
10-701/15-781 Machine Learning, Fall 2007: Homework 2

Due: Wednesday, October 17th, beginning of the class

Instructions There are 4 questions on this assignment. The last question involves coding. Do not attach
your code to the writeup. Instead, copy your implementation to

/afs/andrew.cmu.edu/course/10/701/Submit/your_andrew_id/HW2

To write in this directory, you need a kerberos instance for andrew, or you can log into, for example,
unix.andrew.cmu.edu. Please submit each problem seperately with your name and userid on each problem.
Refer to the webpage for policies regarding collaboration, due dates, and extensions.

1 Decision Surfaces [Joseph, 15 points]

Your favorite billionaire wants to hire a team to work on a new operating system called Goosoft OSXSun.
He wants to classify job applicants into good programmers (worth hiring) and bad programmers based on
their 10701 Grade (X1 ∈ [0, 5]) and top score in Minesweeper (X2 ∈ [0, 5]). He wants to use a classifier, but
cannot choose which one, so he needs the help of a machine learning expert. We happily offer your help.

1.1 Single-node Decision Tree As Linear Classifier [2 points]

When the features are continuous, a decision tree with one node (a depth 1 decision tree) can be viewed as
a linear classifier. These degenerate trees, consisting of only one node and therefore using only one variable
to split the data, are called decision stumps). See Figure 1 part A for an example of a decision stump which
completely separates the data by splitting on X1 ≤ 3. What is the difference between the decision boundary
for this classifier and other linear classifiers (i.e., logistic regression) you have learned in class?
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Figure 1: (A) A single decision stump which completely seperates the data by splitting at X1 ≤ 3. (B) An
example decision tree. The decision tree in (B) does not correspond to the decision surface obtained by the
single decision stump drawn on the left. You should understand why.
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Sketch or plot a small data set of programmers (no more than 10 2-dimensional points), which is com-
pletely separable using a linear classifier but not completely separable using decision stumps. Include in
your sketch a linear classifier that completely separates the data. Briefly explain why you cannot construct
a decision stump which completely seperates the data you provided.

1.2 General Decision Trees vs. Linear Classifiers [3 points]

Decision trees of arbitrary depth, can capture more complex decision surfaces. Sketch or plot a small 2D
data set which is completely separable using decision trees of arbitrary depth (using decision stumps at each
node) but cannot be completely separated using a single linear classifier. Include in your sketch the decision
surface obtained by the decision tree. Explain why no linear classifier can completely separate the data.
Also, draw the decision tree annotating each node with the decision rule and each edge with True or False
(indicating the outcome of the decision rule). For an example of how to draw such a decision tree look at
Figure 1 part B.

1.3 Using Linear Classifiers In Decision Trees [5 points]

Now that we see there are cases in which decision trees are preferable, and there are cases in which linear
classifiers are preferable, let us combine their advantages. Your goal is to sketch an algorithm that would
train a linear-classifier-augmented decision tree: at each node, instead of testing some particular feature to
split the decision tree, we now use the output of some linear classifier. Positively classified examples will go
to one branch of the tree, while negatively classified ones will follow the other branch.

Assume that you have a black box that takes a training set as input and gives you an optimal (but not
necessarily perfect!) linear classifier as the output. Do not worry about the stopping criteria - grow the tree
until the classifier completely seperates the training set.

Sketch or plot a data set, which is not completely separable by a linear classifier, and your algorithm
outputs a decision tree with depth smaller than the depth of a decision tree using simple decision stumps.
Sketch the linear classifiers obtained by your algorithm.

1.4 K-Nearest Neighbors [5 points]
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Figure 2: Plot of the Nearest Neighbors data. Blue square programmers are are true (good) and red circle
programmers are false (bad).
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Decision trees (without constraints on the number of nodes) are an example of a nonparametric method.
Reflect on this for a moment (Approximately 1 minute). Another common nonparametric method is the
K-Nearest Neighbor algorithm. In this problem you will have the opportunity to compare the complexity of
the decision surface obtained using K = 1 and K = 3.

