
Behavioral Model Composition in Simulation-Based Design

Rajarishi Sinha1, Student Member, IEEE, Christiaan J.J. Paredis1,2, Member, IEEE, and Pradeep K.
Khosla1,2, Fellow, IEEE

1Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

15213, USA
Email: {rsinha, cjp, pkk}@cs.cmu.edu

Abstract

We present a simulation and design framework for
simultaneously designing and modeling
electromechanical systems. By instantiating component
objects and connecting them to each other via ports, a
designer can configure complex systems. This
configuration information is then used to automatically
generate a corresponding system-level simulation model.

The building block of our framework is the component
object. It encapsulates design data and behavioral models
and their inter-relationships. Component objects are
composed into systems by connecting their ports.
However, when converting a system configuration into a
corresponding simulation model, the corresponding
models for the component objects do not capture the
physical phenomena at the component interfaces¾the
interactions. To obtain an accurate composition, the
interaction dynamics must also be captured in behavioral
models.

In this paper, we introduce the concept of an
interaction model that captures the dynamics of the
interaction. When two ports are connected, there is an
intended interaction between the two components. For
composition of component objects to work, an interaction
model must be introduced between each pair of connected
behavioral models. We illustrate these ideas using an
example.

1. Introduction and Motivation

The realization of new mechatronic devices is
characterized by ever shortening times to market, along
with increasing customer demand for improved quality. In
this business environment, it is important for a company to
be able to design and test the behavior of its products
without having to resort to expensive and time-consuming
physical prototyping.

A virtual prototype, on the other hand, enables the
designers to test whether the design specifications are met

by performing computer simulations rather than
experiments on the physical prototype. Not only does
virtual prototyping make design verification faster and
less expensive, it provides the designer with immediate
feedback on design decisions. This in turn promises a
more comprehensive exploration of design alternatives
and a better performing final design. To fully exploit the
advantages of virtual prototyping, however, simulation
models have to be easy to create.

The mathematical modeling of virtual prototypes has
evolved over time. Many early simulation languages were
based on the Continuous System Simulation Language
(CSSL) [12]. Models were written as sequential
procedures, which implied a fixed mathematical causality.
They were implemented as monolithic pieces of software
with no separation between model and solver.
Subsequently, object-oriented principles have been
applied to systems modeling [2, 3, 6], with the result that
models are easier to create, reuse and share. Causality
assignment is performed automatically, and the solver is
independent of the model. However, the product design
methodology was not closely coupled with the modeling
methodology.

We further the evolution towards a seamless
integration of design and simulation by introducing the
idea of a component object [10]. They contain their
configuration information as well as behavioral models
and design data. They are connected to other component
objects via ports, as shown in Figure 1. In our framework,
the virtual prototype is created once all the component
objects are interconnected. We have implemented our
framework in the Composition In Simulation and Design
(COINSIDE) software.

Connecting component objects via their ports is not
sufficient to create a complete system-level model. The
behavioral models of each component object must also be
connected to each other. However, as we will show in
subsequent sections, merely making a connection between
the modeling ports can result in an incorrect model in
many cases.

cparedis
R. Sinha, C.J.J. Paredis, and P.K. Khosla, “Behavioral Model Composition in Simulation-Based Design,” in Proceedings of the 35th Annual Simulation Symposium, San Diego, CA, April 14-18, 2002.

For a composition operation over component objects to
be successful in generating a system-level virtual
prototype, component interaction models are required. In
this paper, we introduce the idea of component interaction
models that connect the behavioral models of two
interconnected component objects. Interaction models
capture the physical dynamics at the interfaces between
components. This paper presents a framework that
supports the representation, modeling and organization of
interaction s between components.

2. Related Work

The related literature can be classified into the
following categories: configuration in design and software
engineering, and port-based reconfigurable models.

