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Summary. Nested dissection is an algorithm invented by Alan George for
preserving sparsity in Gaussian elimination on symmetric positive definite
matrices. Nested dissection can be viewed as a recursive divide-and-conquer
algorithm on an undirected graph; it uses separators in the graph, which
are small sets of vertices whose removal divides the graph approximately in
half. George and Liu gave an implementation of nested dissection that used
a heuristic to find separators. Lipton and Tarjan gave an algorithm to find
n'2.separators in planar graphs and two-dimensional finite element graphs,
and Lipton, Rose, and Tarjan used these separators in a modified version
of nested dissection, guaranteeing bounds of O(nlogn) on fill and O(n*?)
on operation count. We analyze the combination of the original George-
Liu nested dissection algorithm and the Lipton-Tarjan planar separator
algorithm. This combination is interesting because it is easier to implement
than the Lipton-Rose-Tarjan version, especially in the framework of exist-
ing sparse matrix software. Using some topological graph theory, we prove
O(nlogn) fill and O(n*?) operation count bounds for planar graphs, two-
dimensional finite element graphs, graphs of bounded genus, and graphs of
bounded degree with n'/2-separators. For planar and finite element graphs,
the leading constant factor is smaller than that in the Lipton-Rose-Tarjan
analysis. We also construct a class of graphs with n'/2-separators for which
our algorithm does not achieve an O(n logn) bound on fill.

Subject Classifications: AMS(MOS): 05C10, 65F05, 65F50, CR: G.1.3,
G.2.2

1. Introduction

Suppose that we want to solve a sparse system of n linear equations in »
unknowns,
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378 J.R.Gilbert and R.EE. Tarjan

Mx=b,

where M is an n by n symmetric, positive definite matrix. We can usc a version
of Gaussian elimination to find the Cholesky factorization M = LL', where L is
a lower triangular matrix with positive diagonal. We then solve for x by
solving the two triangular systems Ly=b and L x=y.

The complexity of this procedure depends on the sparsity of the matrices M
and L. Suppose column j of L contains d; nonzeros. Using algorithms and data
structures described in George and Liu [4], we can factor and solve the system
in space proportional to Y d, (which is the number of nonzeros in L) and time

]
proportional to ¥ d2. Ignoring cancellation duc to numerical coincidence, L

J
will have nonzeros below the diagonal everywhere that M does, and also some
other places. We define the fill to be the set of below-diagonal positions in
which L is nonzero and M is zero.

If P is a permutation matrix, PMPT is a symmetric, positive definite matrix
obtained. by permuting the rows and columns of M. The fill in the triangular
factor of PMPT may be drastically different for different choices of P. We can
think of P as a choice of an order in which to eliminate the variables of the
system.

Finding the order that gives the smallest possible fill is an NP-complete
problem [22]. Most sparse matrices do not have climination orders with small
fill: For any positive ¢ there is a constant c(¢) such that almost all n by n
symmetric matrices with c(¢)n nonzeros have at least (1 —&)?n?/2—-0(n) fill for
every order [14]. Gilbert [5] presents a class of symmetric matrices with four
nonzeros per row that have 6(n?) fill for every elimination order.

Although the outlook is gloomy for general climination algorithms with
low fill, good elimination orders can be found for some classes of problems.
George [2] invented an algorithm called nested dissection for ordering the
variables in a system that comes from finite differences on a regular square
grid. George and Liu [3] gave a heuristic nested dissection algorithm for
general matrices. Lipton, Rose, and Tarjan used the planar separator theorem
{14, 15] in 2 modified version of the George-Liu algorithm, which they called
generalized nested dissection. Their order gives O(nlogn) fill and O(n*?) oper-
ation count on any system whose subgraphs have n'/?-separators, which in-
cludes planar graphs and two-dimensional finite element. meshes. (See Sect.2
for definitions.) These bounds are within a constant factor of the best possible.

In this paper, we analyze what happens when the planar separator theorem
is applied to the original George-Liu algorithm. This combination is easier to
implement than the LRT algorithm, since it fits nicely into George and Liu's
Sparspak package [4]. We prove O(nlogn) fill and O(n*3) operation count
bounds on a large class of graphs, including planar graphs and two-dimension-
al finite element meshes but not including all graphs whose subgraphs have

n'i2.separators. For planar graphs, the leading constant in the analysis is
smaller than that in Lipton, Rose, and Tarjan's analysis of the LRT algorithm.
The analysis itself is interesting because it uses more topological information
than does the LRT analysis.

The remainder of the paper is organized as follows. Section 2 gives graph-
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theoretic definitions and lemmas. Section 3 presents the nested dissection algo-
rithm we analyze in the rest of the paper. Sections4 through 7 give upper
bounds on the performance of this algorithm. Section 8 discusses how tight this
analysis is. Section 9 presents two examples to show that the hypotheses of the
fill bounds are necessary. Section 10 coasists of remarks and conclusions. The
appendix solves a recurrence relation that is used in the analysis. '

We use the following notation to describe the asymptotic behavior of
nonnegative functions of nonnegative integers. We say f(n)=0(g(n)) if there is
a constant ¢ such that f(n)Scg(n) for all but finitely many n. We say f(n)
=Q(g(n) if gn)=0(f(n). We say f(n)=6(g(n) if f(n)=0(g(n)) and g(n)
=0(f (n)). We use Ig x to denote the logarithm of x to the base 2.

A preliminary version of this paper has appeared as a technical report (5,
Sects. 2.1-2.11].

2. Graph Theory and Gaussian Elimination

We shall state and analyze our algorithm by using a graph theoretic model
that was proposed by Parter [18] and studied in detail by Rose [20]. Recently
this model has seen wide use [4,21].

Let M =(m;)) bc an n by n symmetric, positive definite matrix. The graph G
=G(M) associated with M is an undirected graph with vertex set V
={v,,....v,} and edge set

E={{v,v}:i%jand my;%0}.

Thus G has a vertex for each variable in the system Mx=b and an edge for
each symmetric pair of nonzero coefficients. Figure 1 shows a matrix and its

associated graph.

If we use the i-th equation to eliminate the i-th variable from the system
Mx=b - that is, we pivot on my - then the n—1 by n—1 matrix of the
cocfficients of the remaining variables in the remaining equations is still sym-
metric and positive definite. Its graph, which has n—1 vertices, is obtained
from G by first adding edges to make all of v's neighbors mutually adjacent,
and then deleting v; and all edges incident on v;. (Here and henceforth we
assume that no zeros are created by numerical cancellation.)

An elimination order on G is a permutation of the vertices, which is a
bijection x: {1,....n} = V. Reducing G to the null graph by sucessively elim-
inating vertices m(1),....x(n) is precisely analogous to performing Gaussian
elimination on M, choosing as pivots the diagonal elements that correspond to
n(1), ..., n(n). Figure2 is an example. The zeros of M that become nonzero
during this elimination correspond to the edges that are added to the graph at
each step. These are the fill edges, and the number of such edges is the size of
the fill, or simply the fill. The filled graph G*(M), or just G is the graph
obtained from G by adding the fill due to «, as in Fig. 3. The filled graph is the
graph of the matrix L +L".
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Fig. 1. A matrix M and its graph G(M)
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Fig. 2. Eliminating the graph
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Fig. 3. The filled graph for the matrix in Fig. |

The problem of finding a permutation of M that gives a sparse factor L is
therefore the same as the problem of finding an climination order for the
vertices of G that gives small fill. One way to decide which edges will fill in
without actually performing the climination is given by a lemma of Rose,
Tarjan, and Lueker, which says that edge {v, w} fills in if and only if there is a
path from v to w in G that contains only vertices climinated earlier than both v
and w.

