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8
Matrix Theory

There are various matrices that are naturally associated with a graph, such
as the adjacency matrix, the incidence matrix, and the Laplacian. One of
the main problems of algebraic graph theory is to determine precisely how,
or whether, properties of graphs are reflected in the algebraic propertics of
such matrices.

Here we introduce the incidence and adjacency matrices of a graph, and
the tools needed to work with them. This chapter could be subtitled “Linear
Algebra for Graph Theorists,” because it develops the linear algebra we
need from fundamental results about symmetric matrices through to the
Perron-Frobenius theorem and the spectral decomposition of symmetric
matrices.

Since many of the matrices that arise in graph theory are 0l-matrices,
further information can often be obtained by viewing the matrix over the
finite field GF(2). We illustrate this with an investigation into the binary
rank of the adjacency matrix of a graph.

8.1 The Adjacency Matrix

The adjocency matriz A(X) of a directed graph X is the integer matrix
with rows and columns indexed by the vertices of X, such that the uv-entry
of A(X) is equal to the number of arcs from u to v (which is usually 0 or
1). If X is a graph. then we view cach edge as a pair of arcs in opposite
directions. and A(X) is a svinmetric 0l-matrix. Because a graph has no
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164 8. Matrix Theory

loops, the diagonal entries of A(X) are zero. Different directed graphs on
the same vertex set have different adjacency matrices, even if thev are
isomorphic. This is not much of a problem, and in any case we have the
following consolation, the proof of which is left as an exercise.

Lemma 8.1.1 Let X and Y be directed graphs on the same verter sei.

Then they are isomorphic if and only if there is a permutation matriz P
such that PTA(X)P = A(Y). O

Since permutation matrices are orthogonal, PT = P~ and so if X and V'
are isomorphic directed graphs, then A(X) and A(Y') are similar matrices.
The characteristic polynomial of a matrix A is the polynomial

?(A, x) = det(z] — A),

and we let ¢(X,z) denote the characteristic polynomial of A(X). The
spectrum of a matrix is the list of its eigenvalues together with their multi-
plicities. The spectrum of a graph X is the spectrum of A(X) (and similarly
we refer to the eigenvalues and eigenvectors of A(X) as the eigenvalues and
eigenvectors of X). Lemma 8.1.1 shows that ¢(X,z) = ¢(Y,z) if X and
Y are isomorphic, and so the spectrum is an invariant of the isomorphism
class of a graph.

However, it is not hard to see that the spectrum of a graph does not
determine its isomorphism class. Figure 8.1 shows two graphs that are not
isomorphic but share the characteristic polynomial

(z+2)(z+1)%(z — 1)%(2® — 2z — 6),
and hence have spectrum
{-2 1@ 1® 147}

(where the superscripts give the multiplicities of eigenvalues with multi-
plicity greater than one). Two graphs with the same spectrum are called
cospectral.

Figure 8.1. Two cospectral graphs

The graphs of Figure 8.1 show that the valencies of the vertices are not
determined by the spectrum, and that whethier a graph is planar is not
determined by the spectrum. In general, if there is a cospectral pair of
graphs, only one of which has a certain property P, then P cannot be
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determined by the spectrum. Such cospectral pairs have been found for a
large number of graph-theoretical properties.

However. the next result shows that there is some useful information that
can be obtained from the spectrum. A walk of length 7 in a directed graph
X is a sequence of vertices

’UO ~ /(Yl ~ e AU ’U,r.

A walk is closed if its first and last vertices are the same. This definition is
similar to that of a path (Section 1.2), with the important difference being
that a walk is permitted to use vertices more than once.

Lemma 8.1.2 Let X be a directed graph with adjacency matriz A. The
number of walks from u to v in X with length v is (A" )u-

Proof. This is easily proved by induction on r, as you are invited to do.O

The trace of a square matrix A is the sum of its diagonal entries and
is denoted by tr A. The previous result shows that the number of closed
walks of length r in X is tr A", and hence we get the following corollary:

Corollary 8.1.3 Let X be a graph with e edges and t triangles. If A is the
adjacency matriz of X. then

(a) trA =0,
(b) tr A2 = 2e.
(c) tr A3 = Gt. 0

Since the trace of a square matrix is also equal to the sum of its eigen-
values, and the eigenvalues of A” are the rth powers of the eigenvalues of
A, we sce that tr A" is determined by the spectrum of A. Therefore, the
spectrum of a graph X determines at least the number of vertices, edges,
and triangles in X. The graphs Ky and /£ U C, are cospectral and do
not have the same number of 4-cycles, so it is difficult to extend these
observations.