2.1. Configuration in Design and Software
Engineering

Our framework is driven by configuration of
components that contain analysis models. At the present
time, our framework does not incorporate optimization
capabilities; we restrict ourselves to analysis of a single
configuration at a time. Configuration has been studied in
the context of design specification. Feldkamp et al. [5] use
port-based composition to describe hierarchical
configurations of complex engineering design
specifications. Zeigler [14] has developed a DEVS
framework for modeling and simulation of hybrid systems.
Motta and Zdrahal [9] look at solving parametric design
problems using configuration. Gandhi and Robertson We
extend these ideas by incorporating analysis models in the
configuration model.

Configuration also plays an important role in
component-based software engineering. Components are
used to describe specific software services, and ports are
used to connect components together [1, 4]. Other

researchers have used type systems to enforce rules
governing software component composition [7]. We use
the ideas of software ports to define feature ports for
components, and we define type systems that govern ports
used in engineering design and simulation.

2.2. Port-Based Reconfigurable Models

The software design methodology of object-oriented
programming can be applied to systems modeling as well,
with the benefits of simplified model creation and
maintenance. An important principle of object-oriented
programming is that of information hiding or
encapsulation: an object can only be accessed through its
public interface, which is independent of the underlying
implementation. The same principle can be applied to
modeling by making a clear distinction between the
physical interactions of an object with its environment
(interface) and its internal behavior (implementation) [3,
13]. The advantage of encapsulation is that a system can
be modeled by composing and connecting the interfaces
of its sub-systems, independently of the future
implementations of these subsystems [13].

In our framework, interaction models can be selected
automatically, depending on the ports that are interacting.
In addition, multiple interaction models can relate
interacting ports, depending upon the desired level of
abstraction.

3. Entities In The COINSIDE Framework

In this section, we introduce the design entities in our
framework, namely ports, component objects, behavioral
models, interaction models and parameters. We describe
how interaction models are important in the creation of
correct system-level models.

3.1. Ports

A port is a descriptor for a location on the boundary of
a component where the component interacts with its
environment (Figure 2). In Figure 2, ports 1 and 3
represent point interactions, whereas port 2 represents a
distributed interaction that is lumped at the port. The types
of interaction range from abstract descriptions of
connection semantics, as is the case for ports in the
configuration level, to exchange of mass, energy or
information, as is the case in behavioral models [10].
There is one port for each separate interaction point, and
the type of a port matches the type of the exchange.

There are two types of ports used in our framework:
configuration ports and modeling ports. There are
relations between a particular configuration port and its
corresponding modeling ports. For example, a gear

InterfaceInterface

Interface

Component A Component B

Behavioral
Model

Behavioral
Model

Contained-in

Behavior
Port

Connection

C
on

fig
ur

at
io

n
M

od
el

in
g

Component
Port

Interface

Behavioral
Model

Behavioral
Model

Contained-in

Behavior
Port

Figure 1. Design as a process of configuration of
components and selection of behavioral models

for the components and connections.

configuration port is related to its corresponding 3D
mechanical modeling port.

3.1.1. Configuration Ports. Configuration ports
capture connection semantics between a component and
its environment. For example, a DC motor component has
four ports, two electrical ports, a shaft port and a stator
port. The electrical ports correspond to the electrical
connectors of the motor, the shaft port to the rotor and the
stator port to the stator. A gear component has ports for its
teeth and shaft. The gear shaft port is connected to the
motor shaft port and is related to a mechanical modeling
port that provides a transform for the rotational axis of the
gear. The gear teeth port connects to another gear teeth
port to form a gear pair, and provides information like the
number of teeth and the gear pitch radius via a feature
port. Configuration ports can be aggregated to form more
complex ports.

Ports can be aggregated at higher levels of abstraction.
Aggregate port types are used in component interfaces to
describe very high-level connections between
components. For example, the connection between a train
component and a track component can be thought of as a
connection between two aggregate ports that capture all
the physical interactions between the two components.

3.1.2. Modeling Ports. The connections between
behavioral models are represented by connections
between modeling ports. Each connection imposes some
constraints on the variables of the modeling port. For a
connection between simple energy or mass ports (such as
mechanical, electrical, thermal and hydraulic ports), these
constraints are the equivalents of the Kirchhoff voltage
and current laws in electrical circuits [10, 11]. For signal
ports, the constraint equates the value of the signal at each
end of the connection.

