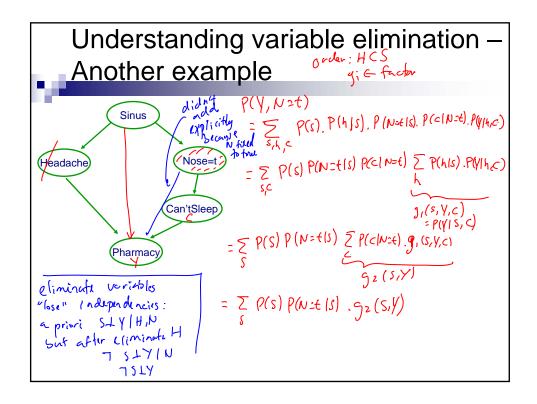
Flu Sinus Nose=t
$$P(F,S,N) = P(F) \cdot P(S|F) \cdot P(N|S)$$
 $P(F,S,N) = P(F) \cdot P(S|F) \cdot P(N|S)$
 $P(F,S,N) = P(F) \cdot P(S|F) \cdot P(N|S)$
 $P(F,S,N) = P(F) \cdot P(F) \cdot P(N|S)$
 $P(F,S,N) = P(F) \cdot P(S|F) \cdot P(N|S)$









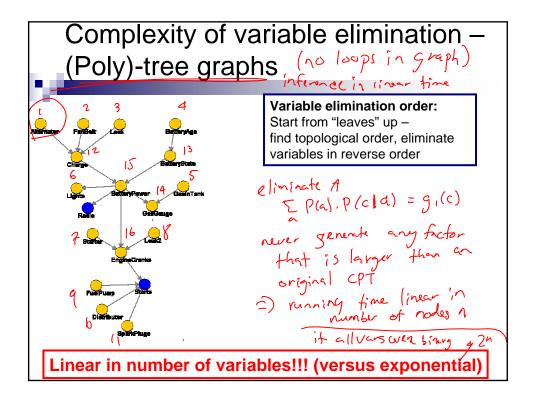


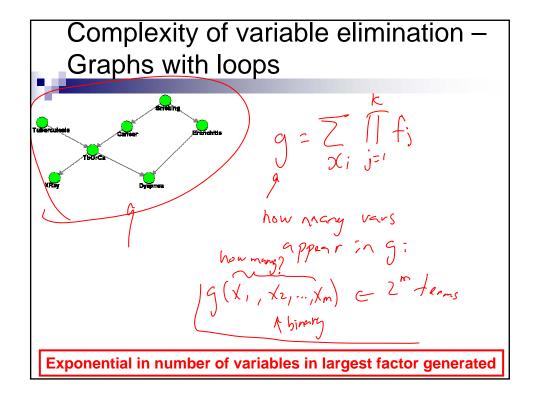
Variable elimination algorithm

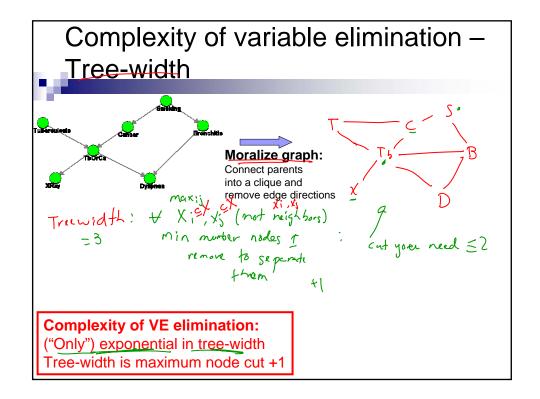
- query
- Given a BN and a query P(X|e) ✓ P(X,e)
- Instantiate evidence e in the Important!!!
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$, eliminate x;
 - \Box Collect factors $\overline{f_1, ..., f_k}$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

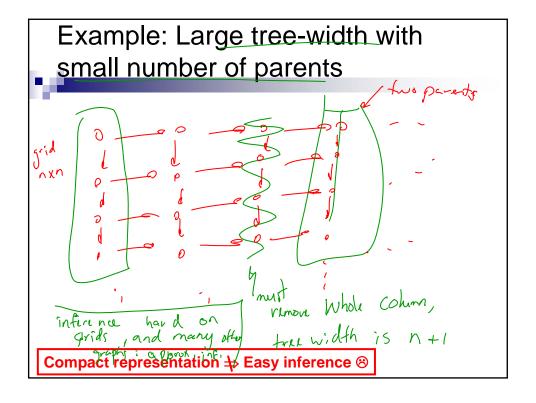
$$\underline{g} = \sum_{X_i} \prod_{j=1}^k f_j^{\ell_{\mathcal{I}_j, \mathcal{I}_{\mathcal{I}_j}}} f_j^{\ell_{\mathcal{I}_j, \mathcal{I}_{\mathcal{I}_j}}}$$

- □ Variable X_i has been eliminated!
- Normalize P(X,e) to obtain P(X|e)