For the developers (data) in Figure 2, roughly sketch the decision surface obtained by applying the K-
Nearest Neighbors Algorithm with K = 1 and K = 3. Feel free to write a program to automatically generate
the plots. What can you say about the complexity of the decision surfaces and the tendency of the K-Nearest
Neighbors algorithm to overfit as a function of K.

2 Boosting [Jingrui, 50 points]

The details of Adaboost are in Robert E. Schapire. The boosting approach to machine learning: An overview.
In Nonlinear Estimation and Classification. Springer, 2003. http://www.cs.princeton.edu/∼schapire/
uncompress-papers.cgi/msri.ps

The alogrithm details of Schapire’s tutorial differ slightly from those in the textbook. Both will yield the
same results, but the internal values of weights will differ. The proofs of 2.1 follow Schapire’s tutorial. Please
use Schapire’s algorithm for Problem 2.1 and 2.2. You may implement either and should obtain identical
results for Problem 2.3.

2.1 [20 Points] Analyzing the training error of boosting

Consider the AdaBoost algorithm you saw in class. In this question we will try to analyze the training error
of Boosting.

1. Given a set of m examples, (xi, yi) (yi is the class label of xi), i = 1, . . . ,m, let ht(x) be the weak
classifier obtained at step t, and let αt be its weight. Recall that the final classifier is

H(x) = sign(f(x)), where f(x) =
T∑

t=1

αtht(x).

Show that the training error of the final classifier can be bounded from above by an exponential loss
function:

1
m

m∑
i=1

I(H(xi) 6= yi) ≤
1
m

m∑
i=1

exp(−f(xi)yi),

where I(a = b) is the indicator function. It is equal to 1 if a = b, and 0 otherwise

Hint: e−x ≥ 1 ⇔ x ≤ 0.

2. Remember that

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

Start with this recursive definition to prove the following.

1
m

m∑
i=1

exp(−f(xi)yi) =
T∏

t=1

Zt, (1)

where Zt is the normalization factor for distribution Dt+1:

Zt =
m∑

i=1

Dt(i) exp(−αtyiht(xi)). (2)

Hint: remember that e
P

i gi =
∏

i egi ,D1(i) = 1
m , and that

∑
i Dt+1(i) = 1.
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3. Equation 1 suggests that the training error can be reduced rapidly by greedily optimizing Zt at each
step. You have shown that the error is bounded from above:

εtraining ≤
T∏

t=1

Zt.

Observe that Z1, . . . , Zt−1 are determined by the first (t−1) rounds of boosting, and we cannot change
them on round t. A greedy step we can take to minimize the training error bound on round t is to
minimize Zt.

In this question, you will prove that for binary weak classifiers, Zt from Equation 2 is minimized by
picking αt as:

α∗t =
1
2

log
(

1− εt

εt

)
, (3)

where εt is the training error of weak classifier ht for the weighted dataset:

εt =
m∑

i=1

Dt(i)I(ht(xi) 6= yi).

where I is the indicator function. For this proof, only consider the simplest case of binary classifiers,
i.e. the output of ht(x) is binary, {−1,+1}.
For this special class of classifiers, first show that the normalizer Zt can be written as:

Zt = (1− εt) exp(−αt) + εt exp(αt).

Hint: consider the sums over correctly and incorrectly classified examples separately.

Now, prove that the value of αt that minimizes this definition of Zt is given by Equation 3.

4. Prove that for the above value of αt

Zt = 2
√

εt(1− εt)

Furthermore, let εt = 1
2 − γt, prove that

Zt ≤ exp(−2γ2
t )

Hint: log(1− x) ≤ −x for 0 < x ≤ 1.

Therefore
εtraining ≤

∏
t

Zt ≤ exp(−2
∑

t

γ2
t )

Finally prove that, if each weak classifier is slightly better than random, so that γt ≥ γ, for some γ > 0,
then the training error drops exponentially fast in T , i.e.