3.1.3. Port Representation. Ports form the basis of our
framework. They are a part of the interfaces for
component objects, component interactions, and
behavioral models. In previous sections, we defined a port

as a discrete point of interaction between a component and
its environment. By this definition, a port is the spatial
quantum of interaction in our framework.

At a specific, physical location on the interface, there
can be exactly one port. Therefore location becomes the
organizing principle of a port. The geometry and material
properties at the location become important features of
every port. We model the location using a CAD feature,
and material properties by a set of defining characteristics
such as name and physical properties.

Another important feature is the intended use of the
port. This feature captures all the intended functions for
the port as defined by the designer. The energy and
informational domains of the port are also contained
within this feature. In addition, any special compatibility
constraints on any connections to this port are specified
here.

3.2. Component objects

In many design processes, the target device is designed
using predefined, modular parts. In such processes, these
parts, called components, are selected, configured and
assembled in such a way that the design specifications are
met.

A component object is a modular design entity with a
complete specification describing how it may be
connected to other component objects in a configuration.
For example, a DC motor component has a shaft to
connect it to a drive-train, and bolts that fasten it to a
platform. The shaft and the bolts collectively form the
ports or interface to this component.

As shown in Figure 3, a component object is
instantiated in the design by specifying instantiation
parameters that describe its specification. Once
instantiated, it is connected to other instantiated
component objects via its ports. Before simulating the
design, the designer selects behavioral models that
describe its physical behavior, and CAD models that
specify how it may be manufactured and visualized.

A configuration is created when two or more
components are connected to each other via their
interfaces. A component can itself encapsulate a
configuration of components, thus allowing for the
hierarchical description of systems (Figure 3). Multiple
configurations can represent a particular component, and
are bound to the configuration interface for this
component. For example, a DC motor can be represented
as a single component, or as a configuration of a stator
and a rotor component. The candidate configurations are
all equivalent specifications of the same component, and
the choice of configuration is independent of the choices
made for behavioral and CAD models.

Widget
1

2
3

Widget
1

2
3

3

2

1

Widget

3

2

1

Widget

Figure 2. Ports on a component object.

The component is connected to other components via
configuration ports. For example, consider the
configuration where a DC motor component is connected
to a gear component. The DC motor component has ports
for the rotor shaft and the stator, and the gear component
has ports for the gear teeth and the gear shaft hole. The
connection is established by connecting the “rotor shaft”
port on the motor to the “gear shaft hole” port on the gear
(ports are explained in the section on Representation).
The configuration ports used in this example are defined
in abstract terms, and no information is available about the
semantics of the connection that they establish.

The configuration ports are related to modeling ports in
the modeling layer. These modeling ports make up the
interface of the behavioral models related to the
component.

3.3. Behavioral models

Behavioral models capture the mathematical
description of the physical and informational behavior of a
component. For the scope of this research, we consider
these models to consist of either differential-algebraic
equations (DAEs) for continuous time phenomena, or
discrete event systems specifications (DEVS) [14].

Behavioral models can also be composed out of other
behavioral models through the port-based modeling
paradigm [10].

A component object can contain multiple behavioral
models with different levels of detail. For example, a DC
motor component can contain a family of mechanical
behavioral models. One model could only capture the
kinematic constraints between the rotor and the stator,
while another could include non-linear friction models.

All of these behavioral models are stored in a
behavioral model container. The container is separated
into three parts: a family of interfaces, a family of
implementations of particular models and a set of 2-tuples
that enumerate the correspondences between the interfaces
and implementations (Figure 4). One of these 2-tuples is
the default map, and determines the default interface and
implementation for the behavioral model. The
implementation is typically a mathematical description of
the DAEs and DEVS that make up the behavior of the
component. Behavioral models in our framework are
represented using the Modelica simulation language [8].

In addition to describing the internal component
dynamics, behavioral models also describe the physical
phenomena that act between components – the component
interactions.

