10701/15781 Machine Learning, Fall 2007: Homework 5

Due: Wednesday, December 5, to Monica by 3pm

Instructions

There are 4 questions on this assignment. Problem 3 involves coding. Do not attach your code to the
writeup. Instead, copy your implementation to

/afs/andrew.cmu.edu/course/10/701/Submit/your_andrew_id/HW5

To write in this directory, you need a kerberos instance for andrew, or you can log into, for example,
unix.andrew.cmu.edu.

Please submit each problem seperately with your name and Andrew ID on each problem. Refer to the
webpage for policies regarding collaboration, due dates, and extensions.

IMPORTANT: We will not accept homework turned in after 3pm on Saturday December 8th (even for
partial credit). We want to be able to post the solutions for this homework as early as possible.

1

[20 Points] Online Learning (Steve)

1. We saw in class that for any finite hypothesis class C of binary classifiers, the optimal mistake bound is

at most log, |C|. That is, there is an algorithm that, regardless of what sequence x1, 23, . .. an adversary
chooses, as long as there is some f € C such that the true label of every x; is f(z;), if the algorithm
is told whether it makes a mistake immediately after each prediction, the algorithm will make at most
log, |C| mistakes on the entire sequence. In particular, the Halving algorithm is an example of such an
algorithm.

Prove that for every hypothesis class C, the optimal mistake bound for C is at least VC(C), the VC-
dimension of C. In other words, you need to prove that for any (deterministic) algorithm, there exists
a sequence I, Za,... and a target function f € C such that if the true label of every x; is f(z;), then
the algorithm will make at least V'C(C) mistakes on the sequence.

Hint: Because it’s a deterministic algorithm, it suffices to specify a sequence x1, s, ..., and describe
how an adversary would label any example in the sequence in response to the algorithm’s prediction.
Then briefly explain why this forces the algorithm to make V' C(C) mistakes, while still keeping all of
the true labels consistent with some f € C.

. Instead of binary classification, suppose we are interested in classifying into k categories. That is,

a hypothesis class C contains functions h such that for any example z, h(x) € {1,2,...,k}. In this
modification of the mistake bound model, in each round the learning algorithm observes an example z,
then makes a prediction y € {1,2,...,k}, and then is told the true label f(z) € {1,2,...,k}, (where
f € Cis a fixed target function).

Prove that for any hypothesis class C of this type, the optimal mistake bound is still at most log, |C].



2 [25 points] Expectation Maximization [Sue Ann]

You are running a Naive Bayes classifier for a classification problem with one (unobserved) binary class
variable Y (e.g. whether it’s too hot for your dog in here) and 3 binary feature variables X7, X2, X5. The
class value is never directly seen but approximately observed using a sensor (e.g. you see your dog panting).
Let Z be the binary variable representing the sensor values. One morning (your dog is out to play and)
you realize the sensor value is missing in some of the examples. From the sensor specifications (that come
with your dog), you learn that the probability of missing values is four times higher when ¥ = 1 than when
Y = 0. More specifically, the exact values from the sensor specifications are:

P(Z missing]lY =1)=.08, P(Z=1Y =1)=.92
P(Z missing]Y =0)=.02, P(Z=0]Y =0)=.98

1. Draw a Bayes net that represents this problem with a node Y that is the unobserved label, a node Z
that is either a copy of Y or has the value “missing”, and the three features X7, Xo, X3.

2. What is the probability of the unobserved class label being 1 given no other information, i.e., P(Y =
1|Z = “missing”)? Derive the quantity using the Bayes rule and write your final answer in terms of
Oy —1, our estimate of P(Y = 1).

3. We would like to learn the best choice of parameters for P(Y), P(X1]Y), P(X2|Y), and P(X3|Y).
Assume Y, X1 |Y, X5|Y, X3]Y are all Bernoulli variables and let us denote the parameters as’

GY:y = P(Y = y)7 6X1::1:1|Y:y = P(Xl = .131|Y = y)a
Ox,—zs)y=y = P(Xo = 22|Y = y), Ox,—g,y=y = P(X3=a23]Y =y).
Write the log-probability of X, Y and Z given 0, in terms of 8, and P(Z]Y), first for a single example
(X1 = 21,X0 = 22, X3 = 23,7 = 2,Y = y), then for n iid. examples (X! = 2!, X} = 2}, X =
b, Z0 =20 Y=y fori=1,...,n.
4. Provide the E-step and M-step for performing expectation maximization of € for this problem.

In the E-step, compute the distribution Q:4+1(Y|Z, X) using
Qt"l‘l(Y = 1|Z7X) = E[Y|Z7 X13X27X3a Qt]

using your Bayes net from part 1 and conditional probability from part 2 for the unobserved class label
Y of a single example.

In the M-step, compute

Or1 = argmax, » Y Q(Y' =y|Z', X*)log P(X{, X}, X3,Y", Z'|0)

=1y

using all of the examples (X{, X3, X3, Y1, ZY), . (X}, X2, X2, Y™, Z"). Note: it is OK to leave your
answers in terms of Q(Y]Z, X).