Lemmal [21). If G is a graph with elimination order =, then {v,w} is an edge
of G?* if and only if there is a path v=0,,0;,...,0, =W in G such that

a2~ '(v)<min{n-'()x~'(w)} Jfor I<i<k. 0O
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Analysis of a Nested Dissection Algorithm 381

Dissection algorithms are based on separators in graphs: The idea is to find
a set of vertices that separates the graph and eliminate them last. Following
Lipton and Tarjan [15], we say that a class § of graphs satisfies an f(n)-
separator theorem for constants a<1 and >0 if every n-vertex graph in S has
a vertex partition AuBU C such that

|4l, |B|San,
ICISBSf(n),

and no edge has one endpoint in 4 and the other in B.

Most sparse graphs do not have nontrivial separator theorems (in a sense
made precise in Lipton et al. [14]), but some uscful classes of graphs do.
Separator theorems are known for trees [11], outerplanar graphs [13], graphs
of bounded genus [6], hypercubes [5], chordal graphs [7], and several graphs
that are useful in parallel computation [10, 13). Lipton and Tarjan proved a
n/2_separator theorem for planar graphs.

Theorem 1 [15). Planar graphs satisfy a n/3-separator theorem with constants a
=%and p=8"2. 0O

Lipton and Tarjan also gave a lincar-time algorithm to find such a sepa-
rator in a planar graph. Djidjev [1] improved the constant p=8%2 to 6'/% and
gave a lower bound of (4x3'/2/9)"/2; the best possible value is not known.
Miller [16] proved a n'/3-separator theorem for maximal planar graphs in
which the separator is a single simple cycle in the graph.

We are most interested in the graphs of matrices that arise when using
finite element methods on two-dimensional surfaces. These are planar graphs
and finite element graphs. A finite element graph is obtained from a planar
graph as follows: Embed the graph in the plane. Identify certain points (ver-
tices, points on edges, points in faces) as “nodes”. Add edges between all nodes
that share a face. If the number of nodes per face is bounded by k, finite
element graphs satisfy a kn'/*-separator theorem [15].

For a recursive divide-and-conquer algorithm based on separators to work,
the subgraphs into which the original graph is separated must themselves have
separators, and so on. We say that a class of graphs is closed under subgraph if
it contains all subgraphs of all its members. The class of planar graphs is
closed under subgraph.

We say that a graph G has a n'/?-separator decomposition (with constants a
and f) if G has a n'/2-separator C with those constants and every connected
component of G—C has a n'/?-scparator decomposition. Having a n'/2.
separator decomposition is a weaker condition than having n'/3-separators for
all subgraphs. (An example is the graph with a n'3.vertex clique and n—n'/?
isolated vertices.) Leighton [12] discusses this difference for scparators that
consist of edges rather than vertices. A n!/2.separator decomposition (for edges)
is a (Bn''2, 1/a'/?)-bifurcator in his terminology.

The fill bounds for planar graphs (and, more generally, graphs of bounded
genus) follow from two facts about such graphs. First, they are sparse.
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382 J.R. Gilbert and R.E.Tarjan

Lemma 2 [9]. If G is a graph of genus g with n>2 vertices and m edges, then
m<3n—6+6g. If in addition G is bipartite, then m3S2n—4+4g. O

Second, a planar graph remains planar when two adjacent vertices and the
edge between them are contracted into a single vertex. Let G be a graph, and
let {v,w} be an edge of G. Let G’ be the graph that is obtained from G by
replacing v and w with a single vertex adjacent to every vertex that is adjacent
to cither v or w in G. We say that G was transformed into G’ by contracting
the edge {v,w}. A contraction of G is any graph obtained from G by contract-

ing a set of edges. Equivalently, a contraction can be got by selecting a set of -

connected subgraphs of G and shrinking each to a single vertex. A contraction

of a planar graph is still planar; in fact, any contraction of a graph embedded in .

a surface can be embedded in the same surface, since an edge can be shrunk
continuously without disturbing the embedding.

The essential property for the fill analysis is that contractions must be
sparse. A class S of graphs is said to be sparse-contractible (with density 5>0)
if every n-vertex contraction of a graph G in S has at most én+O(1) edges.

Thus planar graphs are sparse-contractible with density 3, and trees are sparse-
contractible with density 1.

3. The Nested Dissection Algorithm

Nested dissection operates by finding a scparator in the graph, ordering its
vertices last, and then recursively ordering the vertices in the subgraphs left by
removal of the separator. In this section we present two nested dissection
algorithms. The first is due to Lipton, Rose, and Tarjan; the second is the one
we analyze in the remainder of this paper.

Let a<1 and 8>0 be the constants in a n'/2-scparator theorem, and let n,
be a positive constant. The first algorithm assumes that all of G’s subgraphs
satisfy a n'/?-separator theorem, while the second just assumes that G has a
n'2.separator decomposition.

Algorithm 1. Given an integer a and an n-vertex graph G whose subgraphs all
satisfy a n!/2-separator theorem, number the vertices of G up to a. In general
this algorithm assumes that some of the vertices of G (say [ of them) are
already numbered, and numbers the other n—! from a—n+I+1uptoa.

If n is not more than n,, number the unnumbered vertices arbitrarily. -

Otherwise, proceed as follows.

1. [scparate] Choose a set C of at most fn'/? vertices whose removal
divides the rest of G into two (not necessarily connected) components A and B
with at most an vertices cach. Suppose that C has s unnumbered vertices.
Number them arbitrarily from a—s+1 up'to a.

2. [form components] Let G, be (AU C, E(Au C)—E(C)), that is, the sub-
graph of G induced by the vertices in 4 and C less any edges with both
endpoints in C. Similarly, let G, be (Bu C, E(Bu C)—E(C)). Suppose that G,
and G, have s, and s, unnumbered vertices respectively.

3. [number components recursively] Call the algorithm recursively twice to
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number G, from a—s—s, +1 up to a—s, and to number G, from a-s—s,-si
+luptoa—s—s,.
To begin, call algorithm with all vertices unnumbered and a=n. [

This is Lipton, Rose, and Tarjan’s original version of the generalized nested
dissection algorithm [14]. We shall call this the LRT algorithm and refer to
the climination order it produces as the LRT order. It guarantees O(n Ign) fill
and O(n*?) operation count for a graph all of whose subgraphs satisfy a n'/-
separator theorem. Notice that the algorithm is not called recursively on every :
connected component of G —C, but that the components are divided into two 3
groups and exactly two recursive calls are made at each step. Also notice that :

the vertices of the separator are included in the recursive calls, but are not v
renumbered. :j
Algorithm 2. Given an integer g and an n-vertex graph G with a n*/2-separator 'i"-'
decomposition, number the vertices of G up to a. K’

If n is not more than n,, number the unnumbered vertices arbitrarily. Z
Otherwise, proceed as follows.

1. [scparate] Find a separator C with s < Bn'/? vertices that divides the rest 2'.
of G into connected components A,,...,4,, where A, has s, San vertices. A

Number the vertices of C arbitrarily from a—s+1 up to a.

2. [number components recursively] Call the algorithm recursively k times
for i=1,2, ...,k to number the vertices of 4, up to a—s—Y s,.
To begin, call the algorithm with ga=n. [J It

This algorithm, which we call the ND algorithm, leaves the vertices of C
out of the recursive call and does one recursive call per component. The ND
algorithm does not give the same fill bounds as the LRT algorithm for all
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classes of graphs with n'/?-separators; in Sect.9 we shall present a class for &
which LRT gives O(n Ign) fill but ND can give ©(n**) fill. However, ND does =
give O(nlgn) fill and O(n*?) operation count for planar graphs, finite element f;
-graphs, graphs of bounded genus, and graphs of bounded degree with n*/3- W
separators. : b
We feel it is interesting to study the ND algorithm for a number of reasons. ‘5
First is the theoretical question whether including the separator in the re- n.
cursive calls of LRT is really necessary. The analysis showing that the answer

is “somectimes, but not on the graphs we are most interested in” is rather
different in flavor from the analysis of the LRT algorithm. The ND version of
the algorithm should be a little easier to implement than the LRT version; in
particular, it fits nicely into the nested dissection routines in the Waterloo
Sparspak sparse matrix package [4]. Finally, the constants in the fill bounds
for ND are somewhat smaller than those in LRT.