3.4. Interaction models

When a designer composes a system from components,
he connects the configuration ports of components. By
doing this, the designer explicitly indicates that there is an
intended interaction between the connected components.
The connections represent physical or information-
exchange phenomena that occur at the component
interfaces. In Figure 5(a), the resistor, capacitor and AC
source have 2 pins each that are connected at A, B and C
to form the circuit. There is a one-to-one correspondence
between the circuit connections and the connections
between the behavioral models. The correspondence is
modeled using Kirchhoff’s current and voltage network
laws, resulting in a correct system-level model.

In the mechanical and other domains, merely
connecting the corresponding behavioral models results in
a rigid a connection between components. In Figure 5(b),
the shaft is connected to the bearing. Applying
Kirchhoff’s network laws at the connection point A results
in the positions P

r
 being equal and the generalized forces

F
r

 summing to zero. This implies a rigid joint between the
shaft and the bearing, which is incorrect.

Introducing an interaction model at A that captures the
dynamics at the interface between the shaft and bearing
solves this problem. Depending on the type of
configuration ports that are connected, candidate
interaction models are chosen automatically.

Component
ConfigurationConfiguration Interface

Instantiation
Parameters

CAD Model
Container

Behavioral Model
Container

CAD
Specification

Figure 3. Components may encapsulate

configurations of sub-components.

Behavioral Model
Executable

Content
Interface

Interface-Content Maps

Default

Behavioral Model
Executable

Content
Executable

Content
Interface

Interface-Content Maps

Default

Figure 4. A behavioral model container

containing behavioral models. Behavioral
models describe the physical or informational

behavior of a component.

There are a finite number of possible interaction model
interfaces that can represent the connection between the
configuration ports. In general, if there are m and n
candidate behavioral ports for configuration ports 1 and 2
respectively, then the space of behavioral model interfaces
representing the component interaction has an upper
bound of m n× . The interaction model then becomes a
container for this set. For example, consider the two gear
components in Figure 6. When the designer makes a
connection between the two gear ports in the
configuration level, a container interaction model is
instantiated in the modeling layer. The container holds all
the possible behavioral models that can be used to
represent this interaction. Searching a library of
interaction models populates the container. In this
example, the possible models are two gear interaction
models. The parameters of the interaction can be inferred

by geometric reasoning on the CAD data in each
component [11].

Potentially, a very large number of behavioral models
can be present in the interaction model container, and two
or more of these models may be closely related. In Figure
6, both the gear interaction models are closely related in
that they have the same interface, but slightly different
dynamics.

The choice of a particular model from the container
depends on the nature of the simulation experiment that is
being performed. In Figure 6, there are two gear
interaction models in the gear interaction container. One is
a simple kinematic gear interaction model with two 3D
mechanical ports. Another is a complex gear interaction
model with kinematics and frictional dynamics. The first
model may be used in preliminary design, when a high-
level simulation is needed. The second model would be

 (a)

(b)

Figure 5. Composition of behavioral models in the electrical and mechanical domains. In (a) the
composition occurs via the application of Kirchhoff’s Laws. However, in (b), applying Kirchhoff’s

Laws results in an incorrect rigid joint.

Gear Radii Gear
InteractionR2

R1

N1
N2

α2

α1

R2

R1

N1
N2

α2

α1 Number of teeth,
Pressure angle etc.

Gear Interaction 2

N=R2/R1
F1=f(N,N1,N2,α1, α2)

Gear Interaction 2

N=R2/R1
F1=f(N,N1,N2,α1, α2)

Gear Interaction 1

N=R2/R1

Gear Interaction 1

N=R2/R1

Mechanical Modeling PortGear Configuration Port
Figure 6. Interaction model as a container for a set of reconfigurable models. In this example, the

container lists two possible behavioral models for this interaction.

