A FULLY ABSTRACT SEMANTICS AND A PROOF SYSTEM
FOR AN ALGOL-LIKE LANGUAGE WITH SHARING

New Revised Version
August 1989

Stephen D. Brookes
Computer Science Department
Carnegie-Mellon University
Pittsburgh
Pennsylvania 15213

The research reported in this paper was supported in part by funds from the Computer
Science Department of Carnegie-Mellon University, and by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory under Contract F33615-81-K-1539. The views and conclusions contained in it
are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

0. Abstract.

We believe that axiomatic reasoning about program behaviour should be based directly
on a semantic model specifically tailored for that purpose. Moreover, the structure of the
semantic model should be used directly to suggest the structure of an assertion language for
expressing program properties. It is desirable, therefore, to adopt a semantics with as clean
and simple a structure as possible, so that one can use assertions with simple syntactic
structure and build a clean and simple axiomatic proof system for program properties.
By basing the proof system closely on the underlying semantic model, one is able to use
the semantic model directly in establishing the soundness and relative completeness of the
proof system; these tasks are made less difficult if the semantics has a simple structure. We
illustrate these ideas by applying them to a small programming language, a simple block-
structured imperative language which allows sharing or aliasing among identifiers. Although
the language is rather simple and is certainly far from being a fully fledged programming
language, it exhibits enough semantic features to merit a detailed semantic investigation and
serves well to illustrate our methodology for designing an axiomatization. We first define a
standard semantics and discuss the full abstraction problem for this language. We define a
semantic relation called sharing equivalence, and show that the standard semantics is fully
abstract “up to sharing equivalence”. We then construct a semantics based directly on
sharing equivalence classes, which is fully abstract. We establish some important semantic
properties, and use them in designing an axiomatic proof system for partial correctness
properties of programs.

1. Introduction.

The first part of the paper introduces the syntax and a standard denotational seman-
tics for a simple block-structured programming language which allows sharing or aliasing.
Sharing arises naturally in procedural languages which permit certain forms of parameter
passing (like call-by-reference): two identifiers share or are aliases if assignment to one af-
fects the value of the other. Here we do not include procedures in our language, but instead
include a form of declaration that introduces aliasing among program identifiers explicitly.
This allows us to focus on the semantic treatment of aliasing in a simpler context than a
fully fledged procedural language. This has the advantage that a satisfactory treatment of
aliasing is possible with a relatively straightforward semantics and axiomatic system. Nev-
ertheless, we must admit that in a language with procedures our treatment would need to
be modified extensively. Even in this restricted setting we believe that our approach is of
interest.

We begin with a conventional semantic model suitable for the proper modelling of alias-
ing, involving locations, stores, and environments. Identifiers which are aliases are mapped
by the environment to the same location, and an assignment to an identifier affects the value
stored in the corresponding location. Hence the common description: identifiers which are
aliases share a memory location. We define the semantics relative to an abstract storage
allocation primitive (as usual called new), assumed only to possess a natural “newness”
property. We discuss several variant semantics, differing only in details of storage handling.

We next state some well known and fairly obvious properties of commands, expressions,
and declarations. Their semantics is determined completely by their dependence on and
effect upon identifiers occurring (free) in their text. In proving these results we introduce a
natural notion of sharing equivalence on environment-store pairs, which plays a crucial role
in the rest of the paper. In order later to justify the soundness of an inference rule involving
change of bound variables in blocks, We introduce syntactic substitutions as renamings of
identifiers in program terms. With the appropriate notions of substitution of free identifiers

2

(in commands, declarations, and expressions) and substitution of declared identifiers (in
a declaration), the meaning of a term behaves properly with respect to substitution: in
particular, the meaning of a block is unchanged if we systematically rename identifiers used
in it. We formulate precisely what we mean by proper behavior under substitution, and
prove these results using the semantic definitions. These results will be useful later in
axiomatizing the programming language.

We are primarily interested in semantics as the basis for axiomatization of partial
correctness. It would therefore be desirable if our semantics identifies pairs of program terms
if and only if they can be used interchangeably without affecting the partial correctness of a
program: i.e. we would like full abstraction with respect to partial correctness behaviour. It
is intuitively clear that when reasoning about partial correctness behaviour it is unnecessary
to keep track of all details of storage management; the precise locations bound to identifiers
are irrelevant, as long as we know which identifiers are aliases and what the (stored) values
of identifiers are. It is also obvious that our standard semantics carries around explicit
information about locations. It is only in certain details of storage allocation that our
standard semantics misses the full abstraction property. Sharing equivalence is the key
to achieving full abstraction: two declarations can be substituted for each other in an
arbitrary context if and only if they have the same effect up to sharing equivalence. The
same is true of commands. We state and prove this rigorously, as well as showing that
the meanings of commands and expressions also are uniquely determined by analogous
properties. In this analysis we introduce sharing relations and valuations: a sharing relation
is simply an equivalence relation on a finite set of identifiers, and a valuation is a map
from these identifiers to values that respects the sharing relation. Two environment-store
pairs are sharing equivalent if and only if they determine the same sharing relation and
the same valuation. Because the standard meaning of a term is uniquely determined by
its dependence on and effect on sharing relations and valuations we can in fact lift the
abstraction function to the level of semantic definitions and define an “abstract” semantics
manipulating sharing relations and valuations directly. This new semantics is fully abstract
(even for declarations) with respect to partial correctness behaviour. It is even possible
to give a denotational definition of the abstract semantics. In doing so, we formulate a
syntactic notion of aliasing and show that it corresponds precisely to the intended semantic
interpretation of aliasing. We note that several variants of the standard location-based
semantics, each of which defines a different semantic equivalence relation on terms, are
“equivalent” in that they all correspond to the same abstract semantics. This again argues
for our decision to base axiomatic treatment on the abstract model.

