
10701/15781 Machine Learning, Fall 2007: Homework 3

Due: Monday, November 5, beginning of the class

Instructions

There are 4 questions on this assignment. Problem 3 involves coding. Do not attach your code to the
writeup. Instead, copy your implementation to

/afs/andrew.cmu.edu/course/10/701/Submit/your_andrew_id/HW2

To write in this directory, you need a kerberos instance for andrew, or you can log into, for example,
unix.andrew.cmu.edu.

Please submit each problem seperately with your name and Andrew ID on each problem. Refer to the
webpage for policies regarding collaboration, due dates, and extensions.

1 Kernel Regression and Locally Weighted Regression [Jingrui,
15 points]

Given a set of n examples, (xj , yj) (xj is the input, and yj is output), j = 1, . . . , n, a linear smoother is
defined as follows. For any x, there exists a vector l(x) = (l1(x), . . . , ln(x))T such that the estimated output
ŷ of x is ŷ =

∑n
j=1 lj(x)yj =< l(x), Y >, where Y is a n × 1 vector, Yj = yj , and < a, b > is the inner

product between two vectors a and b.

1. Recall that in linear regression, we assume the data are generated from the linear regression model
yj =

∑k
i=1 wihi(xj) + εj . The least squares estimate for the coefficient vector w is given by w∗ =

(HTH)−1HTY , where H is a n × k matrix, Hji = hi(xj). Given an input x, what is the es-
timated output ŷ? (Matrix form solution is required. You may want to use the k × 1 vector
h(x) = [h1(x), . . . , hk(x)]T)

2. Based on part 1, prove that linear regression is a linear smoother. Give the vector l(x) for a given
input x.

3. In kernel regression, given an input x, what is the estimated output ŷ?

4. Based on part 3, prove that kernel regression is a linear smoother. Give the vector l(x) for a given
input x.

5. In local weighted regression, given an input x, what is the estimated output ŷ?

6. Based on part 5, prove that locally weighted regression is a linear smoother. Give the vector l(x) for
a given input x.

7. If we divide the range (a, b) (a and b are real numbers, and a < b) into m equally spaced bins denoted
by B1, . . . , Bm. Define the estimated output ŷ = 1

ki

∑
j:xj∈Bi

yj , for x ∈ Bi, where ki is the number
of points in Bi. In other words, the estimate ŷ is a step function obtained by averaging the yjs over
each bin. This estimate is called the regressogram. Is this estimate a linear smoother? If yes, give the
vector l(x) for a given input x; otherwise, state your reasons.

1

2 [20 points] Feature Maps, Kernels, and SVM (Joey)

You are given a data set D in Figure 1 with data from a single feature X1 in R1 and corresponding label
Y ∈ {+,−}. The data set contains four positive examples at X1 = {−3,−2, 3} and three negative examples
at X1 = {−1, 0, 1}.

+ + +- - -
-4 -2 0 2 4

X1

Figure 1: Dataset for SVM feature map task in Question 2.

2.1 Finite Features and SVMs

1. [1pt] Can this data set (in its current feature space) be perfectly separated using a linear separator?
Why or why not?

2. [1pt] Lets define the simple feature map φ(u) = (u, u2) which transforms points in R1 to points in R2.
Apply φ to the data and plot the points in the new R2 feature space.

3. [1pt] Can a linear separator perfectly separate the points in the new R2 features space induced by φ?
Why or why not?

4. [1pt] Give the analytic form of the kernel that corresponds to the feature map φ in terms of only X1

and X ′1. Specifically define k(X1, X
′
1).

5. [3pt] Construct a maximum-margin separating hyperplane. This hyperplane will be a line in R2, which
can be parameterized by its normal equation, i.e. w1Y1 + w2Y2 + c = 0 for appropriate choices of
w1, w2, c. Here, (Y1, Y2) = φ(X1) is the result of applying the feature map φ to the original feature
X1. Give the values for w1, w2, c. Also, explicitly compute the margin for your hyperplane. You do
not need to solve a quadratic program to find the maximum margin hyperplane. Instead, let your
geometric intuition guide you.

6. [1pt] On the plot of the transformed points (from part 3), plot the separating hyperplane and the
margin, and circle the support vectors.

7. [1pt] Draw the decision boundary separating of the separating hyperplane, in the original R1 feature
space.

8. [3pt] Compute the coefficients α and the constant b in Equation 1 for the kernel k and the support
vectors SV = {u1, u2} you chose in part 6. Be sure to explain how you obtained these coefficients.

y(x) = sign

|SV |∑
n=1

αnynk(x, un) + b

 (1)

Think about the dual form of the quadratic program and the constraints placed on the α values.

