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1 Notation

The following notation conventions are used in these notes:

• Capital letters represent matrices and bold lower-case letters represent vectors.
For a matrix A, aij denotes the element in row i and column j; for the vector
x, xi denotes the ith entry in the vector.

• Various special matrices are represented by the following conventions: The
adjacency matrix is denoted Adj; the degree matrix is denoted D; the Laplacian
D−Adj is denoted A. The Laplacian is sometimes referred to as the difference
Laplacian; the “sum Laplacian” will be the matrix D + Adj = 2 D −A, which
will be denoted as B.

• The notion of Laplacian can be extended to graphs with positive edge weights.
In particular, let edge (i, j) have weight wij. The adjacency matrix is modified
so that entry Adjij = wij. The degree of a vertex is defined as the sum of the
weights of the incident edges. The definitions for D, A, and B are as above with
respect to these changes. Following Fiedler, we will refer to A in the weighted
case as the generalized Laplacian. We will refer to B in the weighted case
as the generalized sum Laplacian. The Laplacian can be considered as the
generalized Laplacian where all edge weights are 1.

• The vector that has all entries equal to one is denoted as ~1.

• ∆ represents the maximum degree of a graph. If the graph has weighted edges,
the generalized definition of degree given above applies.

• Let S denote the set of edges forming an edge separator that separates vertex
sets V1 and V2. Then

q(S) =
|S|

min(|V1|, |V2|)
is called the cut quotient for S. If the graph has positive edge weights, the
size of the cut is replaced by the total weight of the cut in the definition above.
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• A vector x can be thought of as assigning values to the vertices of a graph G.
Assume x has k > 1 distinct values t1 < t2 < . . . < tk, and consider any cut
that separates the vertices with values less than or equal to ti (i < k) from
those with greater values. Such a cut is called a threshold cut based on x.

2 Background Notes

The proof below was formulated by Steve Guattery and Gary Miller. It is a different
proof of a result from Spielman and Teng’s paper Spectral Partitioning Works: Planar
Graphs and Finite Element Meshes, which is currently available as a preprint.

This proof is a generalization of Mohar’s proof from Isoperimetric Numbers of
Graphs (Journal of Combinatorial Theory, Series B v.47, pp 274–291 (1989)). In
particular, the proof has been extended to apply to vectors other than the second
eigenvector of the Laplacian at the cost of loosening the bound slightly for certain
vectors. It also applies to graphs with positive edge weights.

3 The Proof

Theorem 3.1 Let G be a connected graph with positive edge weights on n vertices
with generalized Laplacian A. For any vector x such that xT~1 = 0, let q∗ be the
smallest cut quotient over the cut quotients of all threshold cuts based on x. Then

q∗ ≤
√

2∆
xT Ax

xTx
.

Proof: Assume w.l.o.g. that the vertices of the graph are numbered such that
the entries of x occur in non-increasing order: for i < j, xi ≥ xj. Let B be the
generalized sum Laplacian as described above.

We start with two facts about quadratic terms of generalized Laplacians and sum
Laplacians. In the expressions below, let z be any real vector. First, the following
fact is well known:

zT Az =
∑

(i,j)∈E(G)

wij (zi − zj)
2 (1)
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Second,

(
zT Az

) (
zT Bz

)
=

 ∑
(i,j)∈E(G)

wij (zi − zj)
2

  ∑
(i,j)∈E(G)

wij (zi + zj)
2


=

 ∑
(i,j)∈E(G)

(√
wij |zi − zj|

)2

  ∑
(i,j)∈E(G)

(√
wij |zi + zj|

)2


≥

 ∑
(i,j)∈E(G)

wij |z2
i − z2

j |

2

, (2)

where the third line follows from the Cauchy-Schwarz inequality.
It is useful to give a high-level outline of the proof here before proceeding: we

have just shown that the product
(
xT Ax

) (
xT Bx

)
provides a connection between

xT Ax (which is expressed in terms of a weighted sum of squares of differences across
edges) and a weighted sum of differences of the squares of the values at the ends
of edges. The second sum telescopes, and can be neatly divided up in terms of
subintervals of the the interval from xi to xj. This will allow us to break an edge up
into a number of pieces corresponding to the number of thresholds (and hence cuts)
that it crosses. We will rewrite the last sum in (2) as a weighted sum of cut quotients
to prove the theorem. However, two issues must be addressed: First, the weighted
sum will involve cut quotients, which use the size of the smaller shore of the cut as
a denominator. Second, any edge that crosses zero is a potential problem for the
application of telescoping. In the argument below, we break the contribution of an
edge into (positive) contributions for subintervals. For an edge (i, j) crossing the zero
point, the sum of the contributions could be bigger than the difference wij |x2

i − x2
j |.

This could violate the inequalities used to show the upper bound. Therefore it is
useful to make two changes: We shift the values of x so that xdn

2
e = 0; and we

modify G by breaking any edge that crosses the zero point into two parts, one part
from xi to a vertex with value zero, and one part from the zero vertex to xj; each of
these parts is assigned weight wij. The next section shows that these changes don’t
affect the preceding upper bound much.