This abstract semantics is well suited for the purposes of axiomatizing the programming
language. In the second part of the paper we use the semantics to support axiomatic
reasoning about program properties. The structure of the semantic model suggests what
type of structure is required of assertions about program fragments. We build a Hoare-
style proof system for partial correctness properties, and we prove soundness and relative
completeness of this system. The proof system is built up in a hierarchical manner which
reflects the syntactic and semantic structure of the programming language. We first design
a proof system for declarations, and then use it in building proof rules for commands. We
claim that our proof rules are conceptually simpler to understand than other rules proposed
in the literature for aliasing, without losing any expressive power. We show, for example,
that it is possible to define a “generic” inference rule for blocks which is uniformly applicable
to blocks headed by different forms of declaration. The important point here is that, unlike
most of the proof systems for these constructs in the literature, we do not have to design
a separate rule for blocks for each possible form of declaration. This results in greater

3

flexibility and adaptability in our proof system. We demonstrate that some well known
rules from the literature for blocks can be derived in our system.

1. Introduction.

To set the scene, here is a brief summary of conventional denotational semantics as
applied to imperative languages. Most of the published semantics for block-structured
languages have involved fairly complicated semantic structures intended to model storage
book-keeping. The reader is referred to [10,22,34,37] for example. Following [19,35], a
semantics for such a language treats as logically separate objects the environment and the
store. Roughly speaking, declarations modify the environment and commands modify the
store. The environment is most commonly thought of as a function from identifiers to
locations; and the store specifies a contents function from locations to values, as well as an
area function indicating the usage status of all locations. Conventionally, locations represent
an abstraction of the notion of addresses in memory, and the store gives the current contents
and usage status of these locations. The value of an expression or the effect of a command
will depend in general on both the environment and the store. In particular, the value
of an identifier is obtained as the contents (via the store) of the location bound (via the
environment) to the identifier. The intermediary role of locations provides the standard
method of treating aliasing: two identifiers which share are bound in the environment to
the same location (and, consequently, always have the same value).

Most commonly, the semantics of expressions is provided as a function from expressions
to environments and stores and then to values; the domain of values typically contains (at
least) integers and truth values. The semantics of a command, relative to an environment, is
modelled as a store transformation. Explicit separation of state into store and environment,
with locations playing an intermediary role, does indeed allow a proper treatment to be
given of storage allocation and sharing. However, by mentioning locations explicitly in the
semantics, these treatments may allow too many semantic distinctions between program
fragments. Using this type of semantics it is sometimes possible to distinguish between
terms which have identical effects on the values of all identifiers but differ in their effects on
the store, because of storage allocation.

For instance, the declaration
newz=0; newy=1

is conventionally described as binding z to the “first” available (i.e. unused) location and y
to the “next” one, and this means that we are able to distinguish between the effects of this
declaration and those of the permuted declaration in which the two bindings are performed
in reverse order:

new y = 1; new z = 0.

Intuitively, the order of binding should have no effect on any subsequent evaluation, since
the two declared identifiers get initialized to the same values in each case, and in each case
there is the same effect on the sharing properties of identifiers: neither « nor y is an alias
for any other identifier.

Another issue is raised by the declarations
new z=0; newz =1 and new r = 1.

Obviously both have the effect of introducing a single new variable, initialized to 1. However,
in the first case two locations are allocated, one of which becomes inaccessible. Unless care

4

is taken in the semantic definitions, these two declarations will have different meanings
because of this. But of course (assuming no limitation on the size of the store) they can be
used interchangeably in any program context.

Similarly, if the semantics includes explicit mention of the locations used by a command,
then the two commands

begin new z = 0; skip end, skip

will fail to be semantically equivalent, unless the semantics provides explicitly for the re-
leasing of locally claimed storage on exiting a block. Yet they induce the same behaviour
in all program contexts, since neither of them alters the value of any identifier.

When we are merely concerned with correctness properties of programs (either partial
or total correctness), we need to know only how the execution of a program will affect the
values of identifiers. By choosing a semantic model at a slightly higher level of abstraction it
becomes unnecessary to worry about the order in which variables are declared if that order
is irrelevant. Donahue [8] showed that locations were unnecessary in a semantic treatment
of a language which did not permit aliasing, and we argue further that this is even true
when aliasing is allowed.

In the first part of the paper we introduce a block-structured programming language
and, starting from a standard location-based semantics, we build a semantics in which these
ideas are demonstrated. The main idea is to make explicit use of the notion of a sharing
relation on identifiers, an equivalence relation capturing the intuitive property that two
identifiers are aliases if they denote the same abstract variable. This is somewhat reminiscent
of the early work of Landin [19]. Technically, our semantics is fully abstract with respect to
partial correctness behaviour. Full abstraction [23,28,29] guarantees that two terms of the
language are semantically identical if and only if they are interchangeable in every program
context. For us, this concept of full abstraction coincides with the equivalence induced
by considering partial correctness behaviour. Location-based semantics typically fail to be
fully abstract, because semantically distinct terms can nevertheless induce precisely the same
partial correctness behaviour in all program contexts. Moreover, in a location semantics,
many different environment-store pairs represent the same sharing relation and assign equal
values to all identifiers, and should therefore be regarded as equivalent; indeed, all terms
have “equivalent” effects on equivalent environment-store pairs, in a precise sense.

Hoare’s influential paper [16] proposed an axiomatic basis for programming languages.
Hoare’s paper gave an elegant proof system for an imperative language with (simple) as-
signment, sequential composition, conditionals, and loops, and introduced the notion of
partial correciness assertion which has underlined the methods of axiomatic semantics. The
appeal and influence of Hoare’s work owes much to its use of syntax-directed proof rules
and the simplicity of his assertion language. Many authors have tried to extend Hoare’s
ideas to cover more complicated and powerful programming constructs, and a good survey
is provided in [1]. Existing proof rules for aliasing seem to be fairly complicated in form
[4,5], and many proof rules for blocks beg the question by explicitly assuming that there
is no possibility of aliasing [17]. The complications are all the more evident in the case of
proof rules for features such as array assignment and procedure calls (see [1,2] for example),
although we do not address these features in this paper either.

We believe that many of the difficulties encountered when trying to find an adequate
axiomatization for programming language constructs are caused not by any inherent com-
plexity of the construct’s semantics but by an inappropriate choice of semantic model, by
inadequate use of semantic properties in designing the logic, or by an inappropriate choice of

5

assertion language (but see Clarke [6] for examples of constructs which are inherently diffi-
cult to treat). This is particularly true for imperative languages in which storage allocation
and the block discipline have persuaded semanticists that the correct level of abstraction
should retain some of the details of the storage mechanism. This tends to result in axiom
systems in which explicit reasoning about the identity of locations needs to be carried out,
as in [15]. And it often happens that some proof rules which appear to be obviously sound
are still difficult to prove correct. Apt [1] and de Bakker [2] discuss some notable examples,
and Apt also makes the point that the choice of a semantics is a decisive factor for the
complexity of soundness and completeness proofs.