8.2 The Incidence Matrix

The incidence matriz B(X) of a graph X is the 01-matrix with rows and
columns indexed by the vertices and edges of X, respectively, such that the
wf-entry of B(X) is equal to one if and only if the vertex u is in the edge
f. If X has n vertices and e edges, then B(X) has order n x e.

The rank of the adjacency matrix of & graph can be computed in poly-
nomial time. but we do not have a simple combinatorial expression for it.
We do have one for the rank of the incidence matrix.
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166 8. Matrix Theory

Theorem 8.2.1 Let X be a graph with n vertices and c, bipartite con-
nected components. If B is the incidence matriz of X, then its rank is
given by rk B = n — ¢.

Proof. We shall show that the null space of B has dimension ¢y, and hence
that rk B = n — ¢o. Suppose that z is a vector in '™ such that 27 B = 0. If
uv is an edge of X, then z, + z, = 0. It follows by an easy induction that if
u and v are vertices of X joined by a path of length 7, then z, = (=1)"z2,.
Therefore, if we view z as a function on V(X), it is identically zero on any
component of X that is not bipartite, and takes equal and opposite values
on the two colour classes of any bipartite component. The space of such
vectors has dimension cg. O

The inner product of two columns of B(X) is nonzero if and only if the
corresponding edges have a common vertex, which immediately yields the
following result.

Lemma 8.2.2 Let B be the incidence matriz of the graph X, and let L be
the line graph of X. Then BTB = 2I + A(L). 0

If X is a graph on n vertices, let A(X) be the diagonal n x n matrix with
rows and columns indexed by V(X) with uu-entry equal to the valency
of vertex u. The inner product of any two distinct rows of B(X) is equal
to the number of edges joining the corresponding vertices. Thus it is zero
or one according as these vertices are adjacent or not, and we have the
following:

Lemma 8.2.3 Let B be the incidence matriz of the graph X. Then BBT =
A(X) + A(X). O

When X is regular the last two results imply a simple relation between the
eigenvalues of L(X) and those of X, but to prove this we also need the
following result.

Lemma 8.2.4 If C and D are matrices such that CD and DC are both
defined, then det(I — CD) = det(I — DC).

Proof. If
I C I 0
(5 7). r=(5 1)

XY:(I—C’D c>, YX=<I C )

then

0 I 0 I-DC
and since det XY = det Y X, it follows that det( — CD) = det(I — DC).0

Lhis result implies that det(] — z=1C'D) = det(I — 2~1DC), from which
it follows that CD and DC have the same nonzero eigenvalues with the
same multiplicities.
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Lemma 8.2.5 Let X be a regular graph of valency k with n vertices and
e edges and let L be the line graph of X. Then

d(L,x) = (z+2) "o(X,z -k +2).

Proof. Substituting C = 2~!BT and D = B into the previous lemma we
get

det (I. — 2 'BTB) =det (I, -z~ 'BBT),
whence
det (zI, — BT B) = 2°"" det (zI, — BB").
Noting that A(X) = kI and using Lemma 8.2.2 and Lemma é.2.3, we get
det((z — 2)I. — A(L)) = «°7" det((x — k)In — A(X)),
and so
&L,z —2)=z""¢(X,x - k),

whence our claim follows. a

8.3 The Incidence Matrix of an Oriented Graph

An orientation of a graph X is the assignment of a direction to each edge;
this means that we declare one end of the edge to be the head of the edge
and the other to be the tail, and view the edge as oriented from its tail
to its head. Although this definition should be clear, we occasionally need
a more formal version. Recall that an arc of a graph is an ordered pair of
adjacent vertices. An arientation of X can then be defined as a function o
from the arcs of X to {—1,1} such that if (u,v) is an arc, then

o(u,v) = —o(v,u).

If o(u,v) = 1. then we will regard the edge uv as oriented from tail u to
head v.

