
Traces, pomsets, fairness and full abstraction
for communicating processes

Stephen Brookes
Department of Computer Science

Carnegie Mellon University

Abstract

We provide a trace-based semantics for a language of synchronously
communicating processes, assuming weakly fair parallel execution.
The semantics is fully abstract: processes have the same trace sets
if and only if their communication behaviors, including potential for
deadlock, are identical in all program contexts. We avoid the tradi-
tional use of book-keeping information such as refusal sets, failures,
and divergence traces; instead traces include the relevant informa-
tion directly. The semantics can easily be adapted to model blocking
or non-blocking communication guards, asynchronous communication
and shared-memory parallelism. Thus we obtain a flexible model with
a simple yet adaptable structure which emphasizes the underlying sim-
ilarities between parallel paradigms. We also provide a compositional
partial-order description of trace sets, adapting ideas from pomset
semantics to incorporate fairness and synchronization. The pomset
semantics can also be adapted easily to model alternative forms of
guard, asynchronous communication and shared memory. In each case
the trace set of a process can be recovered from the pomset semantics
by taking all fair interleavings consistent with the partial order. We
illustrate the utility of our semantics by analyzing the behavior of a
number of examples, and by listing some laws of semantic equivalence
which rely on fairness and can be used in analyzing process behavior.

1

1 Introduction

Traces of various kinds have been used widely to model parallel programs,
with parallel execution being interpreted as some form of (fair) interleaving.
Transition traces, finite or infinite sequences of pairs of states, can be used
for shared-memory parallel programs [3], for concurrent logic programs and
concurrent constraint programs [2]1, and for networks of asynchronously com-
municating processes [6], assuming weakly fair execution. Transition traces
also provide a semantics of a parallel Algol-like language with block struc-
ture, procedures, shared-memory parallelism, and asynchronous message-
passing [4, 5]. Communication traces, sequences of input/output events, were
the basis for an early model of CSP [16, 17], later augmented with refusal sets
to permit deadlock analysis in the failures model of CSP [10], and with di-
vergence traces in the failures-divergences model of CSP [11]2. Pomset traces
provide a partial-order based framework for making behavioral distinctions
based on “true concurrency” rather than interleaving[25, 26].

Fairness assumptions [14], such as weak process fairness, the assumption
that each persistently enabled process is eventually scheduled, allow us to
abstract away from unknown or unknowable implementation details. Fair-
ness plays a crucial role in proving safety and liveness properties of parallel
systems [22]. A safety properties has the typical form that something “bad”
never happens. A liveness property typically asserts that something “good”
will eventually happen [21].

CSP [16] is a language of synchronously communicating parallel processes;
a process attempting to output must wait until another process reaches a
matching input, and vice versa. The early denotational models of CSP [17,
10, 11, 27] were not designed to take fairness into account, and it seems diffi-
cult to adapt them for this purpose. Moreover, there is a plethora of fairness
notions, including strong and weak forms of process fairness, channel fairness,
and communication fairness [14]; it is not clear which (if any) of these fairness

1The term reactive sequence is used in [2] and related papers to refer to a sequence
of pairs of states. The use of this kind of sequence to model concurrency dates back at
least to Park’s seminal papers on the subject [22]. Although these models use the same
kind of trace they focus on different notions of observable behavior and (correspondingly)
incorporate different closure rules for trace sets.

2Roscoe’s book [27] gives a detailed account of these and related models of CSP. Van
Glabbeek’s article [15] provides a wide-ranging and detailed survey of process algebras and
notions of behavioral equivalence.

2

notions is a reasonable abstraction for synchronously communicating pro-
cesses, although strong and weak process fairness can at least be character-
ized intuitively and mathematically in relatively straightforward fashion and
weak process fairness can be guaranteed by a “reasonable” scheduler using a
simple round-robin strategy. Costa and Stirling have shown how to provide
an operational semantics for a CCS-like language assuming either weak or
strong process fairness [12, 13]. Older’s thesis [19] and related papers [9, 20]
show that one can treat some of these fairness notions denotationally by
augmenting failure-style models still further, with book-keeping information
concerning processes, communications, and synchronizations which become
persistently enabled but not scheduled. However, this results in rather com-
plicated models. Much of the difficulty is caused by the fact that the ability
of a process to communicate depends on the availability of another process
which is capable of synchronizing. Indeed, in Older’s formulation even weak
process fairness fails to be equivalence robust [1], in that there is a pair of
computations, one fair and one unfair, which differ only in the interleaving
order of independent actions [19].

In contrast, if we assume instead that communication is asynchronous, so
that a process attempting to output is always enabled to do so autonomously,
and a process attempting an input must wait if there is no available input,
we can use transition traces to obtain a fully abstract model incorporating
weak process fairness [6]. Moreover, in the asynchronous setting weak process
fairness is equivalence robust. One can also formulate an equivalent semantics
using a suitably designed form of communication traces [7, 8].