Almost every semantics used in the literature to support formal reasoning about partial
correctness has been based on a location model. The second part of the paper develops a
proof system based instead on a sharing relation semantics. By choosing a more appropriate
level of abstraction in our semantics we believe that it becomes easier to reason about the
semantics of programs, and we are able to build a very simple Hoare-style proof system for
the language. The semantic structure guides us to a choice of assertion language and proof
rules. And the semantics can be used in a straightforward (if somewhat tedious) way to
establish the soundness of the proof system. Locations will not be needed as part of the
assertion language, because they are not used in the semantics.

This paper only considers a very simple programming language with a small number
of program constructs. We omit conditional commands and loops, for instance, although
it is not difficult to incorporate them. By focussing on a small number of features and
their interactions we aim to clarify the central issues which arise in treatments of sharing,
without having to keep extracting the crucial points from a larger setting. Although all
programs in the language described in this paper terminate, so that there is no need to
make a distinction between total and partial correctness here, we nevertheless use the term
“partial correctness” throughout the paper, since it is very easy to extend our definitions
and results to include conditionals and loops, and when this is done our results do indeed
concern partial correctness. We make some remarks at the end of the paper concerning the
extension of our techniques to programming languages containing various other features.

Qutline.

The outline of the paper is as follows. We begin by introducing the syntax of our pro-
gramming language, together with a few relevant syntactic definitions. An informal semantic
description is given at this stage. Next we describe a more or less traditional location seman-
tics, prove some useful properties of the semantics, and motivate our decision to choose a
more abstract model. This leads to the introduction of sharing relations and valuations, and
we construct a denotational semantics based upon them after showing that the semantics
of terms is uniquely determined by their effect on sharing relations and valuations.

Next we define a fairly natural notion of program behaviour which captures precisely our
intention to concentrate purely on partial correctness properties. Intuitively, two programs
should have the same behaviour if they always satisfy the same set of partial correctness
assertions. In making these ideas precise, we define the behaviour of a term (command,
declaration, or expression) in a program context (of the appropriate type). We define a
family of behavioural equivalence relations on terms, which identifies two terms if and only
if they yield the same behaviour in all program contexts. We then show that our semantics
induces precisely these relations for expressions and for commands, but not for declarations.
Instead for declarations, contextual equivalence coincides with an abstraction of semantic
equivalence. This in fact shows that the abstract semantics is itself fully abstract.

6

We then develop a Hoare-style axiom system for our language, and prove its soundness
with respect to our semantics. The proof system is also relatively complete in the usual
sense [7]. We give some examples to illustrate the use of the system, and we demonstrate
that some of the proof rules for blocks in the literature can be derived in our system. In
the final section of the paper we compare our work with that of other researchers, draw
some conclusions and make some suggestions for future research. We provide an Appendix
containing definitions and lemmas omitted from the paper, and which contains sketched
proofs of some of the results mentioned there.

Notation.

Throughout the paper, we make use of common concepts pertaining to relations and
functions. Thus, a relation R between two sets X and Y is a subset of the Cartesian product
X x Y. The domain of such a relation is dom(R) = {z € X | Jy € Y.(z,y) € R}, and its
range rge(R) is {y € Y | 3z € X.(z,y) € R}. A relation R is a partial function if for every
z in its domain there is a unique y with (z,y) € R. When R is a partial function we write
R: X — Y. A partial function is total if its domain is the whole of X. When R C X x Y
and R CY x Z are relations, their composition R' o R C X x Z is defined

RoR = {(z,2z) | y.(z,y) E R & (y,2z) € R'}.

The composition of two partial functions is again a partial function.

We also make use of restriction operations on relations. When R C X xY and Ais a
set, we write R|A for the relation obtained by restricting the domain of R to A; this is the
relation on A x Y defined by

RIA = {(z,y) € R|z € A}

We also use R || A for the relation obtained by restricting both domain and range of R to
A, and R|A for R | (dom(R) — A):

RUA
R|A

{(z,y) ER|z€A & y€ A},
{(z.y)ER|z¢ A & y¢ A}

We also use R\A for the relation obtained by restricting R’s domain to X — 4, i.e.,
R\A = {(z,y) e R|z ¢ A}.

And R/A denotes the result of restricting the domain to ¥ — A:
R/A = {(z,y) eR|y & A}.

When f : X — Y is a partial function, z € X and y € Y, we write f + [z — y] for the
partial function with domain dom(f) U {z} agreeing with f except at &, which it maps to
y. More generally, if f: X — Y and f': X' — Y’ are partial functions we write f + f' for
the partial function with domain dom(f) U dom(f") agreeing with f’ on dom(f’) and with
J on dom(f) — dom(f’).

2. The Programming Language.

As usual for an imperative language, we distinguish between the following syntactic
categories:

I € 1de identifiers,
E € Exp expressions,
A € Dec declarations,
I' € Com commands,
Il € Prog programs.

The abstract syntax for our language is described as follows.

Identifiers.

We assume that the syntax of identifiers is given; for concreteness, identifiers will be
strings of lower-case italic letters. We assume also that it is possible syntactically to deter-
mine the identity of two identifiers; we write Iy = I; when two identifiers are identical.

Ezpressions.

We also assume given the syntax of expressions; the precise syntax is unimportant,
except that an identifier is an expression, so is a numeral, and we allow simple arithmetical
operations on expressions. Wherever our semantic development depends on an assumption
about expressions we will make the assumption explicit. By isolating the important prop-
erties of expressions in this way, without being explicit about the syntax of expressions, we
will prove results which are applicable to a wide variety of expression languages. We assume
the usual notion of a free (occurrence of an) identifier in an expression, and we write free[£]
for the set of identifiers which occur free in an expression E. Trivially, free[I] = {I}. An
expression having no free identifier occurrences is said to be closed.

Declarations.

For the syntax of declarations we specify:

A= null| new I = E | alias Iy = I | Ag; A;.