An oriented graph is a graph together with a particular orientation. We
will sometimes use X° to denote the oriented graph determined by the
specific orientation ¢. (You may, if you choose, view oriented graphs as a
special class of directed graphs. We tend to view them as graphs with extra
structure.) Figure 8.2 shows an example of an oriented graph, using arrows
to indicate the orientation.

The incidence matriz D(X°) of an oriented graph X¢ is the {0,+1}-
wiatrix with rows and columns indexed by the vertices and edges of X,
respectively. such that the uf-entry of D(X?) is equal to 1 if the vertex u
is the head of the edge f. —1 if w is the tail of f, and 0 otherwise. If X
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3 4

Figure 8.2. An oriented graph

has n vertices and e edges, then D(X?) has order n x e. For example, the
incidence matrix of the graph of Figure 8.2 is

-1 1 0 0 0 0
1 0 -1 1 0 O
0 0O 1 0 1 -1
0 0 0 0 -1 0
0 -1 0 -1 0 1

Although there are many different ways to orient a given graph, many
of the results about oriented graphs are independent of the choice of
orientation. For example, the next result shows that the rank of the in-
cidence matrix of an oriented graph depends only on X, rather than on the
particular orientation given to X.

Theorem 8.3.1 Let X be a graph with n vertices and ¢ connected compo-
nents. If o is an orientation of X and D is the incidence matriz of X°,
thentk D =n — c.

Proof. We shall show that the null space of D has dimension ¢, and hence
that rk D = n — c¢. Suppose that z is a vector in R™ such that :T B = 0. If
uv is an edge of X, then z, — 2, = 0. Therefore, if we view z as a function
on V(X), it is constant on any connected component of X. The space of
such vectors has dimension c. a

We note the following analogue to Lemma 8.2.3.

Lemma 8.3.2 If o is an orientation of X and D is the incidence matriz
of X, then DDT = A(X) — A(X). O

If X is a plane graph, then each orientation of X determines an orientation
of its dual. This orientation is obtained by viewing each edge of X* as
arising from rotating the corresponding edge of X through 90° clockwise
(as in Figure 8.3). We will use o to denote the orientation of both X and
X~
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Figure 8.3. Orienting the edges of the dual

Lemma 8.3.3 Let X and Y be dual plane graphs. and let o be an orien-
tation of X. If D and E are the incidence matrices of X° and Y7, then
DET =0.

Proof. If v is an edge of X and F is a face, there are exactly two edges
on « and in F. Denote them by g and h and assume, for convenience, that
g precedes h as we go clockwise around F. Then the uF-entry of DET is
equal to

DugEXp + DunEip-

If the orientation of the edge g is reversed, then the value of the product
D,,,gE;]FF does not, change. Hence the value of the sum is independent of the
orientation o, and so we may assume that g has head u and that f has tail
w. This implies that the edges in Y corresponding to g and h both have
head F, and a simple computation now yields that the sum is zero. 0

8.4 Symmetric Matrices

In this section we review the main results of the linear algebra of symmetric
matrices over the real numbers, which form the basis for the remainder of
this chapter.

Lemma 8.4.1 Let A be a real symmetric matriz. If w and v are
eigenvectors of A with different eigenvalues, then u and v are orthogonal.

Proof. Suppose that Au = Au and Av = Tv. As A is symmetric, ul Av =
(vT Au)T. However, the left-hand side of this equation is ruTv and the
right-hand side is AT o, and so if T # A, it must be the case that uTv = 0.
O

Lemma 8.4.2 The eigenvalies of a real symmetric matriz A are real
numbers.

Proof. Let u be an eigenvector of A with eigenv: Jue A. Then by taking
the complex conjugate of the equation Au = du we get Au = A\, and
o 1 is also an eigenvector of A. Now, by definition an eigenvector is nob
zero, so ulw > 0. By the previous lemma, u and 7 cannot have different
eigenvalues. so A = X. and the claim is proved. a
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We shall now prove that a real symmetric matrix is diagonalizable. For
this we need a simple lemma that expresses one of the most important
properties of symmetric matrices. A subspace U is said to be A-invariant
if Aue U forallu e U.

Lemma 8.4.3 Let A be a real symmetric n X n matriz. If U is an A-
invariant subspace of B™, then UL is also A-invariant.

