CHAPTER

7

Conjugate Gradient
Acceleration

7.1 INTRODUCTION

In the early 1950s Hestenes and Stiefel [1952] presented a new iterative
method for solving systems of linear algebraic equations. This new method
was known as the “conjugate gradient method ”; we shall refer to it as the CG
method. The CG method, though an iterative method, converges to the true
solution of the linear system in a finite number of iterations in the absence of
rounding errors. Because of this and many other interesting properties, the
CG method attracted considerable attention in the numerical analysis
community when it was first presented. However, for various reasons the
method was not widely used, and little was heard about it for many years. As
noted by Concus et al. [1976b], there was hardly any mention of the CG
method in the proceedings of a Conference on Sparse Matrices and Their
Applications held in 1971 (see Rose and Willoughby [1972]).

Beginning in the mid-1960s there was a strong resurgence of interest in
the CG method. A number of papers appeared, including those by Daniel
[1965, 19671, J. K. Reid [1971, 1972], Bartels and Daniel [1974], Axelsson
[1974], O’Leary [1975], Chandra et al. [1977], Concus et al. [1976b], and
many others.
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7.2 THE CONJUGATE GRADIENT METHOD 139

Although not generally recognized until fairly recently, the conjugate
gradient method is not just one method, but a whole family of methods
(Hestenes [1956]). Each such method can be regarded as an acceleration
process for a particular (basic) linear stationary iterative method of first
degree. (The classical CG method can be regarded as an acceleration pro-
cedure based on the RF method of Section 2.3). Moreover, as shown by
Engeli et al. [1959], the CG method can be represented in a three-term form
which resembles Chebyshev acceleration applied to the RF method. One
can also develop a similar three-term form for conjugate gradient acceleration
applied to more general basic methods which resembles Chebyshev accelera-
tion applied to those methods. It can also be shown that conjugate gradient
acceleration of a given iterative method converges with respect to a certain
error measurement procedure at least as fast as the corresponding Chebyshev
procedure. Furthermore, no parameter estimates are required in the imple-
mentation of conjugate gradient acceleration. Because of these and other
attractive properties, conjugate gradient acceleration has been used exten-
sively in recent years.

We describe the classical CG method in Section 7.2. In Section 7.3 we
describe the equivalent three-term form. In Section 7.4 we describe conjugate
gradient acceleration of a class of basic iterative methods. In Section 7.5 we
describe procedures for deciding when to terminate the iterative process.
Computational procedurcs arc given in Secticn 7.6. In Section 7.7 numerical
results based on simulation experiments are given.

7.2 THE CONJUGATE GRADIENT METHOD

We now describe the classical conjugate gradient method (CG method)
of Hestenes and Stiefel [1952] as applied to the linear system Au = b given
by (2-1.1). We assume that the N x N matrix 4 is SPD.

The CG method can be regarded as a modification of the method of
steepest descent. To derive the method of steepest descent we consider the
quadratic form

F(w) = 3(u, Au)y — (b, u). (7-2.1)
Since
F(i1) = F(i1) + 3((x — @), Alu — a)), (7-22)

where i = A~ 'b is the solution of (2-1.1), and since 4 is SPD, it follows that
the problem of solving Au = b is equivalent to the problem of minimizing
F(u). Moreover, the gradient of F(u) is given by

grad F(u) = b — Au. (7-2.3)
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140 7 CONJUGATE GRADIENT ACCELERATION

The direction of the vector grad F(u) is the direction for which the functional
F(u) at the point u has the greatest instantaneous rate of change. If u™ is some
approximation to #, then in the method of steepest descent we obtain an
improved approximation u®* ! by moving in the direction of grad F(u™) to
a point where F(u"* ') is minimal, i.e., u™* ! = 4™ 4 A, grad F(u™), where
A, is chosen to minimize F(u""*!)). Using (7-2.1), we easily calculate that
Ay = (™, r™)/(r™, Ar™), where r™ = b — Au™. Since, from (7-2.3), grad
F(u™) = r'™, we can express the method of steepest descent in the form

u® is arbitrary,
Ut =™ 4 ™ for n=0,1,...,
P = b Ay (7-2.4)

(r("), r("))
(r(n), Ar"’) :

For ill-conditioned matrices A4, the convergence rate of the method of
steepest descent can be very slow (see, e.g., Luenberger [1973]). However, by
choosing our direction vectors differently, we obtain the CG method, which,
as we shall see shortly, gives the solution in at most N iterations in the absence
of rounding errors.