The disparity between the relatively simple trace semantics for asyn-
chronously communicating processes and the intricate book-keeping seman-
tics for synchronously communicating processes obscures the underlying sim-
ilarities between the two paradigms. It seems to be widely believed that this
disparity is inevitable, since traces are too simple a notion to support the
combination of deadlock, fairness, and synchronized communication. This is
certainly a valid criticism of traditional trace-based accounts of CSP, which
used prefix-closed sets of finite traces (augmented with refusal sets) and al-
lowed infinite traces to be handled implicitly based on their finite prefixes.
Although the traditional models of CSP give an adequate account of blocking
and deadlock as well as more general safety properties, they do not adequately
support liveness analysis since they do not admit fairness: the existence of a
fair infinite trace for a process does not follow from the process’s ability to
perform each of its finite prefixes.

3

In this paper we show that, if we assume a reasonable (weak and robust)
notion of fairness, a satisfactory trace semantics can be designed; the key is
to choose the right notion of trace and avoid unnecessary closure assump-
tions. Indeed, the same notion of trace can be used both for synchronously
communicating processes and for asynchronously communicating processes.
In each case we model a weak form of fairness which is consistent with a
simple form of round-robin scheduling, even when communication requires
synchronization, so that we obtain a good abstraction of process behavior
independent of implementation details3. In each case the trace semantics
is compositional, and supports safety and liveness analysis. Indeed our se-
mantics is fully abstract, in the sense that two processes have the same trace
set if and only if they exhibit identical communication behavior (including
the potential for deadlock) in all program contexts. We do not need to aug-
ment traces with extraneous book-keeping information, or to impose complex
closure conditions, in order to achieve these results.

Our achievement is perhaps surprising, given the long history of largely
separate development of semantic frameworks for the two communication
paradigms: traditional denotational models of asynchronous communicating
processes and synchronous communicating processes have frustratingly little
in common. There is little family resemblance, for instance, between the
failures model of CSP and transition traces. In contrast, we treat both kinds
of communication as straightforward variations on a trace-theoretic theme, so
that we achieve a semantic unification of parallel communication paradigms.
Given our prior results concerning the utility of trace semantics for shared-
memory parallelism, the unification goes further still.

We also show how to model fairness and synchronous communication in
the pomset framework. We define a partial-order based semantics in which a
process denotes a set of partially ordered multisets of actions (pomsets). Each
pomset determines a set of traces obtainable by fair interleaving consistent
with the partial order. The trace set of a process can be recovered in this
way from its pomset semantics. The pomset semantics supports a style of
reasoning which avoids dealing explicitly with interleaving, and this may help
to tame the combinatorial explosion inherent in analyzing parallel systems.

3By this we mean that a family of simple round-robin schedulers can be defined, such
that each member of this family ensures weakly fair execution, and every weakly fair exe-
cution is allowed by some such scheduler. To handle synchronization we assume that if the
process currently scheduled is waiting for communication the scheduler will use a round-
robin strategy to see if another process is ready to perform a matching communication.

4

We can also adapt pomset semantics to model asynchronous communication,
with a small number of simple changes to the semantic definitions.

In the rest of this abstract we sketch some of the technical development for
synchronously communicating processes. The full paper will contain proofs,
more complex examples, and a fuller summary of related work. For concrete-
ness we focus on a CSP-style language in which communication guards are
modelled as blocking, as in Hoare’s original language [16]. We can adapt our
definitions and results to handle alternative language design decisions, for
example non-blocking guards, mixed boolean and input/output guards, and
general recursive process definitions. We attach a brief Appendix summa-
rizing the adjustments for asynchronous communication. The full paper will
also show how to adapt our techniques for shared-variable parallel programs.

2 Syntax

Let P range over processes, G over “guarded” processes, h over the set
Chan of channel names, x over the set Ide of integer-valued variables, e
over integer-valued identifiers, and b over boolean-valued expressions, given
by the following abstract grammar:

P ::= skip | x:=e | h?x | h!e | P1; P2 | P1‖P2 | P1 u P2 |
if b then P1 else P2 | while b do P | local h in P

G ::= (h?x → P) | G1 G2

As usual for CSP, we include two forms of choice: P1uP2 is “internal” choice,
and G1 G2 is “external” choice. Note that (h?x → P) will be treated as
semantically equivalent to h?x; P .

Although we have only included while-loops above, the ensuing definitions
and results can be adapted to handle recursion and more general guarded
conditional commands if G fi and loops do G od. We can also handle
mixed guards combining boolean expressions with communication, and we
can model both blocking and non-blocking versions of input/output. One
can also allow local variable declarations, as in local x in P .

3 Actions and traces

Let V be the set of integers, with typical member v. An action has form
h?v, h!v, x = v, x:=v or δX , where X is a finite set of “directions” (h? or h!).

5

A communication action h?v or h!v represents a potential for communication,
and can only be completed by a process if and when another (concurrent)
process is able to match this action with the corresponding h!v or h?v. We
use x=v to represent an evaluation action in which x is discovered to have
value v, and x:=v to represent an assignment action updating the value of
x. Each communication action has a corresponding direction, and we let
Dir = {h?, h! | h ∈ Chan} be the set of directions. A blocking action of form
δX represents an unrequited attempt to communicate along the directions in
the set X. When X is a singleton we write δh? or δh!. When X is empty
we write δ instead of δ{}; the action δ is also used to represent a “silent”
local action, such as a synchronized handshake or reading or writing a local
variable. We let X\h = X − {h?, h!}. Let Σ stand for the set of all actions,
Λ for the set of communication actions, and ∆ for the set of blocking actions:

Λ = {h?v, h!v | h ∈ Chan & v ∈ V } ∆ = {δX | X ⊆ Dir}.