εtraining ≤ exp(−2Tγ2)

5. Show that in each round of boosting, there always exists a weak classifier ht such that its training error
on the weighted dataset εt ≤ 0.5. Also show that for εt = 0.5 the training error can get ”stuck” above
zero.

Hint: Dt(i)s do not change over t.
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Figure 3: a) Toy data in Question 2. b) h1 in Question 2

2.2 [5 Points] Adaboost on a toy dataset

Now we will apply Adaboost to classify a toy dataset. Consider the following dataset in Figure 3a). The
dataset consists of 4 points , (X1 : 0,−1,−), (X2 : 1, 0,+), (X3 : −1, 0,+) and (X4 : 0, 1,−).

1. Use simple decision stumps as weak classifiers. (For description of decision stumps, refer to Problem
2.3) Now for T = 4, show how Adaboost works for this dataset. For each timestep remember to
compute the following numbers:

εt, αt, Zt, Dt(i) ∀i,

Also for each timestep draw your weak classifier. For example h1 can be as shown in 3b).

2. What is the training error of Adaboost?

3. Is the above dataset linearly separable ? Explain why Adaboost does better than a decision stump in
the above dataset.

2.3 [25 Points] Implementation

Implement the AdaBoost algorithm (page 658) using a decision stump as the weak classifier.
AdaBoost trains a sequence of classifiers. Each classifier is trained on the same set of training data

(xi, yi), i = 1, . . . ,m, but with the significance Dt(i) of each example {xi, yi} weighted differently. At each
iteration, a classifier, ht(x) → {−1, 1}, is trained to minimize the weighted classification error,

∑m
i=1 Dt(i) ·

I(ht(xi) 6= yi), where I is the indicator function (0 if the predicted and actual labels match, and 1 otherwise).
The overall prediction of the AdaBoost algorithm is a linear combination of these classifiers, HT (x) =
sign(

∑T
t=1 αtht(x)). Note: The textbook uses wi ≡ Dt(i).

A decision stump is a decision tree with a single node. It corresponds to a single threshold in one
of the features, and predicts the class for examples falling above and below the threshold respectively,
ht(x) = C1I(xj ≥ c) + C2I(xj < c), where xj is the jth component of the feature vector x. Unlike in class,
where we split on Information Gain, for this algorithm split the data based on the weighted classification
accuracy described above, and find the class assignments C1, C2 ∈ {−1, 1}, threshold c, and feature choice j
that maximizes this accuracy.

1. Submit your source code to:
/afs/andrew.cmu.edu/course/10/701/Submit/your andrew id/HW2

2. Evaluate your AdaBoost implementation on the Bupa Liver Disorder dataset that is available for
download from the course website. The classification problem is to predict whether an individual has
a liver disorder (indicated by the selector feature) based on the results of a number of blood tests and
levels of alcohol consumption. Use 90% of the dataset for training and 10% for testing. Average your
results over 50 random splits of the data into training sets and test sets. Limit the number of boosting
iterations to 100. In a single plot show:
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• average training error after each boosting iteration
• average test error after each boosting iteration

3. Using all of the data for training, display the selected feature component j, threshold c, and class label
C1 of the decision stump ht(x) used in each of the first 10 boosting iterations (t = 1, 2, ..., 10)

4. Using all of the data for training, in a single plot, show the empirical cumulative distribution functions of
the margins yifT (xi) after 10, 50 and 100 iterations respectively, where fT (x) =

∑T
t=1 αtht(x). Notice

that in this problem, before calculating fT (x), you should normalize the αts so that
∑T

t=1 αt = 1. This
is to ensure that the margins are between -1 and 1.

hint: the empirical cumulative distribution function of a random variable X at x is the proportion of
times X ≤ x.

3 Linear Regression and LOOCV [Sue Ann, 20 points]

In class, you learned about using cross validation as a way to estimate the true error of a learning algorithm.
A solution that provides an almost unbiased estimate of this true error is Leave-One-Out Cross Validation
(LOOCV), but it can take a really long time to compute the LOOCV error. In this problem, you will derive
an algorithm for efficiently computing the LOOCV error for linear regression using the Hat Matrix. 1 (This
is the cool trick alluded to in the slides!)