Let u'® be arbitrary and let successive approximations to the solution i
be given by u®*? = 4™ 4 A, p™, where p* is a “direction vector.” For the
CG method, we let p©@ = r'® and p*™ = r® + a,p™~ P for n > 1, where a, is
chosen so that p™ is A-conjugate to p* 1), i.e., (p™, Ap™~ V) = 0. Evidently,
a, = — (™, Ap™~ V)™V, Ap™ V). As before, choosing 4, to minimize
F@u'""* "), we obtain 4, = (p*, r™H/(p™, Ap*™). The formulas for the CG
method are given by

u'® is arbitrary,

I LE0 | QL l,,p('", n=01,...,
(n) _ r®, i n= 0,
= r(-)+anp("_l)’ n=1,2,...,
™, Ap" V) (7-2.3)
oy = — (p(n-—l), Ap(n_——l').), = 1’2""’
™ =p— Au™, n=0,1,...,
(p("), r("))

o A n=0L
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It can be shown that «,, 4,, and r' can be given equivalently by

o :_M_— n=1 2
" (r(n—l)’ r(n—l))’ g ly vy
(n) (n)
Lo i) n=01,.. ., (7-2.6)

n (p‘"’, Ap(n))’
P = 4pnTY, n=12,..

Hestenes and Stiefel [1952] show that the residuals r*, r_ .. and the
direction vectors p'®, p'"), ... generated by (7-2.5) satisfy the relations

(=0 for i#}],
P, ApN =0  for i#}], (7-27)
D, ApP) =0 for i#j and i#j+1

Thus the residual vectors ), rV, ... are mutually orthogonal and the
direction vectors p®, pV),... are mutually A-conjugate. From the first
relation in (7-2.7), it follows that r' = 0 for some s < N. Thus the method
(7-2.5) converges, in the absence of rounding errors, in at most N iterations.
Hestenes and Stiefel [1952] also show that the error vector em =y — @
associated with the CG method satisfies

s PR P (7-2.8)

whenever ¢™ # 0. In the next section, we shall have more to say concerning
the average rate of convergence for the CG method.

It can be shown (see, e.g., Beckman [1960]) that the direction vector p™
is a scalar multiple of the projection of the gradient vector r™ = grad F(u™)
in the linear space spanned by p™, p™* ), ..., PN . This fact coupled with
the fact that the direction vectors p'®, p'), ... are mutually A-conjugate
accounts for the name “conjugate gradient method.”

The CG method is a special case of the more general conjugate direction
(CD) method. In the CD method, the vectors p @, pM, ..., p¥ D are selected
to be nonzero and mutually A-conjugate but have no further restrictions. To
describe the basic idea involved, suppose that the set {p™}2=8~ ! of nonzero
mutually 4-conjugate vectors is given. Since 4 is SPD, it is easy to show that
the set {p™}"=5~! is also linearly independent. Thus there exist constants
Co» C1» - - - » Cy—1 Such that

i=u® +cop® + cp? + o+ oy pN Y (7-2.9)
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where u'® is some initial approximation to @ Multiplying (7-2.9) by 4 and
taking inner products with p™, we obtain

!

(n)b___ (0)
_ P76 — AuT) n=0,....N—1. (7-2.10)

Note that the constants c, are easily calculable.t
The CD method is given by the formulas

u'® is arbitrary,

r™=b— Au™, n=01,...,
) (n) -
=y n= 0L, 21

unth = A, p™, n=20,1,....

It can be shown (see, e.g., Luenberger [1973]) that the 4, in (7-2.11) are equal
to the ¢, from (7-2.10) and that the iterates 4™ * ! in (7-2.11) can be expressed
in the form

u(n+l) —_ u(o) + cop(o) + C1P(” + -+ C,,p("), (7-2,12)

where the ¢;, i = 0,..., n, are those given in (7-2.10). From (7-2.12) and
(7-2.9), it follows that u™ = & for some n < N. Thus the CD method also
enjoys the property that convergence is achieved, in the absence of rounding
errors, in at most N iterations.