Proof. For any two vectors u and v, we have
vT (Au) = (Av)Tu.

If u € U, then Au € U; hence if v € UL, then vT Au = 0. Consequently,
(Av)Tu = 0 whenever u € U and v € U*t. This implies that Av € U+
whenever v € U+, and therefore U+ is A-invariant. 0

Any square matrix has at least one eigenvalue, because there must be at
least one solution to the polynomial equation det(z — A) = 0. Hence a real
symmetric matrix A has at least one real eigenvalue, # say, and hence at
least one real eigenvector (any vector in the kernel of A—61, to be precise).
Our next result is a crucial strengthening of this fact.

Lemma 8.4.4 Let A be an n x n real symmetric matriz. If U is a nonzero
A-invariant subspace of R™, then U contains a real eigenvector of A.

Proof. Let R be a matrix whose columns form an orthonormal basis for
U. Then, because U is A-invariant, AR = RB for some square matrix B.
Since RTR = I, we have

RTAR = RTRB = B,

which implies that B is symmetric, as well as real. Since every symmetric
matrix has at least one eigenvalue, we may choose a real eigenvector u of
B with eigenvalue \. Then ARu = RBu = ARu, and since u # 0 and
the columns of R are linearly independent, Ru # 0. Therefore, Ru is an
eigenvector of A contained in U. 0O

Theorem 8.4.5 Let A be a real symmetric n x n matriz. Then R™ has an
orthonormal basis consisting of eigenvectors of A.

Proof. Let {uj,...,um} be an orthonormal (and hence linearly indepen-
dent) set of m < n eigenvectors of A, and let M be the subspace that
they span. Since A has at least one eigenvector, m > 1. The subspace M
is A-invariant, and hence M+ is A-invariant, and so M L contains a (nor-
malized) eigenvector um+1. Then {u,. .., um, Um+1} 18 an orthonormal set
of m + 1 eigenvectors of A. Therefore, a simple induction argument shows
that a set consisting of one normalized eigenvector can be extended to an
orthonormal basis consisting of eigenvectors of A. 0
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Corollary 8.4.6 If Aisann Xn real symmetric matriz, then there are
matrices L and D such that LTL = LLT =1 and LALT = D, where D 1s
the diagonal matriz of eigenvalues of A.

Proof. Let L be the matrix whose rows are an orthonormal basis of eigen-
vectors of A. We lcave it as an exercise to show that L has the stated
properties. O

8.5 Eigenvectors

Most introductory linear algebra courses impart the belief that the way to
compute the eigenvalues of a matrix is to find the zcros of its characteristic
polynomial. For matrices with order greater than two, this is false. Gener-
ally, the best way to obtain eigenvalues is to find eigenvectors: If Az = 0z,
then 0 is an eigenvalue of A.

When we work with graphs there is an additional refinement. First, we
stated in Section 8.1 that the rows and columns of A(X) are indexed by
the vertices of X. Formally, this means we are viewing A(X) as a linear
mapping on T V(X) | the space of real functions on V(X) (rather than on
the isomorphic vector space F:", where n = VX)) If f € EV(X) and
A = A(X), then the image Af of f under A is given by

(Af)(u’) = Z Au,,,f('U);
since A is a 0l-matrix, it follows that

(Af)(u) =Y f(v).

u~Uu

In words, the valucof Af at u is the sum of the values of f on the neighbours
of u. If we suppose that f is an eigenvector of A with eigenvalue 6, then

Af =0f, and so
Of(u) = f().

v~ U

In words, the sum of the values of f on the neighbours of u is equal to
0 times the value of f at u. Conversely, any function f that satisfies this
condition is an eigenvector of X. Figure 8.4 shows an eigenvector of the
Petersen graph. Lt can readily be checked thiat the s of the values on
the neighbours of any vertex is equal to the value on that vertex; hence we
have an eigenvector with eigenvalue one. (The viewpoint expressed in this
paragraph is very fruitful, and we will make extensive use of it.)