R )

4. Separator Trees

Suppose the graph G has a n'/3-separator decomposition with constants a <1 .
and f>0. The recursion in the ND algorithm decomposes G into a tree of .
separators. Figure 4 shows a graph and the separators used by the algorithm, :
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i & L 5 6§ 9 10N 1BUISB
Fig. 5. The separator tree

and Fig. 5 shows the same graph drawn to exhibit the tree structure. The
separator tree produced by nested dissection for a graph G is the tree whose
internal nodes are the separators and whose external nodes are the bottom-
level divisions of G (with at most n, vertices cach); cach scparator has as
children the separators of the parts into which it separates its subgraph. To
keep things straight, the vertices of G are called vertices, and the vertices of the
separator tree are called nodes. Thus a node is a subgraph of G, and may
contain many vertices.

Much of the structure of G is reflected in the separator tree. An edge {v, W}
can be in G only if the node containing v is an ancestor or descendant of the
node containing w. (A node is its own ancestor.) The ND eclimination order is
a postorder on the tree, so all the vertices in one node are climinated before
any vertex in that node's parent. The vertices of each node are ordered
consecutively. ‘

Lemmal says that if {v,w} is a fill edge, there is a path from v to w
through vertices with lower numbers than either v or w. Since the vertices in
the separator of a subgraph have higher numbers than the other vertices in the
subgraph, this means that no fill edge can cross a separator. This in turn
implies that fill edges, like edges of G, must follow tree paths.

*
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Lemma 3. In the ND order on G, if {v,w} is a fill edge and v has a higher
number than w, then the node of the separator tree containing v is an ancestor of
the node containing w. (O

This lemma limits the number of possible fill edges to O(n*?) (since there
are O(n*?) possible edges to the top-level separator, and the sum of this over
the whole tree is O(n*?) by Lemma 12), but we can do a lot better. The key
observation is the following lemma.

Lemma 4. In the ND order on G, if {v,w} is a fill edge and v's node is an
ancestor of w's node, then there is an edge of G from v to a vertex in some node
that is a descendant of w's node.

Proof. By Lemma 1, there is a path from v to w through vertices with lower
numbers than w. Let {v,x} be the first edge on that path. Vertex x cannot be
in a node that is a proper ancestor of w’s node, since x has lower number than
w. If x’s node were neither an ancestor nor a descendant of w's node, the path
from x to w would have to include a vertex in a node that is an ancestor of
both x’s node and w's node; but such a vertex would have a higher number
than w. Therefore x's node must be a descendant of w's node, and {v, x}
satisfies the statement of the lemma. (O

The levels of the separator tree are numbered from zero, which is the level
of the root. A basic property of the separator tree is that a subtree rooted on
level k has at most max {n,, a*n} vertices of G in it, and hence the root of such
a subtree has at most a*/28n'/? vertices if it is an internal node.

Lemma 5. Let G be as above, and let T be the separator tree produced for G by
the ND algorithm. Let N, be a level-i node of T for 0Si<m. The number of
vertices of G in NgUN, L ... UN,, is less than

ﬁallz
1 _auz

n34n,.

Proof. The size of a separator at the k-th level of the tree is at most o*/2Bn'/?,
so the total size of nodes Ny, ..., N, is less than

172
(]
ng+a'2fn'? +afnt? 4 .. ""0""1"_0!_11{"‘“’

where the first term is for an external node. O

S. Planar and Sparse-Contractible Graphs

The main result of this section is that if G is a planar graph, then fill for the
ND elimination order is O(nlgn). Planar graphs do not necessarily have
bounded degree, but they are sparse; a planar graph with n vertices has at
most 3n—6 edges. Thus the average degree of the vertices is bounded. This
alone is not enough to prove an O(nlgn) fill bound, as the example in Sect.9
shows. However, planar graphs are also sparse-contractible: They remain
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U
Fig. 6. Contracted graph for Lemma 6

sparse when two adjacent vertices and the edge between them are contracted
into a single vertex. This and a ni/2.scparator theorem are enough to imply
the fill bound.

Sparsity, contractibility, and separability are related in devious ways. Ifa
class S of graphs is closed under subgraph and is sparse-contractible with
density &, then any subgraph of a contraction of a graph in S also has at most
5n+0(1) edges. This follows because any subgraph of a contraction of G can
be obtained by deleting edges from a contraction of a subgraph of G. If S is
closed under subgraph and satisfies a n'/?-separator theorem, then graphs in §
are sparse [15]). Therefore if S satisfies a n'/2.scparator theorem and is closed
under subgraph and contraction, it is also sparse-contractible. It is not known
whether sparse contractibility implies a nontrivial separator theorem.

The first bound on fill in this section will be stated for a class of graphs
that satisfies a n'/’-separator theorem and is closed under subgraph and
contraction, but the proof will use only the facts that it has a n'/2-separator
decomposition and is sparse-contractible.

Lemma 6. Let S be a class of graphs that satisfies a n'2-separator theorem with
constants a<1 and B>0 and is closed under subgraph and contraction. As
remarked above, this implies that graphs in S are sparse. Suppose no n-vertex
graph in S has more than én+c edges. When the ND algorithm is applied to a
graph G in S with n>ng vertices, the number of fill edges with at least one
endpoint in C, the top-level separator, is O(on).

Proof. Let A" be the set of nodes of the separator tree for G, and let A} be the
set of nodes on level k of the tree. Thus Hp={C}, and & =HU A V... For
a given node N, let sy be the number of vertices in N.

We begin by counting fill to the root C of the separator tree from the
nodes on level k of the tree. Each subtree whose root is on level k is connected.
Consider the graph that is obtained from G by contracting each such subtree
into a single vertex. Throw out all the vertices of this graph except contracted
vertices and vertices in C. Also throw out edges between vertices in C. Call the
resulting graph G,. Figure 6 shows G, from the graph in Figs.4 and S. Graph
G, is in S, so it has at most 5|G,| +c edges.

By Lemma 4 there can be fill to a vertex veC from a level-k node N only if
there is an edge in G, from v to the contracted vertex corresponding to N.

*
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Each such edge accounts for at most one fill edge from each vertex of G in N,
or sy fill edges in all. If f, is the size of the fill to C from level-k nodes, and ey
is the degree in G, of the contracted vertex corresponding to node N, this
means that i
: ]..S z ensu.

eN Net

Let 4, be {NeA: sy> 0}, the set of level-k nodes with degree greater than é
in the contracted graph. Then

.ﬂS; 63~+§ (ex—90)sy
S6Y sy+6 X (ex—9) 1))
Ay My

where §, = Lnax Sn-

L ¥ £
Consider the subgraph of G, that is induced by the vertices of C and the
contracted vertices in ,. This graph is in S, and it has at most fn'/?+|.M
vertices, sO

) e,,<a(pn"=+|.d.|)-éc,
My

and
Y (ex—9)<épn'*+c. ()]
Ax
Equations (1) and (2) imply -
<o ; s,,+6ﬂn"’£,+c.€,. 3)
. .
Therefore the total fill to C is
Y A< (‘gl)+623,+6ﬂn"’ Y Site L 5. )
£z0 g k>0 k>0

Certainly Y sy=n, and (‘ g') <p*n/2. By Lemma 5,
r 2

ﬁallz
Y &< - n*'? 4n,.
k>0

Substituting these estimates into equation (4) gives a bound on fill to C of

1" 5ﬁ2¢112
Sr 4o+ T n+0(n'?). )

This is the bound claimed in the statement of the lemma. [J

Theorem 2 Let S be a class of graphs that satisfies a n'/*-separator theorem and
is closed under contraction and subgraph. Suppose that no n-vertex graph in S
has more than dn+c edges. If G in S has n>n, vertices, the ND order causes
O(énlgn) fill.
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Proof. The fill when eliminating G is the union over every internal scparator
tree node of the fill edges whose higher-numbered vertex is in that node, plus
the fill edges within the external nodes of the tree. A fill edge whose higher-
numbered endpoint is in a given internal node has its other endpoint in a
descendant of that node. Thus if a given internal node is the root of a subtree
containing m vertices, by Lemma6 the number of fill edges with higher-
numbered endpoints in that node is at most

( 2 . pzam

-§-+5+ 1—aii?