The CD method is not well defined in that no prescription is given for the
computation of the direction vectors p'®, p'V), . ... Various formulas can be
given, with each leading to a special method. We can generate an A-conjugate
set of vectors from any set {v™}?=¥~! of linearly independent vectors, using
the Gram-Schmidt orthogonalization procedure. Hestenes and Stiefel
[1952] show that the CD method is equivalent to the Gauss elimination
method when the set {t!"} is chosen to be the unif™asis vectors, i.e., when
v =[1,0,...,0]", s" = [0, 1,0,...,0]7, etc. For the CG method, the set
{v'™} is chosen to be the residual vectors, ie., v = r™. The residual and
direction vectors for the CG method are not defined beforehand but are
determined sequentially in the order r@, p@, r p1)  as the iterations
progress.

1 If the set {p"™}22§~ ' were orthogonal and not A-conjugate, then c, = (p™, (i — u'®))/

(p™. p™). This expression for the c, is of little help since @ is not known.
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7.3 THE THREE-TERM FORM OF THE CONJUGATE
GRADIENT METHOD

Engeli et al. [1959] considered the following three-term form of the CG
method: '

WY = Py (™ W)+ (L= e (03)
where
(,.("J, ’.(nb)
Va1 = ——(r‘"’, YED (7-3.2)
and

T (™ pmy 1] '
Puary = l:l - LILI(’—(;T],—’(,,T))Z , if n=1 (py=1). (7-33)

The above formulas can be obtained from (7-2.5) by eliminating p and
p"~ Y from the pair of equations u"* " = u + 4,p™ and u™ = u"~ D+
An—1p" Y. Thus we obtain (7-3.1) with

Pnv1 = 1+ <Xn’ln/ln—l’ if n2 1 (pl = 1) (7'34)
and
Th+1 = An/pn+ 1 (7‘3'5)

Formulas (7-3.2) and (7-3.3) can then be derived directly from (7-2.5) (see, e.g.,
Reid [1971]).

An alternative derivation of (7-3.2) and (7-3.3) can be given as follows (see
Concus et al. [1976b]). By (7-2.5) and (7-3.1), we have

rt Y = po {1 Ar + ™+ (1 - Pus Or" Y. (7-3.6)

We now use the fact that the residuals are mutually orthogonal. If we require
that (#"* Y, ¥") = 0, we get (7-3.2), provided that p, ., # 0. But by (7-3.4)
and (7-2.6) it follows that

po=1, n=01,.... (7-3.7)
If we require that (+"* Y, F"~ 1) = 0 we get, assuming that (r*, r"~ )y =0,

0= (r(n+1;, r(n—l))

= Pus 1= Tne s (AP, OO (1 = P )T (7-38)
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Replacing n by n — 1 in (7-3.6) and taking the inner product of both sides
with r'™, we get

(P, r™) = Pyl Ar" ™", 7)) (7-39)
or
(Ar"'_ 1)’ r(n)) = (r"'- 1)’ Ar("’) = (Ar('", pin= l))

= =", ")/ pun. (7-3.10)

Substituting (7-3.10) into (7-3.8), we get (7-3.3).
Replacing ¥ by b — Au™ in (7-3.1), we can express u""* ! in the alternative
form

u(n+l) = pn+l{}’n+l((1 - A)u(n) + b) + (1 - ‘Yn+l)u(")} + (1 - pn+1)u("—”'
(7-3.11)

Since (I — A) is the iteration matrix for the RF method (see Section 2.3), it
follows from Theorem 3-2.1 that the iterates (7-3.11) correspond to a poly-
nomial acceleration procedure applied to the RF method. Thus from (3-2.5),
there exists a matrix polynomial Q(G)=a, oI +a, G+ ---+a, ,G" such
that the error vector ™ = ' — i associated with (7-3.11) can be expressed
in the form

e = Qn(G)g(O) = Qn(I - A)a(O)'

It can be shown (see, e.g., Young et al. [1980]) that the property that the
residual vectors are mutually orthogonal characterizes the CG method
among all polynomial acceleration procedures applied to the RF method.