Now. we will find the eigenvalues of the cycle C,,. Take the vertex sel of
C,, to be {0.1.....n—1}. Let 7 be an nth root of unity (so 7 is probably



172 8. Matrix Theory

Figure 8.4. An eigenvector of P with eigenvalue 1

not a real number) and define f(u) := 7*. Then for all vertices wu,

d o fw) ="+,

v~u
and therefore 77! + 7 is an eigenvalue of C,,. Note that this is real, even if
T is not. By varying our choice of 7 we find the n eigenvalues of C,,. This
argument is easily extended to any circulant graph.

By taking 7 = 1 we see that the vector with all entries equal to one is an
eigenvector of C,, with eigenvalue two. We shall denote this eigenvector by
1. It is clear that 1 is an eigenvector of a graph X with eigenvalue k& if and
only if X is regular with valency k. We can say more about regular graphs.

Lemma 8.5.1 Let X be a k-regular graph on n vertices with eigenvalues
k,8,...,0,. Then X @d its complement X have the same eigenvectors,
and the eigenvalues of X aren—k -1, -1 —05,...,—-1—6,.

Proof. The adjacency matrix of the complement X is given by

AX)=J -1~ A(X),
where J is the all-ones matrix. Let {1,uz,...,u,} be an _orthonormal basis
of eigenvectors of A(X). Then 1 is an eigenvector of X with eigenvalue
n — k — 1. For 2 < i < n, the eigenvector u; is orthogonal to 1, and so

A()T)u, = (J — I - A(X))U.L = (—1 — Gi)ui.

Therefore, u; is an eigenvector of A(X) with eigenvalue —1 — 6. i

Finally, suppose that X is a semiregular bipartite graph with bipartition
V(X) = V1 UV, and let k and £ be the valencies of the vertices in V; and
Vs, respectively. Assume that wu; is a vertex with valency k, and u; is a
vertex with valency £. We look for an eigenvector f that is constant on the
two parts of the bipartition. If f is such an eigenvector and has eigenvalue

e
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., then
0f(w) = kf(uz),  Of(uz) = €f(wa)-

Because an eigenvector is a nonzero vector, we can multiply the two
equations just given to obtain

6% = k(.

Thus, if 6 = +vk{, then defining f by
1, if u e Vy,
flu) = {Q/k, ifu e Va,
yields two eigenvectors of X.

We comment on a feature of the last example. If A is the adjacency
matrix of a graph X, and f is a function on V(X), thensois Af. If X is a
semiregular bipartite graph, then the space of functions on V(X) that are
constant on the two parts of the bipartition is A-invariant. (Indeed, this is
equivalent to the fact that X is bipartite and semiregular.) By Lemma 8.4.4,
an A-invariant subspace must contain an eigenvector of A; in the above
example this subspace has dimension two, and the eigenvector is easy to

find. In Section 9.3 we introduce and study equitable partitions, which
provide many further examples of A-invariant subspaces.

86 Positive Semidefinite Matrices

A real symmetric matrix A is positive semidefinite if uT Au > 0 for all
vectors u. It is positive definite if it is positive semidefinite and uT Au =0
if and only if u = 0. (These terms are used only for symmetric matrices.)
Observe that a positive semidefinite matrix is positive definite if and only
if it is invertible.

There are a number of characterizations of positive semidefinite matrices.
The first we offer involves eigenvalues. If u is an eigenvector of A with
eigenvalue 6, then

uT Au = uT u,

and so we see that a real symmetric matrix is positive semidefinite if and
only if its eigenvalues are nonnegative.

Our second characterization involves a factorization. If A = BT B for
some matrix B, then

uT Au = uT BT Bu = (Bu)" Bu > 0,

and therefore A is positive semidefinite. The Gram matriz of vectors
Ui..... Uy from F™is the n. xn matrix G such that Gi; = u;FuJ Note
that BT B is the Gram matrix of the columns of B. and that any Gram
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matrix is positive semidefinite. The next result shows that the converse is
true.

Lemma 8.6.1 If A is a positive semidefinite matriz, then there is a matriz
B such that A= BT B.

Proof. Since A is symmetric, there is a matrix L such that
A=LTAL,

where A is the diagonal matrix with ith entry equal to the ith eigenvalue
of A. Since A is positive semidefinite, the entries of A are nonnegative, and
so there is a diagonal matrix D such that D> = A. If B = LTDL, then
B = BT and A = B? = BT B, as required. a

We can now establish some interesting results about the eigenvalues of
graphs, the first being about line graphs.