We associate with a declaration A the following syntactic sets: dec[A], the set of
declared identifiers; free[A], the set of free identifiers; and a[A] C dec[A] x free[A], the set
of aliases established by A, summarized as a relation between the declared and free identifiers
of A. It will also be convenient to use the abbreviation ids[A] for dec[A] U free[A], the set

8

of identifiers occurring (either free or bound) in A. Formally, we define:

dec : Dec — P(Ide)
dec[null] = 0
dec[new I = E] = {I}
dec[alias Iy = I,] = {Io}
dec[Ag; Aq] dec[Aq] U dec[A4]

free : Dec — P(Ide)
free[null] = 0
free[new I = E] free[E]
free[alias Iy = I1] {L}
free[Ao; Aq] free[Ao] U (free[A1] — dec[Ao])

I

aA] C dec[A] x free[A]
afnull] = 0
anew I = E] = 0
alalias Iy = ;] = {(J, 1)}
afAo; Ai] = (e[A1]/dec[Ao]) U (afAc]\dec[A4]) U (aA1] 0 afAo]).

The clause defining a[Aq; A,] illustrates our restriction notation, and is equivalent to
the following:

a[Ag; A1] = {(I',I) € a[Ao] | I' & dec[A4]}
U {(I',I) € a[A1] | I & dec[Ag}
u {(I' 1) | 3. (I', L) € a«[A1] & (Io,]) € a[Ad]}.

It is clear from the definitions that ids[Ag; A;] = ids[Ae] Uids[A;]. Note that dec[A]
and free[A] need not be disjoint: an identifier may have a free occurrence and a bound
occurrence in the same declaration, as in for example the declaration new z = z + 1. A
declaration is closed if it has no free identifiers.

Commands.

The purpose of a command is to alter the values of variables: We use the following

syntax:
[:= skip | I:=E | T'g; I'1 | begin A; I end.

Again, identifiers may occur free in commands; a formal definition of the set of free identifiers
of a command is given by:
free : Com — P(Ide)
free[skip] = 0
free[I:=FE] free[E] U {1}
free[To; T'i] free[To] U free[T']
free[begin A; T end] free[A] U (free[I'] — dec[A]).

Il

Il

Again, a command is closed if it has no free identifiers.

9

Programs.

A program has the following form:
II ::= begin A; I'; result F end,

where A is a closed declaration containing bindings for all of the free identifiers of ' and
E. Thus, a program contains no free identifier occurrences, and is therefore closed. This
syntactic constraint is reasonable and is commonly imposed in practical programming lan-
guages.

Of course, this is a particularly simple form of programming language. We have omitted
conditionals and loops, and we have a very simple structure for programs. In fact, the
program structure has been chosen to correspond with a simple notion of partial correctness.
The evaluation of a result expression is analogous to evaluating a “post-condition” on the
values of identifiers after executing a command, although of course this is not a boolean
post-condition. The connection with the usual formulation of partial correctness will be
made later in the paper, after the relevant definitions have been introduced. It should be
clear how to extend the notion of program to allow (for example) sequential composition at
the program level, or more than one result expression, possibly to be evaluated at several
points during program execution (perhaps by adding an output command to the language).

Informal Semantics.

Informally, we may explain the semantics of these constructs as follows. We are de-
liberately a little vague here; in particular, we do not define precisely what is meant by a
“yariable”. It suffices for the moment to assume only that variables can be named, and
that a variable possesses a value, can be initialized, and can be updated. As usual, even
at this informal level of description, we are careful to distinguish between variables and the
identifiers used to name them.

Declarations. The purpose of a declaration is to introduce a new set of variables and
to bind them to declared identifiers:

e The null declaration has no effect.

e A simple declaration of the form
new I = F

introduces a new variable and binds the identifier I to it; the initial value of the variable is
the current (declaration time) value of the expression E. The declared identifier I is not an
alias for any other identifier.

e A sharing declaration of the form
alias Iy = I

binds Iy to the variable named by I;: the effect of the declaration is to make I an alias
of I, so that any assignment to Iy within the scope of this declaration will also affect the
value of I; (and conversely, an assignment to I; within this scope will also update Ip). The
declaration also initializes the value of I to the current value of I;.

e A sequential composilion of declarations
Ag; Ay

10

accumulates effects from left to right; thus, the scope of Ag in this setting will include A,
but not vice versa. An identifier is declared by Ag; A; iff either it is declared by Ag or it
is declared by A;. If a particular identifier is declared in both Ay and A; then the latter
declaration has precedence. An alias for an identifier declared in Ay but not again in A,
is determined by Ag. For an identifier declared in A; there are two (mutually exclusive)
possibilities for its alias, depending on whether or not it is declared as an alias for an
identifier declared in Ag.

Commands.
Informally, we explain the intended semantics as follows:
e The skip command has no effect.

e An assignment I:=F updates the variable named by I, changing its value to the
current (execution-time) value of the expression E. This also has the effect of altering the
values of all identifiers which share with I.

¢ Sequential composition of commands is denoted by I'g; T';. The intention is first to
perform I’y and then to perform I'j, so that again effects accumulate from left to right.

e Finally, a block
begin A; T end

allows the block body I' to be executed within the scope of a declaration A. An identifier
in dec[A] is said to be local to the block, and an identifier in free[T'] — dec[A] is global.
Assignments made within the block may affect and be affected by the variables introduced
in the declaration; but the scope of the declaration does not extend outside the block, so
that variables bound to local identifiers of the block become inaccessible on block exit.

Programs.

The meaning of a program begin A; I’ result E end will be the value of the expression
FE in the environment formed by first performing the declaration A and then executing the
command I'. The fact that a program is closed will ensure that this value is uniquely
determined and that during program execution all identifiers used in the program have
been declared. Moreover, since all declarations initialize their declared identifiers, there will
be no attempts to evaluate uninitialized variables during program execution, so that we
need not worry about runtime errors in the semantic definitions.

Ezample declarations.
1. The declaration

Ag: newz=1,newy=z+1

is closed. Its effect is to introduce two new variables named z and y, with the variable
named z initialized to the value 1 and y to 2. We have dec[Ao] = {z,y},free[Ao] =0, and
a[Ao] = 0. None of the declared identifiers is an alias for any other identifier.