) m+0(m'’?),

By Lemma 12 (in the Appendix), the sum of this function over the internal
nodes of the separator tree is at most

B2+ 6+6B*a 21 —a'?)
alga—(1—a)ig(l—a) nlgn+0(n)

Ry
2
graph of O(n) edges. Thus the expression above bounds the fill for the entire
graph. O :

Planar graphs are the most interesting graphs to which Theorem 3 applies.

To finish this section we shall compute the leading coefficient of the bound for
planar graphs, after first tightening the analysis slightly.

Fill within an external node is at most ( ) edges, for a total over the whole

Theorem 3. If G is a planar graph with n vertices then the ND order causes fill
at most

B2 +2+p2'2 /(1 —a')
—alga—(1-a)lg(l—a) nlgn+0(n)

Proof. This is a slight improvement of. the bound in Theorem 3, and we get it
by tightening the proof of Lemma 6. First, the graph whose edges we counted
in the proof of the lemma (the subgraph of G, induced by the vertices of C and
the contracted vertices) is planar and bipartite, so by Lemma 2 we can take &
=2 and ¢=0.

Now we can be more careful in the analysis of Y, (ey—2)sy in Eq. (1) of
b :
Lemma 6. Since there arc at most pnt!? vertices in .C, no single ey can be

greater than Bn'/2. Thus if & is the size of the largest node on level k, and §, is
the size of the second-largest node on level k, then

Y (en—2)sy= B8, +(Y (ey -2)—pn3)§,
My A
<pn'P(E+5). ©)

Lemma6 used the bound $,Sa*?pn2. Now, however, we can reason as
follows. Suppose that N is the largest node on level k and M is the second-
largest. Nodes N and M have a lowest common ancestor P in the separator
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tree. Suppose that P is on level L. The number of vertices in P's subtree is at
most o'n. If P has children P, and P, the numbers of vertices in their subtrees
are at most «yn and o(1 —y)n respectively, for some y between 0 and 1.
Following on down to level k, this means that the numbers of vertices in N’s
and M’s subtrees are at most *~'yn and o*~*(1 —y)n respectively. Thus §+5,
which is sy +5,, is at most a1V ("2 +(1 —y)43)n'/2, This is largest when y
si-’ SO

5 +5, 5212 gk - 212,

With Eq. (6) this gives
; (en—2)syS 22" 2%~ 1V2n, )

Summing this for k>0 as in Lemma 5 yields B*2'2n/(1 —a'’?), and putting it
all together gives a bound on fill to C of

2 pzzll:
(—2—+2+r_—uﬁ) n+0(n).

This is summed by Lemmal2 to give the bouhd in the statement of the
theorem. O

The constants in Djidjev’s version of the planar separator theorem (1] are
x=2/3 and p=6"> Plugging these into the leading coefficient of the bound in
Theorem 4 yields about 55.8. The coefTicient derived by Lipton et al. [14] for
their algorithm, which includes the scparator in both recursive calls, is about
96.4 (using Djidjev's separators). It scems likely that both numbers are some-
what larger than the best possible bounds. One reason is that the coeflicients
are proportional to the square of §, and B=63 is probably an overestimate of

the best possible value. Section8 contains further discussion of the leading
coefficient in the fill bound.

6. Graphs of Bounded Degree

Let G be a graph with a n'/?-separator decomposition and maximum vertex
degree d. Techniques similar to those in Sect.5 can be used to prove the
following.

~ Theorem 4. If G is as above, then the ND order causes fill at most

pz/2 +dﬂz¢”2/(l _aIIZ)

—algz—(1=a)ig(1 _a)nlgn+0(dn). (]

Details are given in Gilbert [5]. For a=2/3 and p=6"'? the leading constant is
approximately 29d +3. Roman [19] independently obtained this result with the
leading constant (B*/2 +d f*a' /(1 —a*/?))/ —Iga, which is approximately 46d
+5.
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19 J.R. Gilbert and R.E. Tarjan
7. Bounds on Operation Count

Until now we have been concerned only with the fill incurred by an elim-
ination order, which is a measure of the space required to factor the matrix.
Here we analyze the time taken by the factorization in ND order. The entire
factorization can be done in time proportional to the number of arithmetic
operations performed on matrix clements [4], so we will just analyze the
operation count. .

In practice storage is more expensive than time. We might therefore con-
centrate on fill bounds and have faith that, since operation count is at least
loosely related to fill, a low fill algorithm will have a small operation count.
However, it is comforting to know at least the order of growth of the oper-
ation count. Dense Gaussian elimination requires ©(n®) operations on an n by
n matrix. George's nested dissection on a square grid requires O(n*?) oper-
ations, as does the Lipton-Rose-Tarjan algorithm on a graph whose subgraphs
satisfy a n'/*-separator thecorem. We will show that the ND algorithm also
requires O(n>?) operations on all the classes of graphs discussed in Sects. 5and 6.

Pivoting on the diagonal element corresponding to vertex v in a graph G
(that is, eliminating vertex v) requires arithmetic operations proportional to the
square of the degree of v [4]. One way to count operations for an climination
order is based on the filled graph G*. The filled graph has G's edges plus the
fill edges. Let us make G* a directed graph by orienting each edge from the
lower-numbered to the higher-numbered endpoint. Then the cost of climinating
v is O(od (v)?), where od (v) is the out-degree of v in this directed version of G*
(and also one less than the aumber of nonzeros in the column of L correspond-
ing to v). The operation count for the whole climination is o0 od(v)?).

Notice that the space required for climination is on t'he order of the
number of edges in G* which is ) od(v). Thus space is a first moment of the

out-degree, and time is a second moment. This gives an casy way to get a
rough bound on operation count. Suppose G is a graph with a n'/2.separator
decomposition and suppose the ND algorithm gives O(nign) fill on G. If (v, w)
is a directed edge in G* the node of the separator tree containing w is an
ancestor of the node containing v. Therefore od(v) is at most the number of
vertices on a path in the tree from the root to a leaf, which is Oo(n''?) by
Lemma 5. Then the operation couat is at most

¥ od(v)? Smax od (v) ), od(v) =0(n*?Ign).

Getting rid of the extra lgn in this loose bound requires some careful
argument along lines similar to those of the O(n Ign) fill bound. Again we will
contract subtrees of the separator tree and use the sparsity of the resulting
graph. In the space bound we counted fill edges by their higher-numbered
vertices, which amounts to computing fill as Y id(v) in G*. Using the lower-

®
numbered vertices makes things look a little bit different. To keep the proof
from getting too unwicldy, we shall begin by stating it for planar graphs; we

24ty 2om:
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shall then indicate how to modify it for degree-bounded and sparse-con-
tractible graphs.
A planar bipartite graph has fewer than twice as many edges as vertices.
~ The first lemma says that we can actually associate each edge with one of its
endpoints so that no vertex is associated with more than two edges.

Lemma 7. Let G be a planar bipartite graph with n vertices (and hence at most
2n—4 edges). There is a function ¢ from the edges of G to the vertices of G
such that for all edges e, $(e) is an endpoint of e; and for all vertices v, d(e)=v
for at most two different edges e.