Assume that there are r given training examples, (X1, Y1), (X2, Y2), . . . , (Xr, Yr), where each input data
point Xi, has n real valued features. The goal of regression is to learn to predict Y from X. The linear
regression model assumes that the output Y is a linear combination of the input features plus Gaussian
noise with weights given by β.

We can write this in matrix form by stacking the data points as the rows of a matrix X so that xij is the
j-th feature of the i-th data point. Then writing Y , β and ε as column vectors, we can write the matrix
form of the linear regression model as:

Y = Xβ + ε

where:

Y =


Y1

Y2

...
Yr

 , X =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xr1 xr2 . . . xrn

 , β =


β1

β2

...
βn

 , and ε =


ε1
ε2
...
εr


Assume that εi is normally distributed with variance σ2. We saw in class that the maximum likelihood
estimate of the model parameters β (which also happens to minimize the sum of squared prediction errors)
is given by the Normal equation:

β̂ = (XT X)−1XT Y

Define Ŷ to be the vector of predictions using β̂ if we were to plug in the original training set X:

Ŷ = Xβ̂

= X(XT X)−1XT Y

= HY

where we define H = X(XT X)−1XT (H is often called the Hat Matrix ).

As mentioned above, β̂, also minimizes the sum of squared errors:

SSE =
r∑

i=1

(Yi − Ŷi)2

1Unfortunately, such an efficient algorithm may not be easily found for other learning methods.
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Now recall that the Leave-One-Out Cross Validation score is defined to be:

LOOCV =
r∑

i=1

(Yi − Ŷ
(−i)
i )2

where Ŷ (−i) is the estimator of Y after removing the i-th observation (i.e., it minimizes
∑

j 6=i(Yj − Ŷ
(−i)
j )2).

1. (3 points) What is the time complexity of computing the LOOCV score naively? (The naive algorithm
is to loop through each point, performing a regression on the r− 1 remaining points at each iteration.)
Hint: The complexity of matrix inversion for a k × k matrix is O(k3) 2.

2. (3 points) Write Ŷi in terms of H and Y .

3. (5 points) Show that Ŷ (−i) is also the estimator which minimizes SSE for Z where

Zj =
{

Yj , j 6= i

Ŷ
(−i)
i , j = i

4. (1 point) Write Ŷ
(−i)
i in terms of H and Z. By definition, Ŷ

(−i)
i = Zi, but give an answer that includes

both H and Z.

5. (4 points) Show that Ŷi − Ŷ
(−i)
i = HiiYi − HiiŶ

(−i)
i , where Hii denotes the i-th element along the

diagonal of H.

6. (4 points) Show that

LOOCV =
r∑

i=1

(
Yi − Ŷi

1−Hii

)2

What is the algorithmic complexity of computing the LOOCV score using this formula?
Note: We see from this formula that the diagonal elements of H somehow indicate the impact that
each particular observation has on the result of the regression.

4 Neural Networks [Steve, 15 points]

In this question, you will prove that a neural network with a single hidden layer can provide an arbitrarily
close approximation to any 1-dimensional bounded smooth function, and that such a network can be learned
from i.i.d. data.

Suppose that you have two types of activation functions at hand:

• identity
gI(x) = x,

• step function

gs(x) =

{
1 if x ≥ 0,

0 otherwise.
(4)

So, for example, the output of a neural network with one input x, a single hidden layer with K units
having step function activations, and a single output with identity activation can be written as out(x) =
gI(w0 +

∑K
k=1 wkgs(w

(k)
0 + w

(k)
1 x)), and can be drawn as in Figure 4.

4.1 Representation

1. (2 points) Consider the step function u(x) in Figure 5. Construct a neural network with one input x
and one hidden layer whose response is u(x). That is, if x < a, the output of your network should be
0, whereas if x ≥ a, the output should be y. Draw the structure of the neural network, specify the
activation function for each unit (either gI or gs), and specify the values for all weights (in terms of a
and y).

