Sketching Storyboards to Illustrate Interface Behaviors

James A. Landay and Brad A. Myers

HCI Institute, School of Computer Science
Carnegie Mdlon University
Pittsburgh, PA 15213-3891, USA
E-mail: landay @cs.cmu.edu
Web Page: http://www.cs.cmu.edu/~landay

ABSTRACT

Current user interface construction tools make it difficult
for a user interface designer to illustrate the behavior of an
interface. These tools focus on specifying widgets and
manipulating details such as colors. They can show what
the interface will look like, but make it hard to show what
it will do. For these reasons, designers prefer to sketch early
interface ideas on paper. We have developed a tool called
SILK that alows designers to quickly sketch an interface
electronically. Unlike paper sketches, this electronic sketch
isinteractive. The designer can illustrate behaviors by
sketching storyboards, which specify how the screen should
change in response to user actions.

Keywords
Gestures, design, sketching, interaction techniques, SILK.

INTRODUCTION

When designers first start thinking about a visual interface,
they often sketch rough pictures of the screen layouts.
These screens are often tied together by storyboarding
techniques: the designer annotates the sketches to illustrate
sequences of system responses to end-user actions. The
simple storyboard in Figure 1 illustrates that the rectangle
in the window should be rotated when the button is pressed.

Sequencing between screens by using sketched storyboards
is a powerful tool for making early concept sketches[1]. In
fact, all but one of the 16 designers we surveyed [2] claim
to use sketches or storyboards during the early stages of
interface design. Storyboards are anatura representation and
they can be used to simulate functionality without worrying
about how to implement it. The success of HyperCard has
demonstrated that a significant amount of behavior can be
constructed by sequencing screens upon button presses.

We have developed an electronic sketching tool called SILK
which allows designers to illustrate behaviors while the
interfaces are still in their rough early stages. We have added
a powerful storyboarding mechanism to the basic widget
sketching interface that we reported on last year [2]. SILK
preserves the important properties of pencil and paper: a
rough drawing can be produced very quickly and the medium
isvery flexible.

The main advantage of SILK over paper sketches is that it
allows the storyboards to come alive and permits end-users
to exercise the interface in this early, sketchy state. Buttons
and other widgets were active in our previous system (i.e.,
they would give feedback when clicked), but they could not
perform any actions. Our new storyboarding component
allows a wide variety of behaviors to be illustrated by
seguencing screens on mouse clicks.

When it comes to supporting interaction, existing tools fall
short of theideal. Ul builders, such as Visual Basic, require
programming languages to specify any interaction beyond
that of the individual widgets. Design tools, such as
Director, allow the sequencing of screens, but lack the
fluidity of paper-based storyboarding, and for anything but
the most simple sequences they require the use of scripting.
Requiring interface designers to use programming or
scripting languages is unacceptable for our domain. We
tried to design a system that allows the rapid illustration of
asignificant amount of interaction by sketching alone.

Due to the lack of good tools, many designers use “low-
fidelity prototypes’ [4]. A drawback to using these is the
lack of interaction possible between the paper-based mock-
up and a user — a designer needs to “play computer” and
manipulate sketches in response to a user’s verbal actions.
In contrast, our system performs the screen transitions
automatically. This allows more realistic testing of rough
interface idess.

SILK STORYBOARDS

The behavior of individual widgets is insufficient to test a
working interface. For example, SILK knows how a button
operates, but it cannot know what interface action should
occur when a user presses the button. Storyboarding allows
the specification of this dynamic behavior between widgets
and the basic behavior of new widgets or application-
specific objects.

" 1
= SILK Storyboard [~ 1]

Edit Storyboard |

| —
I —

Figure 1: Rotate the rectangle upon button presses.

| |
4‘ SILK Storyboard ‘ r ‘ r

Edit Storyboard |

i []
Zol

(=S

1 1

Figure 2: Make a dialog box appear when the button is pressed.