9. [1pt] Explain why there can be no more than 3 support vectors in this transformed feature space for
a linearly separable data set. This statement is not true so you get a free point.

10. [1pt] If we add another positive (Y = +) point to the training set at X1 = 5 would the hyperplane or
margin change? Why or why not?

2

2.2 Infinite Features Spaces and Kernel Magic

Lets define a new (infinitely) more complicated feature transformation φn : R1 → Rn given in Equation 2.

φn(x) =

{
e−x2/2, e−x2/2x,

e−x2/2x2

√
2

, . . . ,
e−x2/2xi

√
i!

. . . ,
e−x2/2xn

√
n!

}
(2)

Suppose we let n→∞ and define new feature transformation in Equation 3. You can think of this feature
transformation as taking some finite feature vector and producing an infinite dimensional feature vector
rather than the simple two dimensional feature vector used in the earlier part of this problem.

φ∞(x) =

{
e−x2/2, e−x2/2x,

e−x2/2x2

√
2

, . . . ,
e−x2/2xi

√
i!

. . .

}
(3)

1. [1pt] Can we directly apply this feature transformation to the data. Put another way, can we explicity
construct φ∞(x)? (This is nearly rhetorical and not a trick question.)

2. [1pt] Is there a finite set of points that cannot be linearly seperated in this feature space? Explain why
or why not?

3. [3pt] We know that we can express a linear classifier using only inner products of support vectors in
the transformed feature space as seen in Equation 1. It would be great if we could some how use the
feature space obtained by the feature transformormation φ∞. However, to do this we must be able
to compute the inner product of examples in this infinite vector space. Lets define the inner product
between two infinite vectors a = {a1, . . . , ai, . . .} and b = {b1, . . . , bi, . . .} as the infinite sum given in
Equation 4.

k(a, b) = a · b =
∞∑

i=1

aibi (4)

Can we explicity compute k(a, b)? What is the explicit form of k(a, b)? Hint you may want to use the
Taylor series expansion of ex which is given in Equation 5.

ex = lim
n→∞

n∑
i=0

xi

i!
(5)

4. [1pt] With such a high dimensional feature space should we be concerned about overfitting?

3 [50 points] k-NN, SVM, and Cross-Validation (Sue Ann)

In this question, you will explore how cross-validation can be used to fit “magic parameters.” More specif-
ically, you’ll fit the constant k in the k-Nearest Neighbor algorithm, and the slack penalty C in the case of
Support Vector Machines. For all implementation questions, please electronically submit your source code
to

/afs/andrew.cmu.edu/course/10/701/Submit/your andrew id/HW3/

and supply pseudo-code in your writeup where requested.

3.1 Dataset

1. Download the file hw3 matlab.zip and unpack it. The file faces.mat contains the Matlab variables
traindata (training data), trainlabels (training labels), testdata (test data), testlabels (test
labels) and evaldata (evaluation data, needed later).

3

This is a facial attractiveness classification task: given a picture of a face, you need to predict whether
the average rating of the face is hot or not. So, each row corresponds to a data point (a picture). Each
column is a feature, a pixel. The value of the feature is the value of the pixel in a grayscale image. (This
is an “easier” version of the dataset 1 on the project website.) For fun, try showface(evaldata(1,:)),
showface(evaldata(2,:)),

cosineDistance.m implements the cosine distance, a simple distance function. It takes two feature
vectors x and y, and computes a nonnegative, symmetric distance between x and y. To check your
data, compute the distance between the first training example from each class. (It should be 0.2617)

3.2 k-NN

1. Implement the k-Nearest Neighbor (k-NN) algorithm in Matlab. Hand in pseudo-code. Hint: You
might want to precompute the distances between all pairs of points, to speed up the cross-validation
later.

2. Implement n-fold cross validation for k-NN. Your implementation should partition the training data
and labels into n parts of approximately equal size. Hand in the pseudo-code.

3. For k = 1, 2, . . . , 100, compute and plot the 10-fold (i.e., n = 10) cross-validation error for the training
data, the training error, and the test error. Don’t forget to hand in the plot!

How do you interpret these plots? Does the value of k which minimizes the cross-validation error also
minimize the test set error? Does it minimize the training set error? Either way, can you explain why?
Also, what does this tell us about using the training error to pick the value of k?

3.3 SVM

1. Now download libsvm using the link from the course website and unpack it to your working directory.
It has a Matlab interface which includes binaries for Windows. It can be used on OS X or Unix but
has to be compiled (requires g++ and make) – see the README file from the libsvm zip package and/or
the instructions on the course homework page.

hw3 matlab.zip, which you downloaded earlier, contains files testSVM.m (an example demonstration
script), trainSVM.m (for training) and classifySVM.m (for classification), which will show you how to
use libsvm for training and classifying using an SVM. Run testSVM. This should report a test error of
0.4333.