2There are faster algorithms out there but for simplicity we’ll assume that we are using the naive O(k3) algorithm.

7



Figure 4: Neural net drawing in Question 4.

2. (2 points) Now consider the indicator function 1[a,b)(x):

1[a,b)(x) =
{

1, if x ∈ [a, b);
0, otherwise.

Construct a neural network with one input x and one hidden layer whose response is y1[a,b)(x), for
given real values y, a, and b; that is, its output is y if x ∈ [a, b), and 0 otherwise. Draw the structure
of the neural network, specify the activation function for each unit (either gI or gs), and specify the
values for all weights (in terms of a, b, and y).

3. (6 points) You are now given any function f(x) whose domain is [C,D), for real values C < D. Suppose
that the function is Lipschitz continuous3; that is,

∀x, x′ ∈ [C,D), |f(x′)− f(x)| ≤ L|x′ − x|, (5)

for some constant L ≥ 0 (called the Lipschitz constant of f). Use the intuition from the previous part
to construct a neural network with one hidden layer that approximates this function within ε > 0; that
is, ∀x ∈ [C,D), |f(x)− out(x)| ≤ ε, where out(x) is the output of your neural network given input x.
Your network should use only the activation functions gI and gs given above. You need to specify the
number K of hidden units, the activation function for each unit, and a formula for calculating each
weight w0, wk, w

(k)
0 , and w

(k)
1 , for each k ∈ {1, 2, . . . ,K}; these may be specified in terms of C, D, L,

and ε, as well as the values of f(x) evaluated at a finite number of x values of your choosing (please
explicitly specify which x values you use). You do not need to draw the network or explicitly write the
out(x) function. Why does your neural network attain the given accuracy ε?

Hint: Lipschitz continuous means that points close together have similar f values. Can you find a set
of points so that every x ∈ [C,D) is close to at least one of them? How close does it need to be to
guarantee the f values are within ε of each other?

3Lipschitz continuity is a smoothness condition that limits how fast a function can change.
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Figure 5: Step function in Question 4.

4.2 Universal Learning

Suppose there is a distribution DX with domain [C,D), and X1, X2, . . . , Xn are i.i.d. random variables, with
distribution DX . In this part, rather than direct access to f(x) at x values of your choosing, you are given
the sequence of labeled examples

Ln = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, where Yi = f(Xi).

In this setting, suppose we are interested in achieving a small value of EX [|f(X)− out(X)|], where X is a
random variable with distribution DX , independent of X1, X2, . . . , Xn, and out(x) is the output of a neural
network.4 In this problem, you will design a learning algorithm that outputs a neural network outLn(x) with
the property that for any ε > 0,

lim
n→∞

PLn {EX [|f(X)− outLn(X)|] > ε} = 0.

In other words, the algorithm will achieve an arbitrarily good expected approximation to any smooth function
if we give it enough data.

1. (2 points) Given the data points Ln = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, construct a neural network
outLn(x) such that for any x ∈ [C,D),

outLn
(x) = Yjx

, where jx = arg min
i∈{1,2,...,n}

|x−Xi|.

That is, outLn(x) labels x according to the Yi value of the closest Xi in Ln.5

Your network should have one input layer, one hidden layer, and one output layer, and should use
only the activation functions gI and gs given above. You need to specify the number K of hid-
den units, the activation function for each unit, and a formula for calculating each weight w0, wk,
w

(k)
0 , and w

(k)
1 for each k ∈ {1, 2, . . . ,K}; these should be specified in terms of n, the training data

(X1, Y1), (X2, Y2), . . . , (Xn, Yn), and nothing else. In particular, unlike the previous part, you are
not allowed to use the values f(x) at arbitrary points x of your choosing: only at the data points
X1, X2, . . . , Xn given to you.

2. (2 point) Next, use the Lipschitz smoothness of f to show that

EX [|f(X)− outLn(X)|] ≤ LEX

[
min

i∈{1,2,...,n}
|X −Xi|

]
(note that the expectation is only over X, not the Xi variables), and argue that this implies

∀ε > 0, PLn
{EX [|f(X)− outLn

(X)|] > ε} ≤ PLn

{
EX

[
min

i∈{1,2,...,n}
|X −Xi|

]
>

ε

L

}
.