Resistor Capacitor

AC Source

A

B C

R C

VAC

A

CB

Kirchhoff Laws
At A, B and C

1 2

1

0

n

N

k k

V V V

I
=

= = =

=∑
K

“Correct Model”

Resistor Capacitor

AC Source

A

B C

R C

VAC

A

CB

Kirchhoff Laws
At A, B and C

1 2

1

0

n

N

k k

V V V

I
=

= = =

=∑
K

“Correct Model”

Shaft
Bearing

Shaft Bearing
A

Kirchhoff Laws At A

1 2

1 2 0

P P

F F

=
+ =

r r
r r

“Rigid Joint –
Incorrect Model”

A

Shaft
Bearing

Shaft
Bearing

Shaft Bearing
A

Kirchhoff Laws At A

1 2

1 2 0

P P

F F

=
+ =

r r
r r

“Rigid Joint –
Incorrect Model”

A

used later in the design process, when a detailed
simulation is performed. Both models are valid choices,
and are presented as possible alternatives in the
interaction model container for this connection.

This capability allows the designer to encapsulate ports
within ports, and create multiple levels of abstraction for
the interaction models in the design. At each level, he can
work with ports and interaction models whose information
richness is sufficient for the current abstraction level. This
allows the designer to create and simulate virtual
prototypes for complex, hierarchical devices by selecting
and connecting components via their interfaces.

3.5. Representation of Parameters

A component from a family is completely specified
when all its parameters are provided. For example,
consider a family of resistor components that is
parameterized by the resistance parameter. The value of
the resistance parameter must be provided before the
resistance component can be instantiated and used in a
configuration. We call such parameters instantiation
parameters.

The instantiation parameters are related to parameters
that are used in the behavioral models [11]. Particular
CAD features from the CAD specification of a component
can be used as parametric input to the behavioral model.
For example, a family of gear components can contain a
parametric CAD model specification of the gear, and a
parametric behavioral model. The CAD model has
parametric teeth features (such as number of teeth and
pressure angle) that are used to parameterize the
behavioral model.

4. Example

To illustrate the concepts developed in the previous
sections, we use an example of a complex

electromechanical system – a train system. In the interest
of brevity, and given that the focus of this work is on
interactions, we will focus on the interaction between the
train and its track.

In a real-world train-track interaction, there may be
hundreds of physical and informational interactions
between the train and the track, such as mechanical
interactions between the train and the track, electrical
power flows, command signals, and sensor signals, as
shown in Figure 7.

4.1. Configuration

Our framework supports the configuration of
components in the virtual prototype by instantiating and
connecting them. So the first step is to select the
components that will constitute the virtual prototype. At
the highest level of abstraction, we model the train-track
interaction with the train component interacting with the
track component (Figure 7). We select a train and a track
component. In early design, no CAD models are available
and the designer provides the parameter values for mass,
moment of inertia, etc. The designer connects the train
component to the track component via a “train-track
interaction” aggregate port.

Once the configuration is complete and all component
interfaces are connected, the designer proceeds to the
modeling layer to select behavioral models.

4.2. Modeling

In the modeling layer, a high-level train-track
interaction model is automatically selected and
instantiated, based on the nature of the connected ports.
This interaction model is a container for every behavioral
model that can be used to describe the interaction between
the train and the track (Figure 8).

The choice of behavioral model depends on the design
stage and the requirements of the simulation. In this stage
of early conceptual design, the particular behavioral
model chosen is a simple Newton-Euler mechanical
model; the train-track interaction port has only one sub-
port (a 3D mechanical port), and the interaction model
only considers mechanical translation of the train along
the track (bottom right of Figure 8).

When modeling is complete, it is possible to simulate
the virtual prototype by translating the behavioral models
into Modelica and evaluating them in a commercial
Modelica simulator.

4.3. Refinement: Configuration

To obtain a more realistic simulation, the designer
decides that further refinement is necessary in the train
component. This requires elaborating the train component

TrainTrain
…

Track

…

Track

…M
ec

h
po

rt

si
gn

al
po

rt

El
ec

po
rt

Train

Track

Aggregate Port

Figure 7. Abstraction of a train-track
interaction. Each block represents a

component in the configuration layer, and a
circle represents a port on the component

interface.

in the configuration layer and selecting refined models in
the modeling layer.