A trace is a finite or infinite sequence of actions representing a potential
behavior of a process. We model persistent waiting for communication and
divergence (infinite local activity) as an infinite sequence of blocking actions.
We assume that unless and until blocking or divergence occurs we only care
about the non-silent actions taken by a process4. Accordingly, we assume
when concatenating that δλ = λδ = λ for all actions λ, and we suppress
waiting actions which lead to successful communication, so that δ∗h?h?v = h?v
for example. A trace of the form αδX

ω describes an execution in which
the process performs α then gets stuck waiting to communicate along the
directions in X. For a trace β we define the set of blocked directions in β,
written blocks(β), as the set of all directions which occur infinitely often in
blocking steps of β. For example, blocks(a!0(δb?δc?)

ω) = {b?, c?}.

4 Denotational semantics

We assume given the semantics of expressions: the trace set denoted by
expression e, written T (e), describes all possible evaluation behaviors of e,
and consists of all pairs (ρ, v) where ρ is a sequence of evaluation steps which
yield value v for the expression. For example, for an identifier y we have

4Other notions of observable behavior, such as the assumption that we can see all
actions that occur, including blocking steps, can also be incorporated with appropriate
modifications to the semantic definitions.

6

T (y) = {(y = v, v) | v ∈ V } and for a numeral n we have T (n) = {(δ, n)}.
For a boolean expression b we let T (b)true = {ρ | (ρ, true) ∈ T (b)}.

Definition 1 The trace set denoted by process P , written T (P), is defined
compositionally as follows:

T (skip) = {δ}
T (x:=e) = {ρ x:=v | (ρ, v) ∈ T (e)}
T (h?x) = {h?v x:=v | v ∈ V } ∪ {δh?

ω}
T (h!e) = {ρ h!v, ρ δh!

ω | (ρ, v) ∈ T (e)}
T (P1; P2) = T (P1)T (P2) = {α1α2 | α1 ∈ T (P1) & α2 ∈ T (P2)}
T (P1‖P2) =

⋃{α1‖α2 | α1 ∈ T (P1) & α2 ∈ T (P2)}
T (if b then P1 else P2) = T (b)true T (P1) ∪ T (b)false T (P2)

T (while b do P) = (T (b)true T (P))∗T (b)false ∪ (T (b)true T (P))ω

T (local h in P) = {α\h | α ∈ T (P) & h 6∈ chans(α)}
T (G1 G2) = {α ∈ T (G1) ∪ T (G2) | α 6∈ ∆ω} ∪

{δX∪Y
ω | δX

ω ∈ T (G1) & δY
ω ∈ T (G2)}

T (P1 u P2) = T (P1) ∪ T (P2)

Given two traces α1 and α2, α1‖α2 is the set of all traces formed by merging
them fairly, allowing synchronization of matching communication actions.
We let α‖ε = ε‖α = {α}. When α1 and α2 are finite and non-empty, say
αi = λiβi, we let

(λ1β1)‖(λ2β2) = {λ1γ | γ ∈ β1‖(λ2β2) ∪ {λ2γ | γ ∈ (λ1β1)‖β2}
∪ {δγ | γ ∈ β1‖β2 & match(λ1, λ2)}

When α1 and α2 are infinite, we let α1‖α2 = {} if some direction in blocks(α1)
matches a direction in blocks(α2), since it is unfair to avoid synchronizing two
processes which are blocked but trying to synchronize on a common channel.
Otherwise we let α1‖α2 consist of all traces of form γ1γ2 . . . where α1 can be
written as a sequence of finite chunks α1,1α1,2 . . ., and α2 can be written as
α2,1α2,2 . . ., and each γi is a fair merge of α1,i and α2,i.

For example, δh!
ω‖δh?

ω = {} and (a!0δh!
ω)‖(b!1δh?

ω) = {}. However,
δa!

ω‖δb?
ω is non-empty and can be written in the form (δa!

∗δb?δb?
∗δa!)

ω.
We write chans(α) for the set of channels occurring in input or output

actions along α, and when h 6∈ chans(α) we let α\h be the trace obtained
from α by replacing every δX with δX\h. For instance, the trace (a!0 δh?

ω)\h
is a!0 δω.

7

5 Operational semantics

A state s is a mapping from program variables to values.5 An action may or
may not be enabled in a given state. For instance, the action x = v is only
enabled in a state for which the value of x is v.

We assume given an operational semantics for expressions, with transi-
tions of form e, s µ−→ e′, s and e, s µ−→ v, where µ is an evaluation action and
v is an integer. The operational semantics for boolean expressions is similar.
An assignment action changes the state. We write [s | x : v] for the state
obtained from s by updating the value of x to v.

The operational semantics for processes is specified by a labelled tran-
sition relation P, s λ−→ P ′, s′ and a termination predicate P, s term. Some
of the most relevant rules are listed in Figure 1. (We omit several rules,
including those dealing with sub-expression evaluation.)