4We use the following notation: EX denotes the expectation with respect to X, (e.g., EX [X] is the mean of X); PLn denotes
the probability with respect to the i.i.d. sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn), (e.g., PLn{maxi∈{1,2,...,n} Xi ≤ z} denotes
the probability the largest training example is at most z.

5You may break ties in the arg min however you like.
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3. (1 point) In this part, you may take the following observation as given.

∀ε > 0, PLn

{
EX

[
min

i∈{1,2,...,n}
|X −Xi|

]
>

ε

L

}
≤ αεe

−nβε , (6)

where αε and βε are finite positive constants that depend only on ε, L, C, D, and DX .

Use this to prove that for any ε > 0,

lim
n→∞

PLn {EX [|f(X)− outLn(X)|] > ε} = 0.

4. (BONUS [+5 pts extra credit]) Prove the observation in Formula (6) from the previous part. You can
prove it however you like, but if you want, you can proceed as follows.

• First pick an explicit set of points {z1, z2, . . . , zm} such that every point x ∈ [C,D) has

min
j∈{1,2,...,m}

|x− zj | ≤
ε

2L
.

• Then you can let J = {j ∈ {1, 2, . . . ,m} : PX

{
|X − zj | ≤ ε

2L

}
> 0}, and prove that

EX

[
min

i∈{1,2,...,n}
|X −Xi|

]
≤ EX

[
min

j∈{1,2,...,m}
|zj −X|

]
+ max

j∈J
min

i∈{1,2,...,n}
|zj −Xi|.

In particular, because by construction EX

[
minj∈{1,2,...,m} |zj −X|

]
≤ ε

2L , this means

PLn

{
EX

[
min

i∈{1,2,...,n}
|X −Xi|

]
>

ε

L

}
≤ PLn

{
max
j∈J

min
i∈{1,2,...,n}

|zj −Xi| >
ε

2L

}
.

• Next, show that for any z ∈ [C,D), (and in particular, for any zj)

PLn

{
min

i∈{1,2,...,n}
|z −Xi| >

ε

2L

}
≤
(
1− PX

{
|z −X| ≤ ε

2L

})n

.

(Hint: first try proving it for n = 1; then recall that for any independent Bernoulli random
variables A and B, we know that P(A = 1 ∧B = 1) = P(A = 1)P(B = 1).)

• Next, use the fact that for any p ∈ [0, 1], 1− p ≤ e−p.

• Finally, notice that for any two Bernoulli random variables A and B (not necessarily inde-
pendent), P(A = 1 ∨ B = 1) ≤ P(A = 1) + P(B = 1). This should allow you to bound
PLn

{
maxj∈J mini∈{1,2,...,n} |zj −Xi| > ε

2L

}
in terms of a sum over |J | terms.

• Using the fact that this sum is at most |J | times its largest term should allow you to obtain the
bound, with βε = minj∈J PX

{
|zj −X| ≤ ε

2L

}
and αε = |J | ≤ m.

5. (Optional Exercise [0 pts]) [Warning: This problem could take some extra effort]
Think about how the learning problem might change if we add zero-mean independent random noise
to the labels Yi = f(Xi)+ εi, where εi ∼ N(0, σ2), with σ2 < ∞.6 How could you modify your learning
algorithm to still guarantee

lim
n→∞

PLn {EX [|f(X)− out(X)|] > ε} = 0?

Hint: Instead of just one Xi close to X, can we expect kn values {Xi1 , Xi2 , . . . , Xikn
} close to X, for

some number kn that depends on n?

Note: Being able to solve this problem is not necessary for this class. But it’s a fun exercise to think
about in your spare time, if you’re interested.

6In fact, it is possible to modify the algorithm to guarantee this even for non-Gaussian independent noise, Yi = f(Xi)+εi(Xi),
as long as ∀x, E[εi(x)] = 0 and E[Y 2] < ∞.
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