Let G′ be the graph modified as specified in the previous paragraph; G′ has
Laplacian A′. Let z be any nonzero vector such that zi ≥ zj for all i < j and
zdn

2
e = 0. Then with respect to equation (1), zT A′z and zT Az differ only in the

terms for edges that go from some vertex i < dn
2
e to some vertex j > dn

2
e. Note that

for each such edge we have

(zi − zj)
2 = z2

i + z2
j − 2zizj > z2

i + z2
j = (zi − 0)2 + (0 − zj)

2,

where the inequality holds because zi and zj have opposite signs by our restriction on
the ordering of z (the edge weight has been factored out of each expression). Thus
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we have that
zT A′z

zTz
≤ zT Az

zTz
(3)

for any such vector.
Now consider the shifted version of x: Let y = x + α~1 where α = −xdn

2
e. We

have the following:

yT Ay

yTy
=

(x + α~1)T A(x + α~1)

(x + α~1)T (x + α~1)
=

xT Ax

xTx + α2n
≤ xT Ax

xTx
,

where the second equality follows from the restriction xT~1 = 0 from the theorem
statement, and from the fact that ~1 is the (simple) zero eigenvalue for any (general-
ized) Laplacian. Since y meets the restrictions on z in the preceding paragraph, we
can combine this result with inequality (3) to get

yT A′y ≤ xT Ax

xTx
· yTy. (4)

We can perform a similar analysis for B′, the sum Laplacian of G′:

yT B′y

yTy
≤ yT By

yTy
=

yT (2D − A)y

yTy
<

yT (2D)y

yTy
≤ yT (2∆I)y

yTy
= 2∆.

The first inequality follows from the fact that A′ is positive semidefinite, and that y
is not a multiple of the “all ones” vector, the only zero eigenvalue of A′. The second
inequality replaces the degree matrix with ∆I; this follows because the only vertex
in G′ that could have degree greater than ∆ is dn

2
e; however, the corresponding entry

of y is 0 and the inequality holds. We thus have that

yT B′y ≤ 2∆ · yTy. (5)

Combining inequalities (2), (4), and (5), we get

2∆ · x
T Ax

xTx
·
(
yTy

)2
≥ (yT B′y) (yT A′y) ≥

 ∑
(i,j)∈E(G′)

wij |y2
i − y2

j |

2

.

Since only nonnegative values are involved, we can take the square root of the terms
above. Further, since no edges cross the zero point, we can rewrite the summation
to eliminate the absolute value signs. This gives the following:√

2∆
xT Ax

xTx
·
(
yTy

)
≥

∑
(i, j) ∈ E(G′)
i < j ≤ dn

2
e

wij(y
2
i −y2

j ) +
∑

(i, j) ∈ E(G′)
dn

2
e ≤ i < j

wij(y
2
j−y2

i ). (6)
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The rest of the proof essentially follows Mohar’s proof; the main distinction is
that Mohar only worked with the positive side of the vector he considered. We
include both sides of the vector.1 We’ll actually only show the proof for the positive
part of the vector, however. The argument for the negative half is symmetric and
left as an exercise.

We need some notation before we can finish the proof. Note that the yi’s may
not be distinct. Assume that there are k distinct values in the subvector consisting of
entries y1 through ydn

2
e, and denote them as t1 > t2 > . . . > tk−1 > tk = 0. Let δVi be

the total weight of the edges (k, l) in G′ such that yk ≥ ti and yl < ti; that is, δVi is
the weight of the edges crossing the cut at threshold ti. Let Vi = {j ∈ V (G′) |yj ≥ ti}
(for simplicity of notation below, let V0 = ∅). Finally, let qi be the quotient cut that
separates Vi from the rest of the graph, and let q∗ be the minimum quotient cut
produced by vector y. The definition for cut quotient thus can be stated as follows:

qi =
δVi

|Vi|
. (7)

Note that, by the construction of G′ and y, the values for the qi’s and q∗ are un-
changed if the definitions are applied to G and x.

Consider the following calculation:

∑
(i, j) ∈ E(G′)
i < j ≤ dn

2
e

wij (y2
i − y2

j ) =
k−1∑
i=1

δVi (t2i − t2i+1) (8)

=
k−1∑
i=1

qi |Vi| (t2i − t2i+1) (9)

≥ q∗
k−1∑
i=1

|Vi| (t2i − t2i+1) (10)

= q∗
k−1∑
i=1

(|Vi| − |Vi−1|) t2i (11)

= q∗
dn

2
e∑

i=1

y2
i . (12)

The first step in deriving equation (8) is the application of telescoping: Let yi = tl
and yj = tm. Then y2

i − y2
j =

∑m−1
i=l (t2i − t2i+1). This sum is regrouped with respect

to the differences t2i − t2i+1; each such difference is weighted by a factor equal to the

1Note that when xdn
2 e is the minimum or maximum value of x, one of the sums on the right

hand side of (6) will be zero.
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weight of the edges crossing that threshold. Equality (9) follows by an application
of (7). The inequality (10) then follows from the definition of q∗. Equation (11) is
a reordering of the preceding sum based on noting that t2i occurs in (10) only in the
expressions for |Vi| and |Vi−1|; recall that tk = 0. Finally, |Vi| − |Vi−1| is the number
of vertices with value ti; equation (12) reintroduces the corresponding values from y,
including any zero values with indices less than or equal to dn

2
e.

As noted before, the argument for the negative half of y is symmetric. Combining
the two results (remember that ydn

2
e = 0 and that yTy =

∑n
i=1 y2

i ) and applying (6)
completes the proof.
2
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