Proof. Define the arboricity of a graph to be the minimum number of edge-
disjoint spanning forests into which the graph can be decomposed. Thus if the
arboricity of G=(V, E) is k, it is possible to write E=E,u...UE, in such a
way that (V, E) is acyclic for 1 SiSk. A theorem of Nash-Williams [17] is that
if g, is the maximum number of edges in any r-vertex subgraph of H, then the
arboricity of H is max [g,/(r—2)]. Any subgraph of a planar bipartite graph is

planar and bipartite, so the arboricity of G is at most 2. Therefore G can be
written as (V, E, E,) where G,=(V,E,) and G,=(V,E,) are forests. To find
the required function @, proceed as follows. Any forest with at least one edge
has at least one vertex of degree one. Choose an edge (v, w} in E, such that v
has degree one in G,. Set ¢({v, w})=v, and delete {v, w} from E,. Repeat until
E, is empty, and then carry out the same process with G,. This assigns a value
to ¢(e) for cvery edge e of G, and uses each vertex at most twicee. O

Incidentally, if we only require that ¢(e)=v for at most three different edges
e, the result follows immediately from the fact that the average vertex degree of
every subgraph of G is less than four. Simply find a vertex of degree three or
less, associate with it its incident edges, delete that vertex and those edges from
the graph, and repeat until the graph is empty.

Lemma 8. Let G be a planar graph, and let G* be the filled graph consisting of
G plus the fill from the ND order. Direct the edges of G* from lower to higher

numbered vertices. Then ¥ od(v)? =0(n*?),

Proof. This-proof will use much of the same notation as in the proof of the fill
bound in Lemmma 6.

Let 4" be the set of nodes of the separator tree for G, and let A be the set
of nodes on level k of the tree. We will bound the operation count separately

for each level of the tree. Let p,= Y. od(v)* be the sum over all vertices on
veNeNx
level k of the square of the out-degree.

Each subtree whose root is on level k is a connected subgraph of G. Let G,
be the graph obtained from G by contracting each such subgraph into a single
vertex. and deleting any edges of G that are not incident on contracted vertices.
Figure 7 shows G, from the graph in Figs. 4 and 5. (This is not quite the same
G, as we defined in the proof of Lemma 6; there we also deleted all vertices on
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192 'J.R. Gilbert and R.E. Tarjan

Fig. 7. Contracted graph for Lemma 8

levels 1 through k—1.) This graph is planar and bipartite. Now let v be a
vertex of G in node N on level k of the separator tree, and let (v, w) be an edge
of G* (thus {v, w} is an edge of G or a fill edge, and v is eliminated before w).
The node containing w is an ancestor of N, and by Lemma 4 there is an edge
in G joining w and some vertex in the subtree rooted at N. Thercfore either v
and w are both in node N, or in G, there is an edge joining w and the
contracted vertex corresponding to N. If sy is the number of vertices in node N
and e, is the number of edges incident on contracted vertex N in G,, then
od (v) is at most sy +ey, SO

S Y sulsy+en) _ (1
NeNy .

Lemma 7 says we can associate each edge of G, with one of its endpoints in
such a way that at most two edges are associated with each vertex. Let us call
those edges associated with contracted vertices “red” edges and those cdges
associated with vertices of G on levels O through k—1 of the separator tree
“blue” edges. Then the ey edges incident on contracted vertex N consist of at
most two red edges and some blue edges. Suppose that there are ry red edges
and b, blue edges, so ryS2 and ey =ry+by. Equation (1) can be written as

S Y salsy+ry+by)

NeAx
Now if a, b, and ¢ are real numbers, then

(@+b+c)*S(a+b+c)? +(@a—b)?+(b—c)* +(c —a)* =3(a* +b*+¢),
)
pS3 Y 343 Y syri+3 Y sybi

NeN [ [ 2% Ned'y
S3 Y sp+12 Y sy+35 Y b, )
NeXx Nesxy Nen'y

where 5, = max sy.
Ne.¥'y .
The first two terms of expression (2) are easy to handle. The main job is to

bound

Y b3 3)
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To do this we will pair each contracted vertex N with a node on some level
from O to k—1, and then dominate sum (3) by a sum over the nodes on levels
0 through k—1. Consider some node M on level r<k of the scparator tree.
The vertices in M are vertices of G,, each with at most two incident blue
edges. The other endpoints of these blue edges are contracted vertices. We shall
argue that it suffices to bound sum (3) under the assumption that all the biue
_edges with one endpoint in M have the same contracted vertex as their other
endpoint, possibly allowing multiple edges. Suppose that the blue edges from
vertices in M are incident on at least two different contracted vertices N and
N’, with by2by.. Then sum (3) can only be made larger if each blue edge
{v, N'} with veM is replaced by a blue edge {v, N}. Thus we shall assume
henceforth that all the blue edges coming from the vertices in the same node
go to the same contracted vertex.

Now let N be a contracted vertex. Blue edges incident on N may come
from nodes on several levels. Let M be the node closest to the root such that a
blue edge {v, N} exists for veM. Then all the blue edges incident on N come
from nodes on the tree path from M to N. If the number of vertices of G in the
subtree rooted at M is n,, the number of vertices of G on this tree path is at
most

ﬁnuz + ﬁ(dnu)”z + p(az n“)l/z +..= 0("}"’)-

so by, the number of blue edges incident on N, is also O(n}?).

The mapping that takes a contracted vertex N to the node M described above
is one-to-one since each node M on levels O through k—1 has blue edges to
only one contracted vertex. Therefore, since by =0(ny),

Y bys E ChRy
NeSNx MeX,
Ogr<k

for some ¢>0. Lemma 13 (in the Appendix) says that the second sum is at
most ckn, so

Y bisckn @

NeS'x

Now we can put it all together. Substituting Eq.(4) into Eq.(2) and sum-
ming over all levels k yields

Y od()?s3 T sa+12 X sw+3 Y. $ckn. 0]
veG* Ne& Nes kg0

Since sy < fny'? and §,So4'2 Bn''?, this is at most

3° T ¥ +128 ¥ ni?+3fcn¥? T ket

Ne.t NeX kg0

By Lemma 12, the first sum is 0(n*?) and the second is O(n). The third sum
converges to a constant, sO the entire expression is O(n*'?), as we set out to

prove. [
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394 J.R.Gilbert and R.E. Tarjan

Theorem 5. If G is a planar graph with n vertices then the ND order gives an
O(n*?) operation count. O

This bound can be extended to the other classes of graphs for which we
have proved fill bounds. We sketch the proofs below.

Corollary 1. Let S be a class of graphs that is closed under contraction and
subgraph, and satisfies a n'/*-separator theorem. If G is an n-vertex graph in S
then the ND order gives an O(n>?) operation count.

Proof. Recall from Sect. 6 that graphs in S must be sparse; suppose that no n-
vertex graph in S has more than 8(n—1) edges. Then the arboricity of any

member of S is at most 8, so we can associate cach edge of a member of § with
one of its endpoints so that no vertex is associated with more than & edges.

The proof of Lemma 8 now applies, with at most J red edges incident on cach
contracted vertex of G, and at most & blue edges incident on each noncon-
tracted vertex. [J

Corollary 2. Let G be an n-vertex graph with a n*3-separator decomposition and
with vertex degree bounded by d. The ND order gives an O(n*'?) operation count.

Proof. The proof of Lemma8 applics again with minor changes. The con-
tracted graphs G, do not necessarily have bounded degee. However, the de-
grees of the noncontracted vertices are still at most d. We can apply the
analysis in the lemma by coloring all the edges blue. Each noncontracted
vertex has at most d incident blue edges, and each contracted vertex has no
incident red edges. [ ‘

Jean Roman [19] has independently proved an 0(n*?) bound on operation
count for the ND order on graphs of bounded degree.

8. Remarks on the Constants

In Sect. 6 we saw that the ND order on a planar graph gives less than 56nlgn
+0(n) fill. Here we exhibit a class of planar graphs for which fill is about
32nlgn in the worst case.

First let us make clear what we mean by “the worst case™ The ND
algorithm treats the planar separator algorithm as a black box that returns a
set of at most Bn'2 vertices. The graph we construct below has large fill for
one specific elimination order that comes from one specific n'/2.separator
decomposition of the graph. In this sense the separator algorithm is considered
an adversary.