A transition sequence of process P is a sequence of transitions of form

P, s0
λ0−−→ P1, s

′
0

P1, s1
λ1−−→ P2, s

′
1

P2, s2
λ2−−→ P3, s

′
2

. . . ,

either infinite or ending in a terminal configuration. A computation is a
transition sequence in which the state never changes between steps, so that
s′i = si+1.

A transition sequence (or a computation) of P is fair if it contains a
complete transition sequence for each syntactic sub-process of P , and no
pair of sub-processes is permanently blocked yet attempting to synchronize.
For example, the computation

a?x‖a!0, s δa?−−−→ a?x‖a!0, s δa!−−→ a?x‖a!0, s δa?−−−→ a?x‖a!0, s δa!−−→ · · ·

is not fair, because the two processes block on matching directions. However,

a?x‖a!0, s a?1−−−→ x:=1‖a!0, s x:=1−−−−→ skip‖a!0, s′ δa!−−→ skip‖a!0, s′ δa!−−→ · · ·

where s′ = [s | x:1], is fair because only one process is blocked. Indeed, there
is a fair computation of the process a!1‖(a?x‖a!0) in which the first process
performs a!1 and the second performs the above transition sequence.

5Since channels are only used for synchronized handshaking there is no need to treat
channel contents as part of the state.

8

skip, s term

h?x, s h?v−−−→ x:=v, s h?x, s δh?−−−→ h?x, s

h!v, s h!v−−−→ skip, s h!v, s δh!−−−→ h!v, s

G1, s
δX−−−→ G1, s G2, s

δY−−→ G2, s

G1 G2, s
δX∪Y−−−−−→ G1 G2, s

G1, s
λ−→ P1, s

′ λ 6∈ ∆

G1 G2, s
λ−→ P1, s′

G2, s
λ−→ P2, s

′ λ 6∈ ∆

G1 G2, s
λ−→ P2, s′

P1 u P2, s
δ−→ P1, s P1 u P2, s

δ−→ P2, s

P1, s
λ−→ P ′

1, s
′

P1‖P2, s
λ−→ P ′

1‖P2, s′
P2, s

λ−→ P ′
2, s

′

P1‖P2, s
λ−→ P1‖P ′

2, s
′

P1, s term P2, s term

P1‖P2, s term

P1, s
λ1−−→ P ′

1, s P2, s
λ2−−→ P ′

2, s match(λ1, λ2)

P1‖P2, s
δ−→ P ′

1‖P ′
2, s

P, s λ−→ P ′, s′ chan(λ) 6= h

local h in P, s λ−→ local h in P ′, s′

P, s δX−−−→ P ′, s

local h in P, s
δX\h−−−−→ local h in P ′, s′

P, s term

local h in P, s term

Figure 1: Operational semantics for processes

9

6 Relating denotational and operational

The denotational and operational characterizations of fair traces coincide:

Theorem 1 For every process P , T (P) consists of the traces generated by
the fair transition sequences of P .

7 Full abstraction and trace equivalence

Suppose we can observe communication sequences, including blocking steps,
and the values of non-local variables, but we cannot backtrack to try alter-
native runs. This notion of observable behavior suffices to allow safety and
liveness analysis. For example, one might want to prove that a parallel sys-
tem ensures that no process becomes blocked on a given channel. Our trace
semantics is fully abstract with respect to this notion of behavior:

Theorem 2 Two processes P1 and P2 have the same trace sets iff they have
the same observable behavior in all contexts.

Although an obvious corollary of compositionality, this result generalizes
analogous well known full abstraction results for failures semantics, which
hold in a much more limited setting, without fairness [27]. The significance of
this result is not full abstraction per se but the construction of a simple trace-
based semantics that incorporates a reasonable form of fair parallelism and
synchronized communication while supporting safety and liveness analysis;
this kind of simplicity is itself a virtue.

To demonstrate that trace semantics distinguishes between processes with
different deadlock capabilities, note that:

δX
ω ∈ T ((a?x → P) (b?x → Q)) ⇐⇒ X = {a?, b?}

δX
ω ∈ T ((a?x → P) u (b?x → Q)) ⇐⇒ X = {a?} or X = {b?}.

If we run these processes in a context which is only capable of communicating
on channel b, such as

local a, b in ([−]‖b!0)

the first process would behave like x:=0; local a, b in Q but the second would
also have the possibility of behaving like local a, b in ((a?x → P)‖b!0), which
is deadlocked and has the trace set {δω}.

10

Fair synchronous laws

The following semantic equivalences, to be interpreted as equality of trace
sets, illustrate how our model supports reasoning about process behavior.

Theorem 3 The synchronous trace semantics validates the following laws
of equivalence:

1. local h in (h?x; P)‖(h!v; Q)‖R = local h in (x:=v; P)‖Q‖R
provided h 6∈ chans(R).

2. local h in (h?x; P)‖(Q1; Q2) = Q1; local h in (h?x; P)‖Q2

provided h 6∈ chans(Q1).

3. local h in (h!v; P)‖(Q1; Q2) = Q1; local h in (h!v; P)‖Q2

provided h 6∈ chans(Q1).