In order to train an SVM with slack penalty C on training set data with labels labels, call
svmModel = trainSVM(data, labels, C)

In order to classify examples test, call
testLabels = classifySVM(svmModel, test)

Train an SVM on the training data with C = 500, and report the error on the test set.

2. Now implement n-fold cross-validation for SVMs. Similarly to k-NN, split your training data into n
roughly equal parts. Hand in the pseudo-code.

3. For C = 10, 102, 103, 104, 5 · 104, 105, 5 · 105, 106, compute and plot the 10-fold (i.e., n = 10) cross-
validation error for the training data, the training error, and the test error, with the axis for C in
log-scale (try semilogx). Don’t forget to hand in the plot!

How do you interpret these plots? Does the value of C which minimizes the cross-validation error also
minimize the test set error? Does it minimize the training set error? Either way, can you explain why?
Also, what does this tell us about using the training error to pick the value of C?

1Ryan White, Ashley Eden, Michael Maire ”Automatic Prediction of Human Attractiveness”, CS 280 class report, December
2003.

4

3.4 DIY

1. Design your favorite classifier: You have to use either k-NN or SVM, but you are allowed to use
arbitrary values for k or for C. For k-NN, you can invent different distance functions than the one we
gave you or you can try to weigh the influence of training examples by their distance from the test
point. If you want, you can do arbitrary feature selection, e.g. you can ignore some columns. You can
also perform any linear transformation of the features if you want. Whatever you do, please document
it, and apply your algorithm to the evaldata data set. Output your class labels for this evaluation
set, one label per line, in the order of the examples from the evaluation set. Submit your labels as file
evallabels yourid.txt where yourid is your Andrew ID.
Submit the actual code and the predicted labels (in file evallabels yourid.txt) to

/afs/andrew.cmu.edu/course/10/701/Submit/your andrew id/HW3/

You might find the Matlab save function helpful for saving your labels.

2. (Extra credit) Your labels will participate in a competition. The top submissions will receive great
honor... and some extra credit.

4 Learning Theory [Steve, 15 points]

4.1 VC Dimension

In this section you will calculate the VC-dimension of some hypothesis classes. Remember that in order to
prove that H has VC-dimension d you need to show that

• There exists a set of d points which can be shattered by H. (This step is often easy).

• There exists no set of d+ 1 points that can be shattered by H. (This step is hard).

Now find the VC-dimension of the following hypothesis classes, and include your proofs.

1. (5 points) The union of k intervals on the real line. In other words each hypothesis h ∈ H is associated
with k closed intervals [ai, bi], i ∈ {1, 2, . . . , k}; and h(x) = 1 iff x ∈ ∪i∈{1,2,...,k}[ai, bi].

2. (5 points) The set of axis aligned rectangles in the n-dimensional reals Rn. That is, any h ∈ H is
characterized by n closed intervals [ai, bi] for i ∈ {1, 2, . . . , n}, and for any x ∈ Rn,

h(x) = 1 iff ∀i ∈ {1, 2, . . . , n}, xi ∈ [ai, bi].

Hint: Can you always find a subset of examples such that labeling those points 1 forces all the other
examples to be labeled 1?

4.2 Sample Complexity

In this part, you will use sample complexity bounds to determine how many training examples are needed
to find a good classifier.

• (5 points) Let H be the hypothesis class of linear separators. Recall that the VC dimension of linear
separators in Rn is n + 1. Suppose we sample a number m of training examples i.i.d. according to
some unknown distribution D over R2 × {−1, 1}.

(X1, Y1), (X2, Y2), . . . , (Xm, Ym) ∼ D

Prove that if m ≥ 14619, then with probability at least .99 over the draw of the training examples, the
linear separator with smallest training error ĥERM = arg min

h∈H
errortrain(h) has

errortrue(ĥERM)− errortrain(ĥERM) ≤ .05

You may not assume errortrain(ĥERM) = 0. You may use any formulas from the lecture slides, textbook,
or readings from the website, but please tell us where you found the formula(s) you use.

5

	Kernel Regression and Locally Weighted Regression [Jingrui, 15 points]
	[20 points] Feature Maps, Kernels, and SVM (Joey)
	Finite Features and SVMs
	Infinite Features Spaces and Kernel Magic

	[50 points] k-NN, SVM, and Cross-Validation (Sue Ann)
	Dataset
	k-NN
	SVM
	DIY

	Learning Theory [Steve, 15 points]
	VC Dimension
	Sample Complexity