Let n, and B be fixed. We shall construct a family of graphs (with separator
trees) with parameter k, the number of levels in the separator tree. Each graph
has one or two distinguished vertices called terminal vertices. For k=0 the
graph is a star with n, vertices. The vertex of degree n, -1 is the terminal
vertex, and it is eliminated first. Now suppose we have constructed the graph
whose tree has k levels, and that it has n, vertices. To construct the tree with k
+1 levels, take two copies of the k-level tree and add s,,, new vertices to

102w
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Fig. 8. A parachute graph

form a top-level separator, where s,,, is maximum subject to S 1 SB@2n,
+5,,,)"% Add two edges incident on each top-level vertex, onc to a terminal
vertex of each subgraph. These two terminal vertices of the subgraphs are the
terminal vertices of the k + 1-level graph. Figure 8 shows the graph for ny=4, §
=6'2, and k=2. We call this the parachute graph.

It is not immediately clear how to count the vertices in the parachute
graph. The leading coefficient of the fill can be computed without knowing
exactly how big the graph is, however. Let n, be the number of vertices in the
k-level parachute, and let s, be the number of vertices in its top-level separator.
(Notice that we are now numbering levels from the bottom of the separator
tree rather than, as usual, from the top. This is useful because now, in any
parachute graph, s, is the size of a separator at level i and n, is the size of the
subtree rooted there.) Solving s,,, SB(2n,+5,, )" for s, leads to the fol-
lowing recurrence, which holds for k0.

See1 =028 n+ B9V + /2]
My =2M+S -

(1)

Lemma9. Let s, be given by recurrence (1) above. Then there is a positive
constant 7 such that s,=y2%*+0(1).

Proof. First we eliminate n, from the recurrence. Since s, =[pni"?], we can
substitute (s, +0(1))? for B*n, in the recurrence. Then some simplification
yields

Spo1=2"25,4+0(1).

Defining t, =2~*'2s,, we can multiply this equation by 2+ 102 15 get

o1 =5 +027Y3)
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From this it follows that lim ¢, =7 exists, and that [y—¢, is O(Y, 2-"%), which
k= igk
is 0(2-%2). Thus t,=y+0(2""?) and s,=y2¥240(1). O

Now we use this estimate of s, to get an estimate of the fill for a k-level
graph.

Lemma 10. If a k-level parachute graph is eliminated in ND order, the size of
the fill is y’(§+8”’)k2‘+0(2"), where v is the constant from Lemma9.

Proof. First consider fill edges that are incident on vertices in the top-level
separator. A vertex in the top-level separator fills in to every other vertex in
that separator, and also to every vertex in every separator on the two tree

paths to the terminal vertices. Thus fill to the top-level scparator is (s;) within
that separator, plus 2s; Y s;+ny—1 to vertices in other separators. This all

O<ick
sums to y2(}+8'/2)2* +0(2"%), using the estimate of s, from Lemma9.
It remains only to sum this over the whole separator tree. For 1Sigk
there are 2t~ separators on level i. Fill within level 0 is less than 2*n3, which
is O(2"). Therefore the total fill is .

T 2-irE+8Y92+0@)+0(@) =y G+8V)k2+0@). O

1518k

The estimates from the last two lemmas contain a constant y whose value
we do not know how to compute. Fortunately, this does not matter. We can

compute the leading coefficient of the fill without knowing the number of
vertices in the graph.

Theorem 6. Let G be a k-level parachute graph. If G has n, vertices, the fill
caused by the ND order is

($+8Y2%)p%n, Ign, +0(n).

Proof. First, n, is (s, +O(1))*/p> The estimate of s, in Lemma9 then implies
that n,=y?2"/p*+0(2"%), and therclore Ig n,=k+0(l) and n,lgm=
(y2k2*/p)(1 +O(1/k)), Dividing this into the fill estimate from Lemma 10
yields (3 +8'/%) 82 +O(1/k). Since 1/k=0(1/1gn,), this proves the theorem. a

The leading coefficient of the parachute graph’s fill is independent of ng, the
size below which fragments are not separated further. The constant a that
bounds the unevenness of the split does not appear because all the splits are
exactly in half; it might be possible to get slightly larger fill by splitting the
graph unevenly, but the calculations become messy. '

For B=6"? the parachute fill comes to about 320nlgn, as compared to
our upper bound of about 55.87n Ign.

Of course, this is “worst-case” behavior in its most negative sense. We are
assuming not only a particularly bad graph as input, but also the worst
possible behavior of the separator algorithm. (We note, though, that the
George-Liu automatic nested dissection algorithm would produce this worst-
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case order for the parachute graph.) The top-level separator in the parachute is
a minimal separator but it is far from a minimum separator: The terminal
vertices are a two-vertex separator. A nested dissection order using these
separators would give only O(n) fill. This suggests that adding some heuristics
to the separator algorithm might improve the constant in the worst case, or at
least in many cases.

9. Graphs with Larger Fill

The hypotheses of the O(nlign) fill bound for the ND algorithm are a n'/%
separator decomposition and cither bounded degree or sparse contractibility.
In this section we show that a n'/’-scparator decomposition alone is not
enough to imply the fill bound, and that in fact even n'/3-separators for all
subgraphs are not enough. '

Any graph with a n'/*-scparator decomposition has no more than 0(n*?)
fill under the ND order, because fill edges must follow tree paths. However,
having a n'/3-separator decomposition does not imply that a graph is sparse,
much less that its filled graph has O(nlgn) edges. Consider the complete
bipartite graph with n'/? vertices in one part and n—n'/2 vertices in the other
part. This graph has a n'/>-scparator decomposition, but it has 6(n*?) edges.
We conclude that an O(nlgn) fill bound does not follow from a n'/2.separator
decomposition.

We suspect that there are sparse graphs with n'/2-separator decompositions
for which every elimination order gives R(n?) fill. Indeed, we conjecture that
for any a<l, p>0, and y>0 there exists ¢>0 such that almost all cn-edge
graphs that have a n'/?-separator decomposition for constants « and f will
have at least yn*? fill for every climination order.

The Lipton-Rose-Tarjan generalized nested dissection algorithm, which in-
cludes the scparator vertices in each recursive call, gives O(nlgn) fill on every
graph whose subgraphs all satisfy a n'/2.separator theorem. This is a stronger

hypothesis than the existence of a n'/2_separator decomposition. Does the ND
algorithm give O(nlgn) fill on every graph whose subgraphs all satisfy a n'/%-
separator theorem? The answer is no; below we present a class of such graphs
for which, in one particular ND order, fill is Q(n%4).

Let k be a positive integer. We define graph ¥, to have k? vertices
UyqsDyzs---s Uy The edges are {0y, 0y} Tor 15isk and 15jgk~—1, and
{vy;, vy} for 2<isk and 15jSk. This graph is a k by k grid graph in which
the top end of each vertical edge has been detached from its vertex and
reattached to the vertex at the head of its column. Figure 9 shows V;. “Column
c” of ¥, means the vertices v, for 15isk, and “row r” means the vertices v,
for 1Sjsk. This graph is sparse, but not sparse-contractible: If each row
except the first is contracted into a single vertex, the result contains as a
subgraph the complete bipartite with k vertices in one part and k—1 in the
other.