It can also be shown (see, e.g., Young et al. [1980]) that the CG method
minimizes the 4'/?-norm of the error vector among all polynomial accelera-
tion methods applied to the RF method. Thus if & is the error vector associ-
ated with (7-3.11) and if &, where §© = £, is the error vector associated
with any other polynomial method applied to the RF method, then
€™ 412 < |E™]| 412. In particular, if €™ corresponds to the Chebyshev
acceleration method, it then follows from (3-2.12) and (4-2.20), since A2 is
a symmetrization matrix for the RF method, that

=n/2 -
“8“'”41/2 < ”é‘")”Al/Z < 1+ 7 ”3(0)”-41/% (7‘312)
where
F=(—-J1 =)+ J1-2¢% (7-3.13)
and

G = [M(A) — m(A)])/[M(A) + m(A)] = [k(A4) — 11/[x(A4) + 1]. (7-3.14)
Here x(A) is the spectral condition number of A defined by (1-4.18).
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In the previous section we have shown how the CG method may be
regarded as a polynomial acceleration procedure based on the RF method.
We now show how the CG method may be modified so as to correspond to a
polynomial acceleration procedure applied to more general basic iteration
methods.

Let us consider the basic iterative method defined by

"t = Gu™ + k, (7-4.1)
where for some nonsingular splitting matrix Q we have

G=1-07'4, k=0 ' (7-4.2)

We assume that the method is symmetrizable in the sense of Definition 2-2.1.

Thus there exists a nonsingular symmetrization matrix W such that hy ”‘
w({ — G)W ™! is SPD. If 4 is SPD, then our discussion includes the RF, |
Jacobi, and SSOR methods, as well as any method in which the splitting *Illuo'“
matrix Q is SPD. (In the latter case we can let W be any matrix such that w !
wiw =0) L
To derive a CG acceleration procedure based on the iterative method
(7-4.1), we first construct a new linear system which has the same solution as REETTL L
the original system (2-1.1). The coefficient matrix of the new system will be ”
SPD and generally will have a much smaller spectral condition number than ‘
that of the matrix A4 of the original linear system. LN
To derive the new system, we first consider the related linear system (2-2.2): b

I - Gu =k, (7-4.3)

which, by complete consistency,T has the same solution as (2-1.1). We next
multiply both sides of (7-4.3) by a symumctrization matrix W, obtaining

Wd — Gu = Wk. (7-4.4)

The matrix W(I — G) is not in general symmetric. However, by introducing
a new vector i = Wu, we can write (7-4.4) in the form

Aa = b, (7-4.5)
where
A=WwJd-GW™', a=Wu b=Wk (7-4.6)

+ See Section 2.2.
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The system (7-4.5) is often called the preconditioned systemt since, in general,
the condition number of 4 is much less than that of A.

We remark that one can also obtain the preconditioned system from
(2-1.1) as follows. Let Q be the splitting matrix corresponding to (7-4.1). We
first multiply both sides of (2-1.1) by @~ ?, obtaining

Q™ '4u = Q7'
which is the same as (7-4.3) by (7-4.2). Then we multiply both sides by W and
replace u by W~ 4. We then obtain (7-4.5), where
A=wQ'AW™', a=Wu b=wQ 'b

If we apply the CG method of Section 7.2 to the preconditioned system

(7-4.5), we obtain, using (7-2.5) and (7-2.6), that

u'® is arbitrary,

uttD =y g 3 pm n=01,...,

50 n=0

- p‘"’ = ’ ’
3 5(") + anp("_”a n= l’ 2""’

w = _ (W W — G~ Y)
" WU - Gy)
(W™, wom)
ICZRNZ a0y
: __ (wp, wa)
WP, W - Gyp™)

(W, W™y
(WP, W(I - Gy’

Here 6™ is the pseudoresidual vector

5 = Gu™ + k — u. (7-4.8)

S

(7-4.7)

n=12...,

n=0,12,....

This extension of the CG method is equivalent to that given by Hestenes
[1956]. (See also Daniel [1965], [1967].)