2. On the other hand, the declaration
Ay nmewy=z+1; newz=1

contains a free occurrence of z, and the value used to initialize y depends on the cur-
rent (declaration-time) value of this free identifier. Here we have dec[A;] = {z,y} and
free[A1] = {z}, but still a[A;] = 0.

11

3. The declaration
Ay : alias z = y; alias y = 2
introduces an alias = for the “old” y, and an alias y for the old z. We have free(A;) =
{y,2},dec(Az) = {z,y} and a(A2) = {(z,¥),(y, 2)}-
4. If we reverse the order of the previous example we get

Az: aliasy=z; aliasz =y,
with free(Az) = {z} and a(A3z) = {(z, z), (v, z)}. Both of the declared identifiers are aliases

for z.

5. To illustrate the effects of nested declarations of the same identifier, consider
Ay : alias ¢ = y; alias = = 2.

Here we get a single declared identifier z, and it will be an alias for z (not also for y, unless
z happens already to be an alias for y). We get free(A4) = {y,2},dec(A4) = {z} and
a(A4) = {(=,2)}

6. For an example mixing the two forms of declaration, consider
Ags: alias z = a; new y = z; alias z = z; alias z = b.
Here we have free(As) = {a,b},dec(As) = {z,y, 2z} and a(As5) = {(=,b),(z,a)}.

Ezample commands.

1. The command z:=z + 1; y:=y + 1 first increases the value of all identifiers which
share with z, and then increases the value of all identifiers which share with y; if z and y
share, this of course will add 2 to the value of both z and y.

2. The block command
begin

new y = 0;

z:=zr+1;

y=y+1
end

increments the value of identifiers which share with the global identifier x; the assignment
to the local identifier y has no effect outside of the block.

3. The block
begin

alias z = z;

=241,

yi=y+1
end

has the same effect as the command in Example 1, because the local identifier z shares with
the global identifier z. |

4. Fori=0...4let I'; be the block begin A;; z:=z + 1; y:= y+ 1 end, where the
A; are as in the previous set of examples. Both I'g and T'; are closed, and have no effect
when executed. Both I'; and T4 will first increment by 1 all aliases for (the global) y, and
then increment by 1 the aliases of z. I's increases by 2 the values of all aliases of z.

12

3. Semantics.

Locations, Environments and Stores.

We first define a standard location based semantics for our language. We assume given
a countably infinite set Loc of locations, so that we can ignore problems associated with
finite store limitations and storage overflow. Although it would be easy to modify our model
to treat storage overflow errors accurately, we will not consider this issue here in any detail.
We are primarily interested in proving properties of programs that are true provided no
storage overflow occurs during program execution. Since in our language every program
uses only a finite amount of storage we are effectively supposing that every program is
executed on a store large enough for it.

It will also always be the case during program execution that all identifiers used in a
program possess a value; thus we will not need to deal with runtime errors owing to failure
to initialize a variable. Instead, we build this property directly into the semantic definitions.

As indicated earlier, the purpose of locations is to serve as “variables”; a declaration
such as new z = 0 is described as binding the identifier z to a “fresh” location distinct from
all locations currently in use, and initializing the contents of this location to 0; in slightly
more abstract terms, the declaration introduces a new variable, named z, different from all
variables currently declared, and initializes its value to 0.

An environment is a finite partial function u from Ide to Loec, and a store is a finite
partial function s from Loc to V. We will use U and S for the sets of environments and
stores respectively. The domain of an environment, dom(u) = {I|3] € Loc. u(l) = I},
consists of the identifiers for which there is a current declaration; the domain dom(s) of a
store consists of the locations which are currently active or in use; this is often called the area
of 5. Locations in rge(u) = {l € Loc|3I € Ide.u(I) = I} are accessible, and the locations in
dom(s) — rge(u) are inaccessible. Similarly, for a set X of identifiers, the locations accessible
from X are in u(X) = {l € Loc | 3T € X. u(I) = 1}.

A pair {u, s) is consistent if and only if dom(s) D rge(u). Thus, (u, s) is consistent if and
only if all accessible locations are in use; this property will hold at all times during program
execution. We refer to a consistent pair (u,s) as a configuration, and we let C C U x §
be the set of configurations. In addition, we define for a set X of identifiers the set of
configurations Cy, to be:

Cx = {(u,s)|dom(u) D X & dom(s) D rge(u)}.
We extend the restriction notation to configurations in the following way:
(91X = (ulX,slu(X)).
We also extend the overwriting operation to configurations, defining
(u,s) + (', ¢') = (u+d',s+5).

Let new be any function from finite subsets of Loc to Loc satisfying the following
“newness” property:
YA Cg, Loc.(new(A) € A),

i.e., a new function simply selects a location which is outside of the set supplied. Since every
store has a finite domain, and we assumed that Loc is infinite, new(dom(s)) will always be
defined. The consistency property of configurations guarantees that the location chosen by
new(dom(s)) is inaccessible from u, so that no “accidental” aliasing will occur when storage
is allocated.

13

Standard Semantics.

It is common to define semantic functions of the following types for a language such as

ours:
E:Exp—-C—-V

M:Com—-C—S

D:Dec—C—C

P :Prog— V.
These types reflect the facts that commands change the store but not the environment
(except locally during block execution), and that declarations affect the environment and
also the store (since declarations claim storage and initialize their variables). However, these
types are somewhat looser than necessary, since they do not build in and take advantage
of certain semantic properties. For instance, £E[E]{(u,s) need only be defined when all of
the free identifiers of E have proper values, i.e. when dom(u) D free[E], and similarly for
declarations and commands. Moreover, for declarations it is enough to specify the result
D[A](u,s) explicitly on dec(A). It is also convenient for presentational purposes to modify
the type of M so that the environment is carried along too, although as we remarked before
no command changes the environment. Hence, we will actually define semantic functions
satisfying the following type constraints:

ELE] : Creemy — V
D[A] - Cfree(A) T Cdec{A]
M[I]: Cfree(I‘) S Cfree(r‘)'
We omit details of the semantics of expressions, but we make the standard assumption that

the value of an expression depends only on the values of its free identifiers. The clauses are
fairly standard, and we refer to [10,22,34,37] for motivation.