A new configuration is developed for the train
component. The train is instantiated with a CAD model as
a parameter. The track component is also instantiated with
a CAD model parameter. The train component is now
configured as a composition of sub-components: a DC
motor, a drive train, a body component, and a control
system component (Figure 9).

4.4. Refinement: Modeling

When developing the corresponding behavioral model,
models are chosen for each sub-component in the train
component, as well as for the track component.

In this stage of detailed conceptual design, the
mechanical model of the body of the train is still a simple

translational Newton-Euler model, but a DC motor model
is added to convert electrical to mechanical energy, and a
drive train model increases the torque output of the motor
using a simple gear interaction model.

The train-track interaction port is refined to three sub-
ports that are connected together on either high-level
component. These ports are the control port, the
mechanical port, and the DC electrical port. With the train
being modeled in CAD as a detailed solid object, a train-
track interaction model in the top left of Figure 8 can be
automatically derived from the geometry. The parameter
extraction engine examines the current CAD model for the
train and track components, obtains the material
properties and wheel geometry and uses a look-up table to
obtain the friction coefficient for a coulomb friction
model.

This provides all the necessary information to complete
the system model and evaluate it in a Modelica solver.

4.5. Discussion

In this example, we have used abstraction, both in the
configuration and in the modeling layer. Abstraction
serves an important purpose: to reduce the amount of
detail presented to the designer so that he can focus on
high-level modeling decisions without dealing with small
details.

Our framework supports automatic interaction model
selection and instantiation. The automation allows the
designer to focus on the more important tasks of
configuration and CAD and behavioral model parameter
assignment, while accurately capturing the intended
interactions between components in the configuration. The
automation also maintains consistency between the CAD
parameters and behavioral representations.

Separation of the interfaces from the content of models
(whether behavior or configuration) has the added
advantage of encouraging standardization and reuse of
these models in later design projects.

The port-based modeling paradigm imposes constraints
on the types of models that can be defined. In particular,
all interactions between component objects are limited to
discrete locations on their interfaces. This works well
when the energy exchange can be accurately modeled as
being restricted to the interfaces. Our framework supports
this type of interaction model.

Distributed interactions can also be captured within
our framework. Instead of a discrete location, a surface on
the interface is involved in the interaction. The entire
surface is represented by an aggregate configuration port.

Field interactions (e.g. the gravity interaction) involve
every physical location within one component object
interacting with every physical location within the other
component object. In this case, the interface extends to the

Train-Track Interaction 2

Wheel Interaction Model

Electrical-positive

Electrical-Negative

Control

rolling w/friction

rolling w/friction

rolling w/friction

rolling w/friction

Train-Track Interaction 2

Wheel Interaction Model

Electrical-positive

Electrical-Negative

Control

rolling w/friction

rolling w/friction

rolling w/friction

rolling w/friction

Train-Track Interaction 1

Translation Model

Train-Track Interaction 1

Translation Model

Figure 8. Train-track interaction model container

that captures all the candidate interaction models
that can model the connection between the train

and the track.

Train

Train-Track
InteractionDrive Train

Control
System

Motor

Train Body

Track

Mechanical Port

DC Electrical Port

Train control Port

Train

Train-Track
InteractionDrive TrainDrive Train

Control
System

Motor

Train BodyTrain Body

Track

Mechanical Port

DC Electrical Port

Train control Port
Figure 9. High-level component configuration for

a single car train interacting with a track. Each
block represents a component, and a circle

represents a port on the component interface.
Lines represent non-causal connections and

arrows represent directed connections.

entire mass of the component object. When one of the
component objects is decomposed into subcomponents,
the interaction now involves each of the subcomponents.
This is difficult to represent in our framework.

Certain interaction phenomena like mechanical
collisions appear and disappear dynamically during the
course of a simulation. The current port-based modeling
paradigm restricts configurations to be static (i.e.
unchanging for the duration of the experiment). In the
dynamic case, one could capture every possible
connection between the component objects (i.e. create a
maximal configuration), and turn on and off only those
connections that are active at each time step of the
simulation; but this would possibly result in a very large
number of interaction models.