Let Omax(X) and 6yin(X) respectively denote the largest and smallest
eigenvalues of A(X).

Lemma 8.6.2 If L is a line graph, then Opin (L) > —2.

Proof. If L is the line graph of X and B is the incidence matrix of X, we
have

A(L)+2I = BTB.

Since BT B is positive semidefinite, its eigenvalues are nonnegative and all
eigenvalues of BT B — 21 are at least —2. a

What is surprising about this lemma is how close it cemes to
characterizing line graphs. We will study this question in detail in
Chapter 12.

Lemma 8.68.3 [etY be an induced subgraph of X. Then
Omin (X) S emin (Y) S omax(y) S emax(X)-

Proof. Let A be the adjacency matrix of X and abbreviate Opax(X) to
6. The matrix #I — A has only nonnegative eigenvalues, and is therefore
positive semidefinite. Let f be any vector that is zero on the vertices of X
not in Y, and let fy be its restriction to V(Y'). Then

0< fT(0I - A)f = fy (61 — A(Y)) fv,

from which we deduce that 6I — A(Y') is positive semidefinite. Hence
Brmax(Y) < 6. A similar argument applied to A —6min(X)! yields the second
claim of the lemma. 0O

It is actually true that if Y is any subgraph of X, and not just an induced
subgraph, then Onax(Y) < Omax(X). Furthermore, when Y is a proper
subgraph, equality can hold only when X is not connected. We return
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to this when we discuss the Perron-Frobenius theorem in the next two
sections.

Finally, we clear a debt incurred in Section 5.10. There we claimed that
the matrix

(r— NI+ AJ

is invertible when r > A > 0. Note that (r — A is positive definite: All
its eigenvalues are positive and M\J = A117 is positive semidefinite. But
the sum of a positive definite and a positive semidefinite matrix is positive
definite, and therefore invertible.

8 7  Subharmonic Functions

In this section we introduce subharmonic functions, and use them to
develop some properties of nonnegative matrices. We will use similar tech-
niques again in Section 13.9, when we show how linear algebra can be used
to construct drawings of planar graphs.

If A is a square matrix, then we say that a nonnegative vector z is A-
Mfor Aif z # 0 and Az > Az. When the value of X is irrelevant,

we simply say that x is subharmonic. We note one way that subharmonic
vectors arise. Let |A| denote the matrix obtained by replacing each entry
of A with its absolute value. If x is an eigenvector for A with eigenvalue 6,
then

16 |z3] = 16z:] = |(Az)il = | D Aizs| < S 1 Aul |5,
J J

from which we see that |z is |f]-subharmonic for |Al.

Let A be an n x n real matrix. The underlying directed graph of A has
vertex set {1,...,n}, with an arc from vertex i to vertex j if and only if
A;; # 0. (Note that this directed graph may have loops.) A square matrix
is irreducible if its underlying graph is _strongly connected.

Lemma 8.7.1 Let A be an n X n nonnegative irreductble matriz. Then
there is a mazimum real number p such that there is a p-subharmonic vector
for A. Moreover, any p-subharmonic vector T is an eigenvector for A with
cigenvalue p, and all entries of T are positive.

Proof. Let

F(z) = min (Az)s

1:113,'?’:0 r;

be a function defined on the set of nonnegative vectors, and consider the
values of F on the vectors in the set

Sz{;II:J:ZO. lezl}.
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It is clear that any nonnegative vector z is F'(x)-subharmonic, and so we
wish to show that there is some vector y € S such that F' attains its
maximum on y. Since S is compact, this would be immediate if F' were
continuous on S, but this is not the case at the boundary of S. As A is
irreducible, Lemma 8.1.2 shows that the matrix (I + A)"~! is positive.
Therefore, the set

T =(I+A)"'S

contains only positive vectors, and F' is continuous on 7. Since T is also
compact, it follows that F' attains its maximum value p at a point z € T
If we set

z
175’
then y € S and F(y) = F(z) = p. Moreover, for any vector z we have

F((I+ A" Y(z)) > F(z),

y:

and therefore by the choice of z, there is no vector z € S with F(z) > p.
We now prove that any p-subharmonic vector is an eigenvector for A,
necessarily with eigenvalue p. If = is p-subharmonic, define o(zx) by

o(z) = {i: (Azx); > pz;}.