El(u,8) = s(u(l))

Dnull](u,s) = (0,0)
Dnew I = El(u,s) = ([~ I],[l— E[E]{(u,s)]), where I = new(dom(s))
Dlalias Iy = Ii](u,s) = ([lo — u(l1)],slu(l1))
D[Ag; Ar]{u,s) = {uo+ u1,s0+ 51)
where (ug,s0) = D[Ag](u,s)
and (ui,s1) = D[A1](u+ uo,s + so)

M([skip)(u,s) = (u,s)
MIT=E(u,s) = (u,5+ [u(T) — E[EN(u,)
MLy To)(u,5) = M[T2](MIT1](u,s))
M{[begin A; T end](u,s) = (u,s”|rge(u)),
where (u',s') = D[A}{u,s)
and (u+u',s") = M[T(u+ v, 5+ s")

P[begin A; I'; result E end] = E[EJ(M[T](P[A](0,0))).

14

Storage Management.

Several observations about the handling of storage in these definitions are worthy of
note. Firstly, notice again the réle played by the new function in the semantic clauses. We
did not specify the exact description of this function, merely assuming that it satisfied the
so-called newness property.

Secondly, the semantic clause for a block uses restriction to rge(u). We can reformulate
this clause as follows:

M{[begin A; T end(u,s) = (u, (STTI@[A](y, 5)))irge(u)). (1)

QOur use of this operation models the de-allocation on block exit of all locations claimed by
new declarations on block entry. In fact, to be precise, we have specified that the locations
inaccessible from the current environment be de-allocated, and this will certainly include
these newly claimed locations. This is, therefore, a semantics which can be implemented
with an elementary type of “garbage collection”.

Some alternative semantic clauses for blocks are also worth discussing. One is obtained
by omitting the restriction, putting

M{begin A; T end](u,s) = (u,STTIDI[ANw,3)). (2)

Under this interpretation, once a location is allocated it never becomes deallocated, suggest-
ing an implementation without garbage collection. Another alternative is to restrict instead
to dom(s), setting

M{begin A; T end](u,s) = (u, (ST[TID ANy, 5)))1dom(s)). (3)

By restricting to dom(s) we de-allocate all locations claimed at the head of the block but
leave open the possibility of inaccessible locations: once a location becomes inaccessible it
remains so. In particular, if rge(u) is a proper subset of dom(s) then block exit will cause
a shrinking of the size of the store.

Thirdly, the semantics given here does not avoid unnecessary allocation of locations
when executing a declaration such as

new z =0; newz =1,

since according to the semantics above this causes the allocation of two locations, only one
of which remains accessible. Of course, the inaccessible location will also be deallocated on
block exit, but it remains in the domain of the store during block execution. It is primarily
for this reason that we defined a configuration to be a pair (u, s) with rge(u) C dom(s). It
is possible to modify the semantics of blocks so that a more careful allocation strategy is
used, say by additionally de-allocating inaccessible locations immediately before executing
the body of a block. If we define (u,s)* = (u,s|rge(u)) we may express this as:

M([begin A; T end](u,s) = (u,STTID[ANy, 5))*)*. (5)

This would then enable us to modify the semantic model by employing configurations that
enjoy an even tighter consistency property: that dom(s) = rge(u). Another way to do this
is to redefine the semantic function D by modifying the clause for sequential composition
to:

D[Ao; A1](u,s) (uo + u1,80 + 51)",
where (ug, so) = D[Aol{u,s)
and (ug, s1) = D[AJ{u+ ug,s+ so)™.

15

From the point of view of implementation, however, it is questionable if garbage collection
should be used after every block entry and every block exit.

We now have a variety of slightly different semantic definitions, employing more or less
restricted forms of storage management. We chose to deallocate inaccessible locations on
block exit, with the result that our semantics, as described by (1) above, satisfies:

M[begin A; skip end](u,s) = (u,slrge(u)).
This is also true of the semantics defined with (4). But if we use definition (2) or (3) we get
M|[begin A; skip end](u,s) = (u,s).

Similar equations hold for blocks like begin null; T’ end with a trivial declaration.

None of these fine points of storage allocation are important from a point of view of
proving correctness properties of programs, given our assumption that there is sufficient
storage space to prevent overflow. Nor are the distinctions between (u,s) and (u, s|rge(u))
relevant in this context. We will take care in the rest of the paper to state semantic properties
that remain true whatever storage management decisions are built into the semantics. Where
relevant we state precisely what properties depend crucially on storage details.

Auziliary Semantic Funclions.

It will be convenient to introduce some auxiliary semantic functions. We will use

DT[A] : Cree(ay — Cids(ay
defined by DI[ANuw,s) = (u,5) + D[Ay,s).

Clearly, D1 has the following denotational description:

Dl [null](u,s) = (u,s)
pf [new I = E){u,s) = (u+[I—1],s+[l— E[E]{u,s)) where ! = new(dom(s))
Di[alias I = L](v,5) = (u+ (Lo — u(l})],s)
DHAg Al(u,s) = DIAID! [Ad(n,5)).
Each of DT and D can be defined in terms of the other, since we also have the obvious

identity
D[ANu,s) = (DI[Al(y,s))ldec]A].

Using Dt may simplify presentation of certain results. For instance, the semantic
equation for blocks may be rewritten as

M|[begin A; T end](u,s) = M[F](D”A](u,s))lu,

if we define (uf, sf)|u= (u, sflrge(u))‘

We also introduce auxiliary functions describing the effect of a declaration on the en-
vironment and on the store separately: R[A](u,s) and S[A](u, s) will be the environment
and the store of D[A](u, s), and similarly for Rt,ST, and D

D[ANu,s) = (R[AKwy, s), S[AL(y, s))
DI[ANu,s) = (RT[A)w,5), ST[AL(w, 5)).

16

These auxiliary functions can also be described denotationally, i.e. by structural induction
on A. The details are obvious, as are the relationships between them:

RIU[AJ(w, s) = u+R[ANy,),
SHANu, s) = s+ S[ANy, 5).

It will also be useful to let Sf [T]{u, s) denote the store of M[I']{u, s). From the definitions,
it is clear that the environment of M[I'](u,s) is still u.