These properties, which reflect our assumption of (a weak form of) fairness,
can be particularly helpful in proving liveness properties. They are not valid
in an unfair semantics. For instance, if execution is unfair there is no guaran-
tee in the first law that the synchronization will eventually occur, and there
is no guarantee in the second or third laws that the right-hand process will
ever execute its initial (non-local) code.

8 Pomset semantics

A pomset (T,<) is a partially ordered multiset of actions: T is a multiset
whose elements are drawn from the set Σ of actions, and < is a partial
order on T , representing a “precedence” relation on the action occurrences
in T . Actually we allow the precedence relation to be a pre-order: when T
contains a pair of matching communication occurrences which precede each
other this will force a synchronization. We also assume that the ordering
has no accumulation points, i.e. that every action dominates finitely many
actions, so the precedence relation is well founded. When analyzing examples
we usually work with the kernel of the ordering relation, i.e. the subset of
< consisting of the pairs (µ, µ′) such that µ < µ′ and there is no µ′′ such
that µ < µ′′ < µ′. The full ordering relation can be recovered by taking the
transitive closure of the kernel. We also elide non-final occurrences of δ, for
example replacing µ < δ < µ′ by µ < µ′. (This is analogous to our earlier
convention for concatenating δ.)

11

A process P denotes a set (or “family”) P(P) of pomsets. Each pomset
(T, <) determines a set of traces, the traces containing all action occurrences
from T in a linear order consistent with the precedence relation, possibly
allowing synchronization. A single trace α can be viewed as a special pomset
whose elements are the action occurrences from α and whose ordering is
linear. A pomset consists of a number of connected components, or threads.

Again we assume that the semantics of expressions is given, so that for
an expression e, P(e) is a set of pairs of the form (T, v), where v ∈ V and T
is a pomset of evaluation actions.

We define T1; T2 = T1 if |T1| = ω, otherwise T1; T2 is the ordering on
T1 ∪ T2 obtained by putting T2 after T1. T1‖T2 is the disjoint union of T1

and T2 ordered with the disjoint union of the orderings from T1 and T2. We
say that a pomset is fair iff it does not contain a pair of concurrent threads
which eventually block on a pair of matching directions. For example, the
pomset {a!0δb!

ω, a?0δb?
ω} is unfair.

We define T �h T ′ to mean that T ′ arises by choosing for each occurrence
of h?v (or h!v) in T a unique concurrent matching action occurrence h!v
(respectively, h?v) in T , and augmenting the ordering accordingly, with an
arrow each way between the matched pairs. This can be formalized as a
synchronizing schedule for channel h. There may be no such T ′, in which
case T does not describe any traces which contribute to the behavior of
local h in P , or there may be multiple such T ′, each corresponding to a
sequence of synchronization choices. Given a pomset T ′ in which all visible
actions on h are matched, we define T ′\h to be the result of replacing all
matching pairs by δ (i.e. enforcing synchronization), replacing every δX by
δX\h, and eliding non-final δ actions.

Definition 2 The pomset semantics of a process P , written P(P), is given

12

compositionally by:

P(skip) = {{δ}}
P(x:=e) = {T ; {x:=v} | (T, v) ∈ P(e)}
P(h?x) = {{h?v} | v ∈ V } ∪ {{δh?

ω}}
P(h!e) = {T ; {h!v} | (T, v) ∈ P(e)} ∪ {{δh!

ω}}
P(P1; P2) = {T1; T2 | T1 ∈ P(P1) & T2 ∈ P(P2)}

P(if b then P1 else P2) = P(b)true;P(P1) ∪ P(b)false;P(P2)
P(while b do P) = (P(b)true;P(P))∗;P(b)false ∪ (P(b)true;P(P))ω

P(G1 G2) = {T ∈ P(G1) ∪ P(G2) | T ∩∆ω = {}} ∪
{{δX∪Y

ω} | {δX
ω} ∈ P(G1) & {δY

ω} ∈ P(G2)}
P(P1 u P2) = P(P1) ∪ P(P2)
P(P1‖P2) = {T1‖T2 | T1 ∈ P(P1) & T2 ∈ P(T2) & (T1‖T2) fair}

P(local h in P) = {T ′\h | T ∈ P(P) & T �h T ′}

An Example

Let buff 1(in,mid) be while true do (in?x;mid !x), which behaves like a
1-place buffer. Let buff 1(mid , out) be similarly defined. It is easy to prove
using pomsets, or directly from the trace semantics, that with synchronized
communication

buff 2(in, out) =def local mid in buff 1(in,mid)‖buff 1(mid , out)

behaves like a 2-place buffer. One can also use the semantics to analyze a
variety of alternative buffer-like constructs, such as

local mid in buff 2(in,mid)‖buff 2(mid , out)

and one can validate a number of buffer laws along similar lines to those
developed by Roscoe [27].

9 Recovering traces

The pomset semantics determines the trace semantics in a natural manner.

Definition 3 The set of synchronous traces consistent with a pomset T ,
written L(T), consists of all traces which arise by fair interleaving the threads
of T , possibly allowing synchronization.