Visual Notation

Our storyboarding technique uses a visual notation that is
drawn on and between copies of the interface screens. These
sketchy marks are similar to the types of notations that one
might make on a whiteboard when designing an interface.
Our visual language has two types of objects, screens and
arrows. Each screen is a sketch of an interface in a particular
state. Arrows connect objects contained in one screen with a
second screen. The arrow indicates that when the object in
the first screen is clicked on with the mouse, SILK should
display the second screen instead of the first. We believe
that this static representation, which can be later viewed and
edited, is natural and easy to use, unlike the hidden textual
representations used by other systems, such as HyperCard.

For example, Figure 1 illustrates three screens that differ in
only the orientation of the rectangle in the drawing window.
An important point about this example is that it shows that
a designer can illustrate a behavior (i.e., rotation) that the
underlying tools, SILK and Garnet, do not even support.
Figure 2 illustrates bringing up a dialog box on top of a
window. Thisisinteresting since the designer can make the
dialog box opaque, thus hiding any objects it appears over.
This can also be used for illustrating pull-down menus.

Storyboard Construction and Testing

The designer constructs storyboards by sketching screens
with a stylus or amouse in the sketch window. Screens are
then copied to the storyboard. At this point, the origina
screen can be modified. Now, the designer can start drawing
arrows on the storyboard that indicate screen sequencing or
more screens can be produced. The free-form arrows can be
drawn from any widget, graphical object, or the background
to another screen. Thus, the designer can cause transitions
to occur when the user clicks on any of these items.

When the designer is ready to test the specified interaction,
she can switch to run mode. Now an end-user can start
interacting with the sketch and it will make the proper
transitions as defined by the storyboard. Each time the user
clicks on an object that has the source of an arrow attached
to it, the system will replace the current screen with the
screen attached to the arrowhead.

In order to allow the designer to debug her storyboards, we
have supplied some feedback mechanisms that are displayed
while in run mode. First, the currently active screen (i.e.,

the one displayed in the sketch window), is highlighted in
the storyboard window. Second, the object that caused the
last transition is highlighted along with the arrow leading
to the current screen. A designer can use these mechanisms
to help check that her visual program isworking properly.

Screen Trees

SILK’s storyboarding model implies that a program can be
thought of as a tree. The nodes of the tree are the different
states of the program (i.e., screens) and the arcs out of each
node represent the end-user actions that cause state changes.
In order to fully specify a program, the designer would have
to specify the entire tree. However, we do not believe this
is a major drawback of our model, since storyboarding is
used for illustrating key sequences in the interface, rather
than for specifying an entire interface. For those that require
more power, we propose several techniques elsewhere [3]
which make it easier to specify more of the screen tree.

STATUS

SILK runs under Common Lisp on both UNIX
workstations and the Apple Macintosh. It is implemented
using the Garnet toolkit. SILK supports the recognition and
operation of several widgets and the transformation of the
sketch to an interface with a Motif look-and-feel. The only
event the storyboarding system supports is clicking on
widgets or graphical objects. Elsewhere [3] we describe how
to specify timer events (for animation), double clicking, and
other events. We are currently performing user testing of
SILK and we plan for design students to use SILK in an
interface design course to see how it performsin practice.

CONCLUSIONS

Designers need tools that give them the freedom to sketch
rough design ideas quickly, the capability to specify
transitions between screens and behavior of interface
elements, the ahility to test the designs by interacting with
them, and the flexibility to fill in the design details as
choices are made. SILK was designed with these needs in
mind. Unlike paper sketches, our electronic storyboards
allow end-users to interact with the sketch before it
becomes a finalized interface. SILK storyboarding is a key
step to a future in which much of a user interface will be
illustrated, specified, and tested by a user interface designer.

REFERENCES

1. Boyarski, D. and Buchanan, R. Computers and
communication design: Exploring the rhetoric of HCI.
Interactions 1, 2 (April 1994), 24-35.

2. Landay, JA. and Myers, B.A. Interactive sketching for
the early stages of user interface design. In Proceedings of
CHI '95: Human Factors in Computing Systems, Denver,
CO, May 1995, pp. 43-50.

3. Landay, JA. and Myers, B.A., “Just draw it! Programming
by sketching storyboards,” Carnegie Mellon University,
School of Computer Science, Technical Report CMU-CS-
95-199, November 1995.

4. Rettig, M. Prototyping for tiny fingers. Communications
of the ACM 37, 4 (April 1994), 21-27.