5. Summary

We presented a framework where designers can create
virtual prototypes of electromechanical systems by
configuring components, while simultaneously selecting
and assigning CAD parameters and behavioral
(simulation) models.

To generate system-level behavioral models from
component configurations, the behavioral models of the
individual components need to be combined with
behavioral models of the interactions between the
components. We introduced a mechanism to extract such
interaction models automatically based on the matching
between component ports. Our framework supports the
designer throughout the design process by providing
mechanisms for abstraction, automatic model selection
and model reuse.

Acknowledgments

This research was funded in part by Bombardier
Transportation Systems, by the National Science
Foundation under grant # CISE/115/KDI 98 73005, by the
Pennsylvania Infrastructure Technology Alliance, and by
the Institute for Complex Engineered Systems at Carnegie
Mellon University.

References

[1] Allen, R. J. and Garlan, D., "Formalizing architectural
connection," presented at 16th International
Conference on Software Engineering, Sorrento, Italy,
1994.

[2] Anderson, M., "Object-oriented modeling and
simulation of hybrid systems," in Department of
Automatic Control. Lund, Sweden: Lund Institute of
Technology, 1994.

[3] Cellier, F. E., "Object-oriented modeling: means for
dealing with system complexity," presented at 15th
Benelux Meeting on Systems and Control, Mierlo,
Netherlands, 1996.

[4] Erdogmus, H., "A formal framework for software
architectures," Institute for Information Technology,
National Research Council, Ottawa, Canada ERB
1047 / NRC 40136, December 1995.

[5] Feldkamp, F., Heinrich, M., and Meyer-Gramann, K.
D., "SyDeR— System design for reusability," Artificial
Intelligence for Engineering, Design, Analysis and
Manufacturing, vol. 12, pp. 373-382, 1998.

[6] Fishwick, P. A., "Integrating Continuous And Discrete
Models With Object Oriented Physical Modeling,"
presented at 1997 Western Simulation
Multiconference, Phoenix, Arizona, 1997.

[7] Lee, E. A. and Xiong, Y., "System-level types for
component-based design," University of California at
Berkeley, Berkeley, CA ERL/UCB M 00/8, February
29 2000.

[8] Mattsson, S. E., Elmqvist, H., and Otter, M., "Physical
system modeling with Modelica," Control
Engineering Practice, vol. 6, pp. 501-510, 1998.

[9] Motta, E. and Zdrahal, Z., "Parametric Design
Problem Solving," presented at 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop
(KAW'96), Banff, Alberta, Canada, 1996.

[10] Paredis, C. J. J., Diaz-Calderon, A., Sinha, R., and
Khosla, P. K., "Composable Models for Simulation-
Based Design," Engineering with Computers, vol. 17,
pp. 112-128, 2001.

[11] Sinha, R., Paredis, C. J. J., and Khosla, P. K.,
"Integration of mechanical CAD and behavioral
modeling," presented at Proceedings 2000 IEEE/ACM
International Workshop on Behavioral Modeling and
Simulation, Orlando, FL, USA, 2000.

[12] Strauss, J. C., Augustin, D. C., Fineberg, M. S.,
Johnson, B. B., Linebarger, R. N., and Sanson, F. J.,
"The SCI continuous system simulation language
(CSSL)," Simulation, vol. 9, pp. 281-303, 1967.

[13] Zeigler, B. P. and Luh, C.-J., "Model based
management for multifacetted systems," ACM
Transactions on Modeling and Computer Simulation,
vol. 1, pp. 195-218, 1991.

[14] Zeigler, B. P., Kim, T. G., Praehofer, H., and Song,
H., "DEVS Framework for Modelling, Simulation,
Analysis and Design of Hybrid Systems," in Hybrid II,
Lecture Notes in CS, P. Antsaklis and A. Nerode, Eds.
Berlin: Springer-Verlag, 1996, pp. 529-551.