Clearly, = is an eigenvector if and only if o(z) = (. Assume by way of
contradiction that o(x) # 0. The support of a vector v is the set of nonzero

caordinates of v and is denoted by supp(v). Let h be a nonnegative vector

with support equal to o(z) and consider the vector y = z + €eh.
We have

(Ay): — pyi = (Az); — px; + €(Ah); — eph;.

If i € o(x), then (Ax); > px;, and so for all sufficiently small values of €,
the right side of (8.7) is positive. Hence

(Ay): > py:.
If 1 ¢ o(z), then (Az); = px; and h; = 0, so (8.7) yields that

(Ay): — py; = €(Ah);.

Provided that ¢ > 0, the right side here is nonnegative. Since A is irre-
ducible, there is at least one value of ¢ not in o(z) such that (Ah); > 0,
and hence o(y) properly contains o(zx).

If |o(y)| = n, it follows that y is p’-subharmonic, where p’ > p, and this
is a contradiction to our choice of p. Otherwise, y is p-subharmonic but
lo(y)| > |o(z)|, and we may repeat the above argument with y in place
of x. After a finite number of iterations we will arrive at a p’-subharmounic
vector, with p’ > p, again a contradiction.

_—
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Finally, we prove that if z is p-subharmonic, then z > 0. Suppose instead
that z; = 0 for some i. Because o(z) = 0, it follows that (Az); = 0, but

(Aa:)i = Z Aij.’L'j,
J

and since A > 0, this implies that z; =0 if A;; # 0. Since A is irreducible,
a simple induction argument yields that all entries of 2 must be zero, which
is the required contradiction. Therefore, © must be positive. a

The spectral radius p(A) of a matrix A is the maximum of the moduli of
its eigenvalues. (If A is not symmetric, these eigenvalues need not be real
numbers.) The spectral radius of a matrix need not be an eigenvalue of it,
e.g.. if A= —I, then p(A) = 1. One consequence of our next result is that
the real number p from the previous lemma is the spectral radius of A.

Lemma 8.7.2 Let A be an n x n nonnegative irreducible matriz and let p
be the greatest real number such that A has a p-subharmonic vector. If B
is an n x n matriz such that |B| < A and Bz = 0z, then 18] < p. If 16| = p,
then |B| = A and |z| is an eigenvector of A with eigenvalue p.

Proof. If Bx = 0z, then
|6l|z| = |6z| = |Bz| < |Bl|z| < Alz].

Hence |z| is |6]-subharmonic for A, and so |0] < p. If |6] = p, then Alz| =
|B||z| = p|z|, and by the previous lemma, |z| is positive. Since A — |B| >0
and (A — |B|)|z| = 0, it follows that A = |B|. 0

Lemma 8.7.3 Let A be a nonnegative irreducible nxn matriz with spectral
radius p. Then p is a simple eigenvalue of A, and if x is an eigenvector
with eigenvalue p, then all entries of & are nonzero and have the same sign.

Proof. The p-eigenspace of A is 1-dimensional, for otherwise we could
find a p-subharmonic vector with some entry equal to zero, contradicting
Lemma 8.7.1. If z is an eigenvector with eigenvalue p, then by the pr evious
lemma, |z| is a positive eigenvector with the same eigenvalue. Thus |z] is a
multiple of x, which implies that all the entries of x have the same sign.
Since the geometric multiplicity of pis 1, we see that K = ker(A — pI)
has dimension 1 and the column space C of A — pI has dimension n — 1. If
C contains =, then we can find a vector y such that z = (A — pI)y. For any
k, we have (A — pI)(y + kz) = =, and so by taking k sufficiently large, we
may assume that y is positive. But then y is p-subharmonic and hence is a
multiple of z, which is impossible. Therefore, we conclude that K NC =0,
and that '™ is the direct sum of K and C. Since K and C are A-invariant,
this implies that the characteristic polynomial ¢(A,t) of A is the product
of t — p and the characteristic polynomial of A restricted to C. As x is not
in C, all eigenvectors of A contained in C have eigenvalue different from
p, and so we conclude that p is a simple root of ¢(A,1), and hence has
algebraic multiplicity one. a
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8.8 The Perron—Frobenius Theorem

The Perron-Frobenius theorem is the most important result on the
eigenvalues and eigenvectors of nonnegative matrices.