13

Equivalently, L(T) is the set of all linear orders on the multi-set T which
extend the order of T , allowing for the possibility of synchronization.

Theorem 4 For all processes P , T (P) =
⋃{L(T) | T ∈ P(P)}.

Note the obvious but useful corollary:

Corollary 5 For all P1 and P2, if P(P1) = P(P2) then T (P1) = T (P2).

The converse is not necessarily true: the pomset family for (a!0‖b!1) is

{{a!0, b!1}, {a!0, δb!
ω}, {b!1, δa!

ω}, {δa!
ω, δb!

ω}}

but the family

{{a!0 b!1}, {b!1 a!0}, {a!0, δb!
ω}, {b!1, δa!

ω}, {δa!
ω, δb!

ω}}

also determines the same trace set. Nevertheless, pomset semantics can
serve as an alternative compositional approach to parallel program analysis,
a potentially more succinct model of process behavior which might facilitate
proofs. The pomset representation of the trace set of a process may allow
us to avoid dealing explicitly with all interleavings, thus offering a chance
to avoid a combinatorial explosion. Moreover, many laws of process equiv-
alence hold for pomset semantics, and can be proven without dealing with
fully expanded trace sets; such laws transfer immediately to trace semantics.

Our pomset semantics and even our trace semantics make certain dis-
tinctions which might seem more consistent with the “true concurrency”
philosophy, despite the trace-theoretic rationale for our models. Indeed the
so-called “interleaving law” does not hold. For example, P(a!0‖b!1) is the
family given above, whereas P(a!0; b!1 u b!1; a!0) is the family

{{a!0 b!1}, {b!1 a!0}, {a!0 δb!
ω}, {b!1 δa!

ω}, {δa!
ω}, {δb!

ω}}

so that a!0‖b!1 is not pomset-equivalent to (a!0; b!1) u (b!1; a!0). Indeed this
distinction also holds in the trace semantics, since

T (a!0‖b!1) ∩∆ω = δa!
ω‖δb!

ω = (δa!
∗δb!δb!

∗δa!)
ω

and
T (a!0; b!1 u b!1; a!0) ∩∆ω = {δa!

ω, δb!
ω}.

14

This difference in trace sets can be explained intuitively, without appealing
to considerations of true concurrency, since a!0‖b!1 can be observed (if placed
in a suitable environment) waiting repeatedly for action on one of the two
channels, whereas the other process makes a non-deterministic choice and
thereafter fixates on one particular channel. Note also that a!0‖b!1 is also
not trace- or pomset-equivalent to (a!0 → b!1) (b!1 → a!0), since

T ((a!0 → b!1) (b!1 → a!0)) ∩∆ω = {δ{a!,b!}
ω},

so neither form of non-deterministic choice can be used to expand away a
parallel composition.

10 Related work

Hoare’s early “trace model” of CSP [17] interpreted a process as a non-empty,
prefix-closed set of finite communication traces, recording only visible actions
such as h!v and h?v. Each trace represents a partial behavior of the process.
Hoare’s model did not treat infinite behaviors or fairness, and is mainly
suitable for proving safety properties.

The failures semantics of CSP [10] modelled a process as a set of fail-
ures, each failure (α, X) consisting of a finite sequence α of communications
and a “refusal set” X of directions, representing the potential to perform α
then refuse to communicate along any direction in X. Our notion of trace
subsumes failures: a process capable of (α, X) would have a trace αδY

ω, for
some set Y disjoint from X. Our notion of trace is more general, allowing
for instance traces of form α(δAδB)ω which cannot be represented in failure
format. The extra generality is needed in order to cope properly with fair
parallel composition. Our traces represent entire computations, so our trace
sets are not prefix-closed. Again this is more than a philosophical difference:
one cannot deduce the fair traces of a parallel process by looking at the pre-
fixes of the traces of its constituent processes. The failures semantics and its
later more refined extensions, all building on a prefix-closed trace set, were
not designed with fairness in mind [27].

Older’s Ph.D. thesis [19] provides a general framework capable of being
instantiated to model several specialized forms of fairness in the synchronous
setting, including weak and strong process fairness. She introduced general-
ized notions of fairness and blocking modulo a set of directions, and her mod-
els incorporated extensive book-keeping information to keep track of the sets

15

of directions which were infinitely often enabled but not taken along traces,
together with cleverly devised but complex closure conditions designed to
achieve full abstraction [20, 9]. As Older comments, it is questionable if
these fairness notions are useful and accurate abstractions of realistic sched-
ulers, since their implementation requires meticulous attention to so much
enabling information. Moreover, these forms of fairness tend to be sensitive
to subtle nuances in the formulation of the operational semantics [1].

In contrast we assume a form of weakly fair execution, suitably adapted to
deal reasonably with synchronization to ensure that two processes waiting to
perform matching communications will not be ignored forever. This property
would be guaranteed for instance by any round-robin scheduler which runs
each process for an randomly chosen number of steps, and also uses a round-
robin strategy to look for matching communications if the chosen process
blocks while attempting input or output. This form of fairness is a simple
variant of weak process fairness sensitive to the synchronization needs of
processes, and we believe this is a reasonable abstraction from the behavior
of realistic implementations. By adopting this fairness notion we avoid the
need for excessive book-keeping: the traces themselves can be designed to
carry the relevant information in their δ actions. Older’s notion of being
blocked but fair modulo a set X of directions corresponds to a trace β such
that blocks(β) ⊆ X. It would be interesting to see if any of the more complex
forms of fairness discussed by Older can be treated within our framework.