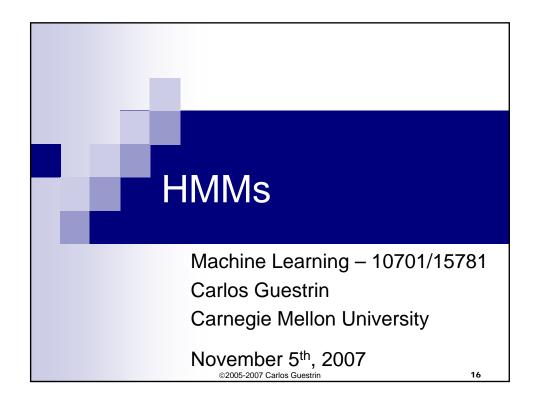




Choosing an elimination order

- ٠
 - Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
 - Many good heuristics (some with guarantees)
 - Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
 - In practice
 - Variable elimination often very effective
 - □ Many (many many) approximate inference approaches available when variable elimination too expensive

Announcements HW4 out later today will come out in two installments no interest no kiddenfees Project milestone Next Monday (11/12 in class)



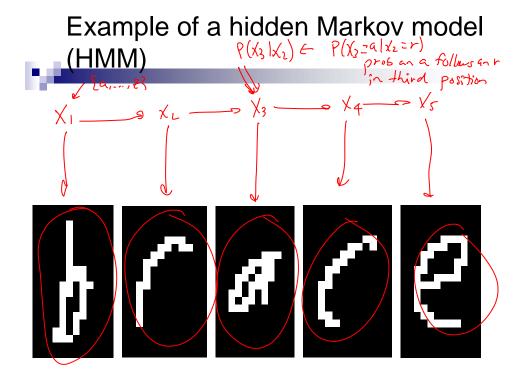
Adventures of our BN hero

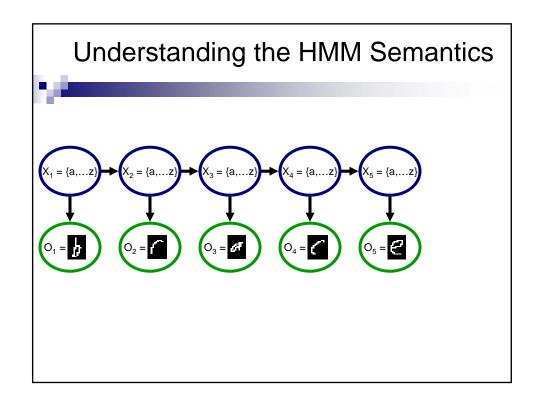
- Compact representation for 1. Naïve Bayes probability distributions
- Fast inference
- Fast learning
- But... Who are the most popular kids?

2 and 3. Hidden Markov models (HMMs) Kalman Filters

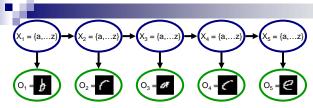
9 HMM with Gaussiar

Handwriting recognition Character recognition, e.g., kernel SVMs





HMMs semantics: Details



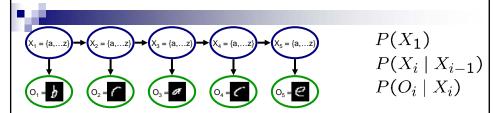
Just 3 distributions:

$$P(X_1)$$

$$P(X_i \mid X_{i-1})$$

$$P(O_i \mid X_i)$$

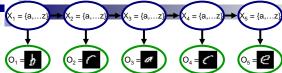
HMMs semantics: Joint distribution



$$P(X_1, ..., X_n \mid o_1, ..., o_n) = P(X_{1:n} \mid o_{1:n})$$

$$\propto P(X_1)P(o_1 \mid X_1) \prod_{i=2}^n P(X_i \mid X_{i-1})P(o_i \mid X_i)$$

Learning HMMs from fully observable data is easy



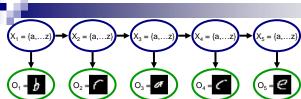
Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

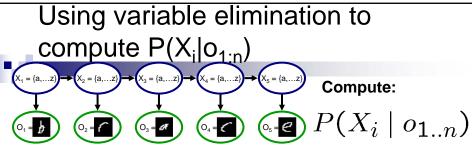
$$P(X_i \mid X_{i-1})$$

Possible inference tasks in an HMM



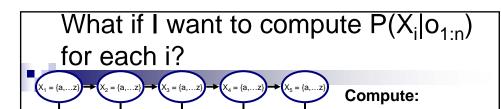
Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:



Variable elimination order?

Example:

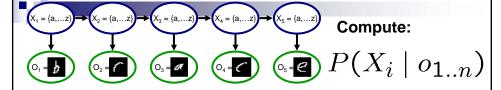


 $P(X_i \mid o_{1..n})$

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation



The forwards-backwards algorithm

$$P(X_i \mid o_{1..n})$$

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
 - \Box Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - ☐ Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

■ 8 i, probability is: $P(X_i \mid o_{1..n}) \propto \alpha_i(X_i)\beta_i(X_i)$

What you'll implement 1: multiplication

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

What you'll implement 2: marginalization

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

Higher-order HMMs



Add dependencies further back in time!
better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
 - □ Very useful, very powerful!
 - □ Speech, OCR,...
 - □ Parameter sharing, only learn 3 distributions
 - $\hfill\Box$ Trick reduces inference from $O(n^2)$ to O(n)
 - □ Special case of BN