Up: Robustness analysis of Bayesian
Previous: The density ratio class
References
- 1
-
M. Avriel.
Advances in Geometric Programming.
Plenum Press, New York, 1980.
- 2
-
M. Avriel.
Nonlinear Programming: Analysis and Methods.
Prentice-Hall, Englewood Cliffs, 1980.
- 3
-
J. O. Berger.
Robust bayesian analysis: Sensitivity to the prior.
Journal of Statistical Planning and Inference, 25:303-328,
1990.
- 4
-
J. S. Breese and K. W. Fertig.
Decision making with interval influence diagrams.
UAI 6, pages 467-478.
Elsevier Science, North-Holland, 1991.
- 5
-
A. Cano, J. E. Cano, and S. Moral.
Convex sets of probabilities propagation by simulated annealing.
Fifth Int. Conference IPMU, pages 4-8, 1994.
- 6
-
J. Cano, M. Delgado, and S. Moral.
An axiomatic framework for propagating uncertainty in directed
acyclic networks.
Int. Journal of Approximate Reasoning, 8:253-280,
1993.
- 7
-
L. Chrisman.
Independence with lower and upper probabilities.
UAI 12, pages 169-177, 1996.
- 8
-
L. Chrisman.
Propagation of 2-monotone lower probabilities on an undirected graph.
UAI 12, pages 178-186, 1996.
- 9
-
K. L. Clarkson, K. Mehlhorn, and R. Seidel.
Four results on randomized incremental constructions.
In STACS, pages 463-474. Springer, 1992.
- 10
-
F. Cozman.
Robust analysis of bayesian networks with finitely generated convex
sets of distributions.
CMU-RI-TR96-41, Carnegie Mellon University, December
1996 (available at
http://www.cs.cmu.edu/~fgcozman/home.html).
- 11
-
F. Cozman.
Robustness analysis of bayesian networks with global neighborhoods.
CMU-RI-TR96-42, Carnegie Mellon University, December
1996 (available at
http://www.cs.cmu.edu/~fgcozman/home.html).
- 12
-
R. Dechter.
Bucket elimination: A unifying framework for probabilistic inference.
UAI 12, pages 211-219, 1996.
- 13
-
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
Journal Royal Statistical Society B, 44:1-38, 1977.
- 14
-
L. DeRobertis and J. A. Hartigan.
Bayesian inference using intervals of measures.
The Annals of Statistics, 9(2):235-244, 1981.
- 15
-
T. L. Fine.
Lower probability models for uncertainty and nondeterministic
processes.
Journal of Statistical Planning and Inference, 20:389-411,
1988.
- 16
-
F. J. Giron and S. Rios.
Quasi-bayesian behaviour: A more realistic approach to decision
making?
Bayesian Statistics, pages 17-38. University Press, Valencia,
Spain, 1980.
- 17
-
I. J. Good.
Good Thinking.
University of Minnesota Press, Minneapolis, 1983.
- 18
-
V. Ha and P. Haddawy.
Theoretical foundations for abstraction-based probabilistic planning.
UAI 12, pages 291-298, 1996.
- 19
-
J. Y. Halpern and R. Fagin.
Two views of belief: Belief as generalized probability and belief as
evidence.
Artificial Intelligence, 54:275-317, 1992.
- 20
-
D. Heckerman, J. Breese, and K. Rommelse.
Decision theoretic troubleshooting.
Communications of the ACM, 38:49-57, 1995.
- 21
-
F. V. Jensen.
An Introduction to Bayesian Networks.
Springer Verlag, New York, 1996.
- 22
-
J. B. Kadane.
Robustness of Bayesian Analysis, volume 4 of Studies in
Bayesian econometrics.
Elsevier Science Pub. Co., New York, 1984.
- 23
-
H. E. Kyburg Jr.
Bayesian and non-Bayesian evidential updating.
Artificial Intelligence, 31:271-293, 1987.
- 24
-
D. Lambert and G. T. Duncan.
Single-parameter inference based on partial prior information.
The Canadian Journal of Statistics, 14(4):297-305, 1986.
- 25
-
M. Lavine.
Sensitivity in bayesian statistics, the prior and the likelihood.
Journal of the American Statistical Association,
86(414):396-399, June 1991.
- 26
-
J. F. Lemmer and H. E. Kyburg Jr.
Conditions for the existence of belief functions corresponding to
intervals of belief.
Proc. 9th National Conference on Artificial Intelligence, pages
488-493, 1991.
- 27
-
I. Levi.
The Enterprise of Knowledge.
The MIT Press, Cambridge, Massachusetts, 1980.
- 28
-
C. F. Manski.
Learning and decision making when subjective probabilities have
subjective domains.
The Annals of Statistics, 9(1):59-65, 1981.
- 29
-
J. Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kauffman, San Mateo, CA, 1988.
- 30
-
E. H. Ruspini.
The logical foundations of evidential reasoning.
Technical Report SRIN408, SRI International, 1987.
- 31
-
S. Russell, J. Binder, D. Koller, and K. Kanazawa.
Local learning in probabilistic networks with hidden variables.
Proc. Fourteenth International Joint Conference on Artificial
Intelligence, 1995.
- 32
-
S. Schaible.
A survey of fractional programming.
Generalized Concavity
in Optimization and Economics, pages 417-440. Academic Press, 1981.
- 33
-
T. Seidenfeld.
Outline of a theory of partially ordered preferences.
Philosophical Topics, 21(1):173-188, Spring 1993.
- 34
-
G. Shafer.
A mathematical theory of evidence.
Princeton University Press, 1976.
- 35
-
C. A. B. Smith.
Consistency in statistical inference and decision.
Journal Royal Statistical Society B, 23:1-25, 1961.
- 36
-
P. Suppes.
The measurement of belief.
Journal Royal Statistical Society B, 2:160-191, 1974.
- 37
-
P. Walley.
Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, New York, 1991.
- 38
-
L. Wasserman.
Recent methodological advances in robust bayesian inference.
Bayesian Statistics 4, pages 483-502. Oxford University
Press, 1992.
- 39
-
J. York.
Use of the gibbs sampler in expert systems.
Artificial Intelligence, 56:115-130, 1992.
- 40
-
N. L. Zhang and D. Poole.
Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, pages 301-328,
1996.
© Fabio Cozman[Send Mail?]
Fri May 30 15:55:18 EDT 1997