3 [30 points| Clustering and Dimensionality Reduction

In this problem we will again be working with the digits data set. The data file we provide contains 60,000
hand written digits between 0 and 9. Each digit is a 28 x 28 grayscale image represented as a 784 dimensional
vector. The variable X is a 60,000 x 784 matrix. The 60,000 dimensional vector Y contains the true number
for each image. Please submit include in your write-up a copy of all plots for this problem.

IWe only need 6y = P(Y = 1),0x,)y=y = P(X; = 1]Y = y),... since 0y—g = 1 — Oy—1, ..., but the set of s defined here
should help you notationally.



Update: There is now a smaller data set availabe. In your results please say what data set you use and
use only one data set throughout the problem. The smaller data set consists of 5000 10 x 10pixel images
each represented as 100 dimensional row vector. When asked to use the first 1, 2, 5, 10, 21, 44, 94, 200, and
784 principal components instead use the first 1, 2, 3, 6, 10, 18, 32, 56, and 100.

3.1 [15 Points] Principal Components Analysis

A very common technique for dimensionality reduction is principal components analysis typically referred
to as PCA. In the first part of this problem you will need to implement PCA. Because this is a relatively
large data set, consider using the functions cov and eig or eigs.

1. [5 Points| Plot the first 9 principal components as images. You will probably need the functions image,
colormap(’Gray’), subplot, and reshape(v,28,28). To plot the principal components rescale the
vector so that its values range between 0 and 255.

2. [5 Points] Plot the eigenvalues in decreasing order. From the plot, how many eigenvectors do you
believe are necessary to approximately represent the images.

3. [5 Points] Using the first 1, 2, 5, 10, 21, 44, 94, 200, and 784 principal components plot the reconstruc-
tion of the the first 2 digits in the data set. Use subplot(3,3,1i) to save tree of the natural kind.
Does the approximation get better with increasing principal components?

3.2 [15 Points] Gaussian Mixture Model

For this problem you will need to implement Expectation Maximization (EM) for the axis aligned Gaussian
mixture model. Recall that the axis aligned gaussian mixture model uses the Gaussian Niave bayes assump-
tion that given the class all the features are conditionally independent Gaussians. The specific form of the
model is given in Equation 1.

Update: Due to numerical issues on this data set, you may use K-means clustering instead of a Gaussian

mixture model. If you have a clever solution to the numerical problems please describe the solution in your
write-up for extra credit.

Z; ~ Multinomial(py,...,pK)

T o

“ (2)y2 :

Xizi== ~ N| || ] O ) ' (1)
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If you find that running your algorithm on the full data set takes too long try using the first 5,000 digits
instead of all 60,000. You will want to avoid looping over all n = 60,000 examples.

1. [5 Points] Run EM to fit a Gaussian mixture model with 16 gaussians on the digits data without
applying PCA. Plot each of the means using subplot(4,4,1) to save paper.

2. [5 Points] Again run EM clustering with K = 16 using only the first 100 principal components. Again,
plot each of the means. Do you notice a difference in the output or running time?

3. [5 Points] Evaluating clustering performance is difficult. However, because we have “truth” data,
we can roughly assess clustering performance. One possible metric is to label each cluster with the
majority label for that cluster using the truth data. Then, for each point we predict the cluster label
and measure the mean 0/1 loss. For the digits data set, what score would we get if we placed all the
points in one class? Using 1, 2, 5, 10, 21, 44, 94, 200, and 784 principal components what scores does
k = 16 means clustering obtain?



4 [25 points] Reinforcement Learning [Jingrui]

Consider the following Markov Decision Process:
r=1 r=1 r=1 r =10
\-r =1 \\?‘ =1 \-r =1 \\-r =1
We have states S1, Sa, S3, S4, and S5. We have actions Left and Right, and the chosen action happens
with probability 1. In S; the only option is to go back to S, and similarly in S5 we can only go back to Sy.

The reward for taking any action is r = 1, except for taking action Right from state Sy, which has a reward
r = 10. For all parts of this problem, assume that v = 0.8.

1. What is the optimal policy for this MDP?
2. What is V*(S5)? It is acceptable to state it in terms of -y, but not in terms of state values.

3. Consider executing ()-learning on this MDP. Assume that the @ values for all (state,action) pairs are
initialized to 0, that o = 0.5, and that Q-learning uses a greedy exploration policy, meaning that it
always chooses the action with maximum @) value. The algorithm breaks ties by choosing Left. What

are the first 10 (state, action) pairs if our robot learns using Q-learning and starts in state Ss (e.g.
(Ss, Left), (Se, Right), (Ss, Right),...)?

4. Now consider executing Ry,q, on this MDP. Assume that we trust an observed P(z'|x,a) transition
probability after a single observation, that the value of R,,,, = 100, and that we update our policy
each time we observe a transition. Also, assume that R,,q, breaks ties by choosing a policy of Left.
What are the first 10 (state, action) pairs if our robot learns using R, and starts in state S3 (e.g.
(Ss, Left), (S2, Right), (Ss, Right),...)?
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