Our semantics for asynchronously communicating processes incorporates
weak (process) fairness. Hennessy [18] gave an earlier treatment of a CCS-like
language with weakly fair execution. Parrow [24] discusses various fairness
notions for CCS-like processes.

Partial-order semantics of various kinds, such as Pratt-style pomsets [25,
26], Winskel’s event structures [28]6, and Petri nets [23] have been widely
used, with parallel composition interpreted as so-called “true concurrency”
rather than interleaving. Our motivation in developing a pomset formulation
is to obtain a more tractable methodology for dealing with trace sets, rather
than having to deal explicitly with the results of interleaving. Pratt typically
models a process as a set of finite pomsets, and concepts such as fairness,
which only really crop up significantly when dealing with infinite behaviors,
are not encountered in finite pomset models. Pratt-style pomsets are usually

6Event structures can be seen as pomsets equipped with a “conflict relation”, although
this characterization does not reflect their original development and subsequent usage.

16

taken to be order-isomorphism classes, and this works well if we care only
about actions as abstract entities without data or imperative content. We do
not do this: although the pomsets for processes a!0 and b!0 and even for c!1,
are order-isomorphic, they do not behave identically in all contexts and we
need to distinguish between them in order to reason accurately about safety
and liveness properties concerning the values of program variables and the
data transmitted during execution.

References

[1] K. R. Apt, N. Francez, and S. Katz, Appraising fairness in languages for
distributed programming, Distributed Computing, 2(4):226-241 (1988).

[2] F. de Boer, J. Kok, C. Palamidessi, and J. Rutten, The failure of failures
in a paradigm for asynchronous concurrency, Proc. 2nd International
Conference on Concurrency Theory, CONCUR’91, Springer LNCS 527,
pp. 111-126 (1991).

[3] S. Brookes, Full abstraction for a shared-variable parallel language,
8th IEEE Symposium on Logic in Computer Science, pp. 98-109 (1993).
Extended version in: Information and Computation, vol 127, no. 2,
Academic Press (June 1996).

[4] S. Brookes, The Essence of Parallel Algol, 11th IEEE Symposium on
Logic in Computer Science, pp. 164-173 (July 1996).

[5] S. Brookes, Idealized CSP: Combining Procedures with Communicating
Processes, 13th Conference on Mathematical Foundations of Program-
ming Semantics (MFPS’97), Pittsburgh (March 1997).
Electronic Notes in Theoretical Computer Science 6, Elsevier Science
(1997).
http://www.elsevier.nl/locate/entcs/volume6.html.

[6] S. Brookes, On the Kahn Principle and Fair Networks, 14th Conference
on Mathematical Foundations of Programming Semantics, Queen Mary
Westfield College, University of London, (May 1998).

[7] S. Brookes, Communicating Parallel Processes, Symposium in Celebra-
tion of the work of C.A.R. Hoare, Oxford University, September 1999.
MacMillan Publishers (2000).

17

[8] S. Brookes, Deconstructing CCS and CSP: Asynchronous Communica-
tion, Fairness and Full Abstraction, 16th Conference on Mathematical
Foundations of Programming Semantics (2000).

[9] S. Brookes and S. Older, Full abstraction for strongly fair communi-
cating processes, 11th Conference on Mathematical Foundations of Pro-
gramming Semantics, New Orleans, (March 1995).
http://www.elsevier.nl/locate/entcs/volume1.html

[10] S. Brookes, C. A. R. Hoare, and A. W. Roscoe, A Theory of Communi-
cating Sequential Processes, JACM 31(3):560-599 (July 1984).

[11] S. Brookes, and A. W. Roscoe, An improved failures model for CSP,
Seminar on concurrency, Springer-Verlag, LNCS 197 (1984).

[12] G. Costa and C. Stirling, A fair calculus of communicating systems,
ACTA Informatica 21:417-441 (1984).

[13] G. Costa and C. Stirling, Weak and strong fairness in CCS, Technical
Report CSR-16-85, University of Edinburgh (January 1985).

[14] N. Francez, Fairness, Springer-Verlag (1986).

[15] R. van Glabbeek, The Linear Time – Branching Time Spectrum, chapter
1 of Handbook of Process Algebra, J. A. Bergstra, A. Ponse and S.
Smolka (eds), Elsevier (2001).

[16] C. A. R. Hoare, Communicating Sequential Processes, CACM 21:8, pp.
666-677 (1978).

[17] C. A. R. Hoare, A Model for Communicating Sequential Processes, Tech-
nical Monograph PRG-22, Programming Research Group, Oxford Uni-
versity (June 1981).

[18] M. Hennessy, An algebraic theory of fair asynchronous communicating
processes, Theoretical Computer Science, 49:121-143 (1987).

[19] S. Older, A Denotational Framework for Fair Communicating Processes,
Ph.D. thesis, Carnegie Mellon University. Technical report CMU-CS-96-
204 (December 1996).