From the first relation given in (7-2.7), it follows that the pseudoresidual
vectors 6'%, 8V, ..., defined in (7-4.8), are mutually W-orthogonal in the
sense that

(Wé%, W) = 0, i# j. (7-4.9)

t Preconditioning was used by Evans [1967], Axelsson [1974], and others. The precondi-
tioning used here is slightly more general than that of Evans and Axelsson but reduces to theirs
if @ is SPD and if W = Q'/? or if W is any matrix such that WTW = Q.
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(0)

The second relation in (7-2.7) implies that the direction vectors p™, p, ...
of (7-4.7) are W' W(I — G)-conjugate, i, that
™, wWIw{d — Gp¥) =0, i#J. (7-4.10)

Analogous to (7-3.1)-(7-3.3) we can obtain the following three-term form
of the CG acceleration procedure (7-4.7):
ynty = pn+l{yn+16(") +u™ + (1 - Pn+1)u("— b, (7-4.11)
where
(W, o) (W™, wGs™y) ™!
Tnt1 = (W™, W(I — GR™) [ - TV'VW] ’

ey (WM, W) 1 ! .
= 1" Pne1 = [1 - A+ (W(s(n—l)’\vé(n—l))zl ? lf nz 1

(7-4.12)

in

(7-4.13)

The above method represents a slight extension of the “ generalized conjugate

gradient procedure” presented by Concus et al. [1976]; see also Axelsson

[1974]. It is equivalent to their method if Q is SPDand W = Q' or Wisany
matrix such that W'W = Q.

We refer to the methods obtained by applying CG acceleration to the RF,
Jacobi. and SSOR methods as the RF-CG, J-CG, and SSOR-CG methods,
respectively. Thus in our terminology, the classical CG method presented
previously in Sections 7.2 and 7.3 is the same as the RF-CG method.

Concerning the choice between the two-term form (7-4.7) and the three-
term form (7-4.11)-(7-4.13) of CG acceleration, results of Reid [1972]
indicate that the two-term form is somewhat more efficient. On the other
hand, the three-term form is the same as that used for Chebyshev acceleration.
In any case, the difference between the two- and three-term forms does not
appear to be very significant.

It can easily be shown that CG acceleration of the method (7-4.1) minimizes
the [W'W(I — G)]"*-normt of the error as compared with any polynomial
acceleration procedure based on (7-4.1). This follows from (7-4.5) and (7-4.6).
Indeed, we have

(B, A8y = (Wi W(I = G)™) = (&, WTW — G)™). (7-414)

where we let 8% = We™. Thus the CG acceleration procedure applied to
(7-4.3) minimizes (2", A&™), which is equal to the square of the
[WW({ — G)]'?-normof the error & If Aand Q are SPDand if WW = 0,
then we minimize the 4''2-norm of the error as in the CG method.

+ In order for the square root to be well defined. WTW(I — G) must be SPD: but this follows
from the facts that WTWUI — G) = wWTW( — G)W ™ 'Wand that W(I — G)W 'is SPD.
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As in (7-3.12), we can obtain a bound for the error vector associated with
the CG procedure (7-4.7), using known results for the Chebyshev procedure.
We first note that [WTW(I — G)]V/? is a symmetrization matrix for the basic
method (7-4.1). To show this, since WTW( - G)is SPD, we can write

WTW( - GV - GIWTW( - 6]
= [WTW( — GAWTW) T WTW( - G)]'
— (WTW( - OI'PWTIHIWTWA - @)W, (1-4.15)

from which the desired result follows. Now let & and &, respectively, be the
error vectors associated with the CG and Chebyshev acceleration methods
applied to (7-4.1). We assume #© = ¢ Using the error minimization
property of CG acceleration and using (3-2.12) and (4-2.20) for Chebyshev
acceleration, we obtain

=n/2
I lwrwa—oma < 1Elgrwa-onn < 757 16” lwrwa-ama: (7-4.16)

where 7 is given by (4-2.19). From (7-4.16) and (2-2.8), it follows that the
average rate of convergence for the CG acceleration method, when measured
inthe[WTW(I — G)]*/*norm, is at least as large as that for the corresponding
Chebyshev procedure.

7.5 STOPPING PROCEDURES

We now describe a procedure for deciding when the CG iterative pro-
cedure of Section 7.4 should be terminated. Ideally, we should like to stop
the iicrative process and accept u™ a3 a satisfactory approximation to the
true solution & whenever u'™ satisfies the inequality

Er= [lu™ — allw/lilw < ¢ (7-5.1)

where { is the stopping criterion number. As in previous chapters, we shall
express the unknown quantity u™ — i in terms of 6.

By (5-2.5), it follows that lu™ — dlly < (1 — M(G))~'|6"|lw, and hence
we have

"u(n) — illw 1 "5(") lw

) 7-5.2
e = T= MG lilw (7-5:2)
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