Theorem 7. All subgraphs of the graph V, defined above satisfy a n'/2-separator
theorem for constants a=2/3 and f=3.
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Fig. 9. Graph ¥; for Theorem 7

Proof. Let G be a subgraph of ¥, with n vertices. There is at least one column ¢
such that removal of all the vertices of G in that column separates G into two
parts with at most n/2 vertices in each. If column ¢ has fewer than n'/? vertices
of G, it is the required scparator. Otherwise let ¢, Sc be the minimum and
¢, 2¢ be the maximum such that every column from ¢, through c, contains at

least n*/? vertices of G. If columns ¢, —1 and ¢, +1 are deleted (which deletes at

most 2n'/2 =2 vertices of G), then G falls into parts 4,, B, and 4,, with at
most nf2 vertices in cach of A, and A,. If 4, has at least n/3 vertices then
column ¢, —1 is the required separator; similarly for 4, and column cy+1.
Suppose that A4, and A4, each have less than n/3 vertices. Removal of vertices
vy, through v,,, causes B to fall into scparate rows, and removal of at most
one more vertex from one of those rows ensures that no remaining component
of B has more than n/2 vertices. Since G has only n vertices and cach of
columns ¢, through c, has at least n'/? of them, ¢, —c, is less than n'” and
this last step deletes at most n*/2+1 vertices. Thus in all at most 3n'/2 -1
vertices of G have been deleted. These vertices are the separator. [0

Theorem 8. Let k be a positive integer, let n=k*, and let V, be the n-vertex
graph defined above. If the ND algorithm is run on V, and an appropriate
adversary is allowed to choose the separators and the order of elimination within
each separator, then Q(n**) fill will occur.

Proof. The adversary'’s choice of a top-level separator is the first row of ;.
Removal of these n'/? vertices leaves k—1 components, each of which is a row
with k vertices. The adversary chooses to scparate cach row by removing its
middle k"2 vertices; more precisely, row i is separated by removing oy, «.., 0,
where s=[(k~k"?)/2] and t=[{(k+k'?)/2). (This is declinitcly not a good
separator.) These vertices arc eliminated in order from v, to v,,. The rest of the
adversary’s choices do not matter.

Consider the fill between vertices in the first row and vertices in the
separator of another row, say row 2. Let v,, be a vertex in the first row with
i<s, and let v,; be a vertex in the separator of the second row, so sSjSt. All
of vy, ..., Uy, are climinated before v,; or v,,, 30 {v,,, v,,} is a fill edge. The
number of such edges is (s—1)(t —s+1), which is €(k*?). Similar fill edges
appear from each of rows 3 through k, for a total of 6 (k*?) edges. Since n=k?,
this is @(n**) fill just between separators on levels 0O and 1. O
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Fig. 10. Graph ¥; modified to usec minimal separators

This example is a little bit fishy. A minimal separator for an individual row
is a single vertex, and with this choice the fill is only O(nIgn). We can modify
the example by duplicating the middle vertex of each row k!’ times as shown
in Fig. 10. This graph and its subgraphs still satisfy a n'2.separator theorem.
Now ecach row has a minimal scparator with k'/? vertices, and fill is still
Q(n**) using these separators. However, it is still clear that the best row
separator to choose has only one or two vertices.

The Lipton-Rose-Tarjan algorithm will give O(nlgn) fill for this graph,
since its subgraphs all satisfy a n'/2-separator theorem. Recall that that algo-
rithm does not do a recursive call for every component into which the sepa-
rator divides the graph, but collects the components into two pieces, adds the
separator vertices to each piece, and does exactly two recursive calls. If the
LRT algorithm called itself for each component, the adversary could make the
same choice of separators for this example and fill would still be Q(n%4).
Therefore the fact that there are exactly two recursive calls is essential to the
fill bound for the LRT algorithm. On the other hand, making the ND algo-
rithm do exactly two recursive calls would not limit fill to O(nign): The
adversary could choose row 1 as the top-level scparator, and then choose
about Igk levels of empty separators until each subgraph was a single row of
V.. '
' As we observed above, the ND algorithm gives O(n*?) fill on any graph
with a n!/2.separator decomposition. We do not know whether there are such

graphs for which fill is asymptotically more than n%4,

10. Conclusion

We have presented and analyzed a nested dissection algorithm that can be
considered either as an exténsion of the George-Liu heuristic nested dissection,
or as a variation of the Lipton-Rose-Tarjan generalized nested dissection. The
LRT algorithm achieves O(nIgn) fill on graphs whose subgraphs all have n'/3.
separators; the ND aigorithm presented here achieves O(nlgn) fill bounds for
graphs with n'/3.scparator decompositions and cither bounded degree or sparse
contractions. Both classes include planar and finite-clement graphs, which are
probably the most useful applications of nested dissection with n'/2.separators.
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The constant factor in the ND fill bound is a bit less than 2/3 of that in
Lipton, Rose, and Tarjan’s analysis of the LRT algorithm [14]. Both constants
are probably overestimates, and which (if cither) version will be more practical
can probably be decided only by experiment. Experiments on the ND algo-
rithm are underway, using the Waterloo Sparspak sparse matrix package
developed by Alan George and his colleagues [4]. Jean Roman [19] inde-
pendently proved an O(nign) fill bound for the ND algorithm on planar
graphs of bounded degree; his experiments suggest that the algorithm may be
practical.

Another class of graphs with sparse contractions and n'/*.separators is
graphs of genus bounded by a constant g. Such graphs may be useful in using
finite element methods to solve problems on the surface of a three-dimensional
object with holes in it. Graphs of genus at most g satisfy a (gn)"/2-separator
theorem [6), and the separator can be found in O(n+g) time from an
embedding of the graph. This leads immediately to an O(gn Ign) fill bound for
the ND algorithm. A graph of genus g has a plane reducer (which is a set of
vertices whose removal leaves a planar graph) of size O((gn)"? 1gg) [6]. This
gives an O(nlgn+gnlg?g) fill bound by a proof like that in Gilbert [5, Sect.
29). If, as seems likely, graphs of genus g actually have plane reducers of
0((gn)""?) vertices, this fill bound could be improved to O(n lgn-+gn).

We do not know of a class of graphs that is sparse-contractible and does
not satisfy a n'/3-separator theorem. It is interesting to ask whether sparse
contractibility implies a nontrivial separator theorem.

Miller [16] has proved a new version of the planar separator theorem: A
maximal planar graph (one in which every face has three sides) has a n'/3.
separator that is a simple cycle. This may have theoretical or practical impli-
cations for nested dissection algorithms.

Throughout this paper we have avoided discussing numerical problems by
assuming that the coeflicient matrix is symmetric and positive definite. Gilbert
and Schreiber 5, 8] have investigated an algorithm that combines a version of
nested dissection with partial pivoting for stability. They show that this dissec-
tion pivoting algorithm limits fill to O(nlgn) on some classes of indefinite

matrices with symmetric structure, including planar and finite-clement graphs
of bounded degree.

Appendix. Recurrences on the Separator Tree

The following lemmas solve a recurrence relation that will let us bound sums
over the nodes of the separator tree.

Lemma 11. Let f(x) be a real-valued function that is continuous on the closed
interval [0,1] and twice differentiable on the open interval (0, 1), and suppose
that f(0)=0 and f"(x)>0 for 0<x<l. Let a be a real number with {Sa<l.
Consider sequences {x,,...,%,} of real numbers that satisfy 0Sx,Sa for
1Sigkand ) x,=1. The maximum over all k and all such sequences {x;} of

A e DR ALY 2 S Lo

tew RSPV e e

L AME e AR P W

cam o MY Nela Al

c .-



Analysis of a Nested Dissection Algorithm 401

Y fx)

18i8k
is attained when k=2, x, =1—a, and x,=a.
Remark. If f"(x)<0, the minimum is attained when k=2 x,=1—-a and x,=a

Proof. The proof is based on the following Fact. If0gasbscsds] and a+d
=b+c<1, then f(a)+/(d)2 S (b)+f(c). To prove the Fact, let gx)=f(x)+f(a
+d—x). Then g"(x)=f"(x)+f"(a+d—x), which is positive for a<xg<d.
Therefore the only maxima of g(x) in this interval are at its endpoints, x=a
and x=d, and by definition g(a)=g(d). Thercfore g(a) = g(b). Substituting into
the definition of g(x) gives f(a)+f ()& f(b)+Sf(c).