Finally, we define an auxiliary semantic function that describes precisely the aliasing
relationships among global and local identifiers of a block:

T[AY(u,s) C dom(R[A){(u,s)) x dom(u),
T[ANu,s) = {(I',]) | u(l) = R[ANu,s)(I")}.

Similarly we may define

Tt [Al(u,s) € dom('RtI[A](u,s)) x dom(u)
THANu,s) = {(,1) | u(l) = RY[AY(u, s)(1)}.

Ezamples (revisiled).

Let {(u,s) be a configuration defined on z,y,z with dom(s) = rge(u). Let lp =
new(dom(s)) and /; = new(dom(s) U {lo}). Let I;,ly,I; be the locations u(z),u(y),u(z).
Let vy, vy, v, be the values of z,y, z respectively in (u,s). Then we have

D[Ag]](ﬂ,ﬁ) ([1,‘ — fg,y — 11], [!g — 1,{1 — 2])
D[Au,s) = ([z— l,y— o], [~ 1,10~ 2])

Il

If I, and [, are distinct, then

D[A)(u,s) = ([z+—ly,y— L], [ly — vy, — v.])
D[A3](u, s) ([x— L,y — L], [l, — v.])
DA (u,s) = ([z— L], [l. — v,]).

We also have

M[Lol{u,s} = (u,s)

ML), s) = (u,s)

MITal{u,s) = {5+ [y = (8 + 1), 1o = (o + 1)) ity #1,
= (u,s+ [ly — (vy +2)]) ifly =1L.

Semantic Properties.

Since identifiers are aliases when they denote the same location, it is natural to define,
for a configuration (u,s), the sharing relation share(u) on dom(u), to be:

share(u) = {(I,I') | u(I) = u(I")}.

This is clearly an equivalence relation on dom(u). For I € dom(u) we call share(u)(I) =
{I' | u(I') = u(I)} the sharing class of I in u. We also define the valuation

val(u, s) = s o u,

17

which is clearly a total map from dom(u) to V giving values to the identifiers in dom(u).
Obviously, by definition, val(u, s) gives the same value to all identifiers in the same sharing
class.

We define a natural equivalence, called sharing equivalence, on environment-store pairs:
(u,s) and (u',s') are sharing equivalent iff dom(u) = dom(u’), both u and u' determine the
same sharing relation, and s o u and s’ o v’ give the same values to all identifiers. We also
define a relativized version: (u,s) and (u’,s’) are sharing equivalent on a set X of identifiers
if dom(u) N X = dom(w’) N X, both u and u’ determine the same sharing relationships
among identifiers in X, and sowu and s’ o u’ give the same values to all identifiers in X. We
write (u,s) ~ (u’, ') to indicate sharing equivalence, and (u,s) ~x (u/,s’) to indicate the
relativized version.

Definition. The relation a2 (sharing equivalence) on configurations is defined by

(u1,81) = (uz,82) < dom(u;)=dom(uy) & share(u;) = share(us)

& wval(uy, s1) = val(us, s2).

Definition. The relativized version of sharing equivalence to a finite set of identifiers
X is defined (for dom(u) = dom(u’) D X) by:

(u,s) ~x (v',s') & val(u,s)| X = val(u',s')| X & share(u) § X = share(u’) § X.

As usual, val(u, s)| X denotes the restriction to X of val(u,s) and share(u) § X is the
restriction of share(u) to a relation on X x X:

share(u) Y X = {(I,I') € share(u) | I € X & I' € X}.

It is clear that this is in fact an equivalence relation on X.

Notice the obvious property that (u,s} = (u,s|rge(u)}. Thus, in all of the various
semantics discussed earlier, we get the relationships

M[begin A; skip end](u,s) =~ (u,s),
M{[begin null; T end](u,s) ~ (u,s).

In other words, = blurs the distinctions between semantics which differ in inessential details
of storage handling.

It is perhaps worth noticing that sharing equivalence of environment-store pairs co-
incides with an equivalence based on permutation of locations. If (u,s) and (u/,s') are
sharing equivalent, then we may define a bijection 7 from rge(u) to rge(u’) by setting
w(u(I)) = w'(I) for all I in dom(u) = dom(w'). This is a bijection, since n(u(l)) = w(u(lz))
iff w'() = v/(I2) iff u(I;) = u(lz) by assumption. The converse is also true: if 7 is a bijec-
tion from rge(u) and we define ' = wou and s’ = sow~! then (u,s) and (u’,s’) are sharing
equivalent. The bijection m behaves rather like a substitution of locations for locations.
Although this gives us an alternative description of sharing equivalence, we will not use it
in the paper.

Sharing equivalence, and the concepts of sharing relations and valuations, play an
important role in formulating and proving semantic properties of our language.

18

Aliasing.

When we introduced the syntax of declarations we also defined the syntactic function
a(A) C dec(A) x free(A) and said that it expresses the aliasing relationship between iden-
tifiers declared in A and the already declared identifiers occurring free in A. We now make
this precise.

Lemma (i). For all A and all (u,s) € Cfree(a)’

T[A)(u,s) = a[A] oshare(u).
Proof. By structural induction on A, using the inductive definitions of D[A] and «[A].
By structural induction on A.
e The cases null and new I = E are vacuously true, since in each of these cases
a(A) = 0 and T[A](u,s) = 0.
e For A of form alias Iy = I; we have
a(A) = {(I, 1)}
R[AK(u,s) = ([Io — u(11)], slu(L1))
T[AKu,s) = {(Io, 1) | u(l) =w()} = {(Zo,]) | (I1,]) € share(u)}
and the result holds.
e For A = Ag; Ay, let (ug, s0) = D[Ao]{u,s) and (u1,s1) = D[A]{u + uo, s + s0), so

that
R[[A](uas) = up+u

TIAlw,s) = (1) |u(D) = (w0 +w)(I)}.
By the induction hypothesis for Ay and for A,
T[Ao](u,s) = a(lp) oshare(u)
T[A]{u+ uo,5+ s0) = a(A;) o share(u + up)
And by definition we also have, for I’ € dec(Ag) and I € dom(u),
(Io, I') € share(u + uo) < (lo, I') € T[Ao]{u,s)
& (Io, I') € a(Ao) o share(u).