Theorem 8.8.1 Suppose A is a real nonnegative n x n matriz whose
underlying directed graph X is strongly connected. Then:

(a) p(A) is a simple eigenvalue of A. If x is an eigenvector for p, then
no entries of x are zero, and all have the same sign.

(b) Suppose A, is a real nonnegative n x n matriz such that A — A;
1s nonnegative. Then p(A:1) < p(A), with equality if and only if
A=A

(c) If0 is an eigenvalue of A and |6] = p(A), then 8/p(A) is an mth root
of unity and e2™"/™p(A) is an eigenvalue of A for all r. Further,
all cycles in X have length divisible by m. a

The first two parts of this theorem follow from the results of the previous
section. We discuss part (c), but do not give a complete proof of it, since
we will not need its full strength.

Suppose A is the adjacency matrix of a connected graph X, with spectral
radius p, and assume that 8 is an eigenvalue of A such that |0] = p. If § # p,
then 8 = —p, and so 8/p is a root of unity. If zg and 2; are eigenvectors with
eigenvalues § and p, respectively, then they are linearly independent, and
therefore the eigenspace of A2 with eigenvalue p? has dimension at least
two. However, it is easy to see that p? is the spectral radius of A2. As A2
is nonnegative, it follows from part (a) of the theorem that the underlying
graph of A% cannot be connected, and given this, it is easy to prove that
X must be bipartite.

It is not hard to see that if X is bipartite, then there is a graph isomorphic
to X with adjacency matrix of the form

0 B
A= (BT 0 ) ’
for a suitable 01-matrix B. If the partitioned vector (z,y) is an eigenvector
of A with eigenvalue 6, then it is easy to verify that (x, —y) is an eigenvector

of A with eigenvalue —@. It follows that 6 and — are eigenvalues with the
same multiplicity. Thus we have the following:

Theorem 8.8.2 Let A be the adjacency matriz of the graph X, and let p
be its spectral radius. Then the following are equivalent:

(a) X is bipartite.

(b) The spectrum of A is symmetric about the origin, i.e., for any 8, the
multiplicities of 0 and —0 as eigenvalues of A are the same.

(¢) —p is an eigenvalue of A. O
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There are two common applications of the Perron-Frobenius theorem
to connected regular graphs. Let X be a connected k-regular graph with
adjacency matrix A. Then the spectral radius of A is the valency k with
corresponding eigenvector 1, which implies that every other eigenspace of
A is orthogonal to 1. Secondly, the graph X is bipartite if and only if —k
is an eigenvalue of A.

8.9 The Rank of a Symmetric Matrix

The rank of a matrix is a fundamental algebraic concept, and so it is natural
to ask what information about a graph can be deduced from the rank of its
adjacency matrix. In contrast to what we obtained for the incidence matrix,
there is no simple combinatorial expression for the rank of the adjacency
matrix of a graph. This section develops a number of preliminary results
about the rank of a symmetric matrix that will be used later.

Theorem 8.9.1 Let A be a symmetric matriz of rank r. Then there is a
permutation matriz P and a principal v X r submatriz M of A such that

I

T —
P AP_<R

) M (I RT).
Proof. Since A has rank r, there is a linearly independent set of r rows
of A. By symmetry, the corresponding set of columns is also linearly inde-
pendent. The entries of A in these rows and columns determine an r X 7
principal submatrix M. Therefore, there is a permutation matrix P such
that
prap— (M NT
~\N H ]

Since the first r rows of this matrix generate the row space of PTAP, we
have that N = RM for some matrix R, and hence H = RN T = RMRT.

Therefore,
T [ M MR (1 T
PTAP = (R]VI RMRT | "\ R M(I R")

as claimed. |
We note an important corollary of this result.

Corollary 8.9.2 If A is a symmetric matriz of rank r, then it has a
principal v x r submatriz of full rank. )

If a matrix A has rank one, then it is necessarily of the form A = zyT for
some nonzero vectors x and y. It is not too hard to sce that if a matrix
can be written as the sum of r rank-one matrices, then it has rank at most