The proof of the lemma consists of three applications of the Fact. Let
{Xy, .-, X;} be a sequence of real numbers with 0Sx,S...Sx,Saand } x,=1.

i

We shall shorten the sequence without increasing Y. f(x) until k=2, and then
[

we shall see that x, =1 —a and x, =a minimize the sum in that case.

First, suppose that k>2 and x, +x,<4. The Fact says that f (x,)+f(x3)
is at most f(0)+f(x, +x,), which is equal to f(x;+x,). Therefore we can
get a shorter sequence by replacing x, and x, with x, +x,.

Second, suppose that k>2 and x, +x,>4. If k were at least 4, this would
imply that x, +x,+X,+x,>1, contrary to the hypothesis of the lemma. Thus
k=3, x, <x,Sx,<4}, and x, +x,+x;=1. Now x, +x3—420, so the Fact says
that f(x,)+/ (x3) S S (x, +xy —4)+1 (). The Fact also says that f(x,)+/(x, +x,
—1)S/(0)+f(}). Adding the last two inequalities and cancelling terms gives
S(x,)+f (x3)+[(x3)£2f(3). Therefore we can get a shorter sequence by re-
placing {x,, x4, x,} with {4, 4}.

Finally, suppose that k=2 Then 1-aSx,Sx;3 SO the Fact says that
Sx)+f(x)sf(1-a)+ (@ O

Lemma 12. Let G be an n-vertex graph with a n'/*-separator decomposition (for
constants a<1, p>0, and ny>0), and let f be a nonnegative real-valued function
on the nodes of the separator tree for G. Suppose that f is zero on external
nodes, and f(N)Scm* whenever N is an internal node whose subtree contains m
vertices (not nodes), for some A>0. Then the sum of f(N) over all nodes N of
the separator tree is at most

-l_-——:_i:Tn‘ l:f A>l,
[ .

_alga—(l—a)lg(l—a)"lgn if A=1

om - if A<l

Proof. Let p(n) be the maximum of . f(N) over all scparator trees for all such
graphs with n vertices. Then
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p(n)=0 _ for 0Snsn,, M
p(n)Smax {p(n)+... + p(n)} +cn? for n>n,,

where the maximum is taken over all k and ny, ..., 1, satisfying

n+...+m=n O0gmSan for 18igk )]

We may assume that the sum of the n, is exactly n because p(n) is nonnegative,

so the sum in Eq.(1) is not made smaller by adding more terms. Now we
consider the recurrence case by case.

Case 1. > 1. Proof is by induction on n. The lemma holds for 0SnSn, since
then p(n)=0. If n>ny, there is a set {n;} satisfying Eq.(2) such that

—c 14en

P)ST—7=T 1;24:“"' +cn, 3)

The sum is at most (mlaxn,)“"zn,, which is at most (am)*~'n or «*~'n’
[}

Substituting this into Eq.(3) gives p(mScn*f(l —c*—1).

Case 2. A=1. Proof is again by induction, and the case nSny is again trivial. If
n>n,, there is a set {n,} satisfying Eq.(2) such that

c
p(n)S g Py gy l‘Z“.n,lgnﬁcn. @

Define the function f(x)=xnlgxn to be 0 at x=0, which makes it continuous
there. Then Lemma 11 applies, and says that

Y mlgmSanlgan +(1 —a)nlg(l —a)n.
1818k
Substituting this into Eq. (4) gives the desired result.

Case 3. i<1. If n>n,, there is a set {n,} satisfying Eq.(2) such that
pms Y p(n)+cn’ 0
1518k

In this case we transform Eq. (5) to get rid of the cn* term. The second
derivative of f(x)=x* is negative. Thus by the remark in Lemma 11, nj+...
+n} is at least (an)*+((1 —a)n)*. Let d=c*+(1 —a)* —1. Then 6>0, and n}+...
+n22(1+8)n* This inequality can be written as

€ a € a_,pi | 6
5" 5152‘“6'1, cn’, ©)

Now we add Egs.(5) and (6), and define g(n)=p(n)+cn’/3 in the sum. The
result is
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gms Y q() for n>n,. Y]

1315k

The solution to recurrence (7) is linear, so q(n)=0(n). and p(n)=0(n). O

Lemma 13. Let G and f be as in Lemma 12, and suppose f(N)Scm (that is, 1
=1). Then the sum of f(N) over all nodes N on levels O through k—1 of the
separator tree is at most ckn.

Proof. Let 4, be the set of nodes on level i of the separator tree, and let ny be
the number of vertices of G in the subtree rooted at N. Then the sum in the
statement of the lemma is equal to.

Y. cny.
0 i<k New,

The subtrees rooted on level i are disjoint, so the inner sum above is at most
cn. Therefore the whole sum is at most ckn. [0

References

1. Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM J. Algebraic Discrete
Methods 3, 229-240 (1982)
2 George, A.: Nested dissection of a regular finite clement mesh. SIAM J. Numer. Anal. 10, 345-
363 (1973)
3. George, A., Liu, J.W.-H.: An automatic nested dissection algorithm for irregular finite clement
problems. SIAM J. Numer. Anal. 15, 1053-1069 (1978)
4. George, A. Liu, J.W.-H.: Computer Solution of Large Sparse Positive Definite Systems.
Englewood Cliffs, NJ: Prentice-Hall 1981
S. Gilbert, J.R.: Graph Separator Theorems and Sparsc Gaussian Elimination. Ph.D. thesis,
Stanford University 1980
6. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A scparator theorem for graphs of bounded genus.
J. Algorithms 8, 391-407 (1984)
1. Gilbert, J.R. Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J.
Algebraic Discrete Mcthods §, 306-313 (1984)
2 Gilbert. J.R_. Schreiber. R.: Nested dissection with partial pivoting. Sparse Matrix Symposivm,
Fairfield Glade, Tennessee 1982
9. Harary, F.: Graph Theory. Reading, MA: Addison-Wesley 1969
10. Hoey, D., Leiserson, C.E.: A layout for the shuffle-exchange network. Camegic-Mecllon Univer-
sity Computer Science Department technical report CMU-CS-80-139 (1980)
11. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math. 70, 185-190 (1869)
12. Leighton, F.T.: A layout strategy for VLSI which is provably good. Proc. 14th Ann. ACM
Symp. Theory Comput. pp. 85-98 (1982)
13. Leiserson. C.E.: Area-eflicient graph layouts (for VLSI). Proc. 21st Ann. Symp. Found. Com-
put. Sci. pp. 270-281 (1980)
14. Lipton, RJ., Rose, DJ., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16,
346-358 (1979)
15. Lipton, RJ., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36,
177-189 (1979)
16. Miller, G.L.; Finding small simple cycle separators for 2-connected planar graphs. Proc. 16th
Ann. ACM Symp. Theory Comput. pp. 376-382 (1984)



404 J.R. Gilbert and R.E. Tagjan

17. Nash-Williams, C.StJ.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39,
12 (1964)
18. Parter, S.: The use of lincar graphs in Gauss climination. SIAM Rev. 3, 119-130 (1961)

19. Roman, J.: Calculs de complexité relatifs & une méthode de dissection emboliée. Numer. Math.
47, 175-190 (1985)

20. Rose, DJ.: A graph-theoretic study of the numerical solution of sparse positive definitc systems é
of lincar equations. In: Graph Theory and Computing (RC. Read. ed) pp 183-217. 4
New York: Academic Press 1972 é

21. Rose, DJ.. Tarjan, R.E.. Lucker, GS.: Algorithmic aspects of vertex climination on graphs. 3
SIAM J. Comput. 5, 266-283 (1976) i

22 Yannakakis, M.: Computing the minimum fill-in is NP-compiete. SIAM J. Algebraic Discrete %
Methods 2, 77-79 (1981) <

Received August 15, 1984/ August 12, 1986 ¥

?
3

B TV R e Lol

~rr

o3
b

ay PR

LA A