18

[20] S. Older, A Framework for Fair Communicating Processes, 13th Confer-
ence on Mathematical Foundations of Programming Semantics (March
1997).
http://www.elsevier.nl/locate/entcs/volume6.html.

[21] S. Owicki and L. Lamport, Proving liveness properties of concurrent
programs, ACM TOPLAS, 4(3): 455-495 (July 1982).

[22] D. Park, On the semantics of fair parallelism. In D. Bjørner, editor, Ab-
stract Software Specifications, Springer-Verlag LNCS vol. 86 (1979),
504–526.

[23] C. A. Petri, Concepts of Net Theory, Symposium on Mathematical Foun-
dations of Computer Science (September 1973).

[24] J. Parrow, Fairness Properties in Process Algebras, Ph. D. thesis, Uni-
versity of Uppsala (1985).

[25] V. Pratt, On the Composition of Processes, 9th ACM Symposium on
Principles of Programming Languages, pp. 213-223 (1982).

[26] V. Pratt, Modeling concurrency with partial orders, International Jour-
nal on Parallel Processing, 15(1): 33–71 (1986).

[27] A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-
Hall, 1998.

[28] G. Winskel, Events in Computation, Ph. D. thesis, Edinburgh University
(1980).

19

11 Appendix: asynchronous communication

Output actions are always enabled, and we assume that channels behave
like unbounded queues; a process wishing to perform input from a channel
must wait if the queue is empty. We only need δX when X is a set of input
directions.

The set AT (P) of asynchronous traces of P is defined compositionally,
exactly as for the synchronous traces but with modifications in the clauses
for output, parallel composition, and local channels, which become:

AT (h!e) = {ρ h!v | (ρ, v) ∈ T (e)}
AT (P1‖P2) =

⋃{α1‖α2 | α1 ∈ AT (P1) & α2 ∈ AT (P2)}
AT (local h in P) = {α\h | α ∈ AT (P) & α local for h}

Here we redefine α1‖α2 to be the set of fair interleavings of α1 with α2,
without allowing any synchronization. We say that α is local for h if the
communications on h along α obey the queue discipline, and we redefine α\h
to replace all communications on h by δ and replace δX by δX\h.

The asynchronous operational semantics is obtained by making similar
adjustments to the rules for output, parallel composition, and local channels,
and including channel contents as part of the state. The operational notion
of fair transition sequence is as before, except that the transition relation no
longer includes synchronizing steps.

Again the denotationally characterized trace set coincides with the op-
erationally characterized trace set, and again we have full abstraction with
respect to communication behavior.

Theorem 6 For every process P , AT (P) consists of the traces generated by
the fair asynchronous transition sequences of P .

Theorem 7 Two processes P1 and P2 have the same asynchronous trace sets
iff they have the same asynchronous communication behavior in all contexts.

We can define an asynchronous pomset semanticsAP(P), again adjusting
the clauses for output, parallel composition and local channels:

AP(h!e) = {T ; {h!v} | (T, v) ∈ P(e)}
AP(P1‖P2) = {T1‖T2 | T1 ∈ AP(P1) & T2 ∈ AP(P2)}

AP(local h in P) = {T ′\h | T ∈ AP(P) & T �h T ′}

20

We no longer need a side condition in the clause for P1‖P2: every trace
consistent with the disjoint union T1‖T2 will represent a fair asynchronous
behavior of the parallel process.

We redefine T �h T ′ to mean that T ′ arises by choosing, for each input
occurrence h?v in T an output occurrence h!v in T which justifies it, all
choices respecting the precedence order of T and the queue discipline of the
channel, and augmenting the ordering so that each input is preceded by its
justifying output. For a given T and h, there may be no such T ′, in which
case T does not describe any traces which are local for h, or there may be
multiple such T ′, each corresponding to a different sequence of scheduling
choices. Given a pomset T ′ in which all inputs on h are justified in this
manner, we define T ′\h to replace each communication on h by δ, replace δX

by δX\h, and elide non-final δ actions.

Definition 4 The set of asynchronous traces consistent with a pomset T ,
written AL(T), is the set of all traces which arise by fair interleaving the
threads of T .

Again the asynchronous traces of a process can be recovered from its pomset
semantics:

Theorem 8 For all processes P , AT (P) =
⋃{AL(T) | T ∈ AP(P)}.

One can show using the pomset semantics that if we assume asynchronous
communication the process

local mid in buff 1(in,mid)‖buff 1(mid , out)

behaves like an unbounded buffer, instead of the 2-place buffer which de-
scribed its behavior under synchronous communication.

The following laws hold for asynchronous trace semantics, and are the
asynchronous analogues of the first two laws given earlier for synchronous
communication. The third law does not hold, because of the assumption
that output is always enabled.

Theorem 9 The asynchronous trace semantics validates the following laws
of equivalence:

1. local h in (h?x; P)‖(h!v; Q)‖R = local h in (x:=v; P)‖Q‖R
provided h 6∈ chans(R).

2. local h in (h?x; P)‖(Q1; Q2) = Q1; local h in (h?x; P)‖Q2

provided h 6∈ chans(Q1).

21