Hence,
T[AKu,s) = {(I',]) | u(I) = (o + w1)(I')}
= {(I',]) | I' € dec(Ag) — dec(A1) & u(l) = uo(I')}
U{(I’,I) | I' € dec(A1) & u(l) =ui(I')}.
Now I’ € dec(Ag) — dec(Ay) & u(l) = uo(I’) if and only if (I',I) € a(Ao) o share(u) and
I' € dec(Ay), by the induction hypothesis for Ag.

And u(I) = uy(I’) iff there is an Iy € dom(u) U dec(Ao) such that u(I) = (u +
uo)(Io) = ui(I'); equivalently, iff either u(I) = uo(lo) = ui(I’) for some Iy € dec(Ao) or
u(I) = u(lo) = ui(I’) for some Iy € dom(u) — dec(Ao). The first of these situations is
equivalent to (I, I) € a(Ag) o share(u) and (I',Ip) € a(A;) o share(u + uo) for some Io,
using the induction hypothesis for Ay and for A;. Rewriting, this is equivalent to

Aly. (I', 1) € a(Ay) & (1o, I) € a(Ao) o share(u).
Similarly, the second of these situations is equivalent to
(I', Ip) € a(A1)/dec(Ao) & (I,Io) € share(u).
The result follows, since
a(A) = a(Ap)\dec(Ar) Ua(Ar)/dec(Ap) U (a(Ay) 0 aAp)).

19

Invariance Properties.

We now state and prove some obvious Invariance properties of declarations and com-
mands.

Proposition (ii). For all declarations A and all (u,s) € Chree(a)’
(a). dom(R[A](u,s)) = dec(A),
(b). rge(R[A)u,s)) Ndom(s) C u(free(A)),
(¢). S[A]{u,s) agrees with s on dom(S[A](x,s)) N dom(s)

Proof. An elementary structural induction on A.

e For A = null all three properties are trivially true, since R[nulll{u,s) = 0,
dec[null] = 0, and S[null](u,s) = 0.

e For new I = E we have

Rnew I = E](u,s) = [I— 1]
S[new I = E](u,s) = [l = E[E]{u, 5)]
where [= new(dom(s)).

The properties are obviously true, since [is not in dom(s) and I is the only declared identifier.

e For alias Iy = I; we have

R[alias Iy = I]{u,s) = [lo — u(l1)],
S[alias Iy = I1](u,s) = [u(l) — s(u(L)))].

Properties (a) and (c) are obvious. Property (b) holds because I is free in the declaration.

e For A = Ay; Ay, we may assume the properties for Ag and for A;. We have

R[AJ(u,s) = uo+ u1,
S[A](u, s) 50 + 81,
where (ug, so) = R[Ao](u,s)
and {uy,s1) = R[A1]{uv+ uo, s+ s0)-

By induction hypothesis (a) for Ag and A;, dom(ug) = dec(A) and dom(u;) = dec(A,).
Hence, dom(up+u;) = dom(ug)Udom(u;) = dec(Ag)Udec(A;) = dec(Ag; Ay), as required
for property (a).

By induction hypothesis (b) for Ag and Ay,

rge(ug) Ndom(s) C u(free(Ay)),
rge(ur) Ndom(s + s0) C (u + ug)(free(A1)).

We also have, by definition of +, that dom(s + s9) = dom(s) U dom(sp). Hence,

rge(R[A](u, s)) N dom(s)

1l

rge(ug + u1) N dom(s)
(rge(ug) N dom(s)) U (rge(u1) N dom(s))
(rge(up) Ndom(s)) U ((rge(uy) Ndom(s + sp)) N dom(s))
(rge(uo) Ndom(s)) U ((u + uo)(free(A;)) N dom(s))
by (b) for A4

N

C (rge(uo) Ndom(s)) U u(free(A,) — dec(Ag))

since up(free(A;)) C rge(uo)
C u(free(Ap)) U u(free(A,) — dec(Ag)) by (b) for Ag
= u(free(A))

20

as required.

Finally, for property (c), we have the induction hypotheses:

so agrees with s on dom(sg) N dom(s);

s agrees with s + so on dom(s;) Ndom(s + sp).

Hence, sg + 51 agrees with s on dom(s;) N dom(s) and on dom(sg) N dom(s), as required.

]
Corollary (ii1). For all (u,s) € Chree(a):
(a). dom(RI[Al(u,s)) = dom(u)U dec(A).
(b). Ri [A){u,s) agrees with u on dom(u) — dec(A).
(¢). st [A]{(u, s) agrees with s on dom(s).
Proof. Using Proposition (ii) and the definitions. (]

Note also that it now follows from the definitions of 7 and Tt that
T[A](u,s) Cdec(A) x dom(u),
T1[A](u, s) C(dec(A) U dom(u)) x dom(u).

We also get:
Corollary (¥). For all A and all (u, s) € Cfree(a)»

val(u,s) = val(u,s) + val('DTﬁa](u, s)) oTTﬂA](u,s).

Proof. 1t is enough to show that whenever (I',I) € Tt [A){u, s) it follows that val(u, s)(I) =
val(DT[A](u, s))(I'). This is easy. When (I’,I) € Tt [A)(u,s) we have R [A)w, s))(I') =
u(l) by definition of TT. This location is also in dom(s), by assumption on (u,s). By
Proposition (i), st [A]{u,s) agrees with s on this location. Thus,

(SHAKy,)(RT[ANw, s))(IT))
STANu, 8))(u(I))

s(u(I))

val(u, s)(I)

val('DT [AY(u, s))(I")

1l

as required. |
Corollary (iv). For all A and all (u,s) € Cfree(ay
’Dtl[&]](u,s) ~ (u,s) on dom(u)— dec(A).

Proof. Immediate from the previous Corollary and the definitions. (|

21

Corollary (v). For any declaration A, and any set X of identifiers,
RI[A](u, 5)(X) N dom(s) € u(X — dec(A)) U u(free(A)).

Proof. Using property (b) of Proposition (i), as in the proof of that proposition. rt [AlNwu, s)l
agrees with u on X — dec(A), and agrees with R[A](u, s) on X Ndec(A). Thus,

(‘RT [Al{u, s))(X) Ndom(s) = u(X — dec(A))U ((R[AKy, 5))(X Ndec(A)) N dom(s))
u(X — dec(A)) U (rge(R[A](u, s)) N dom(s))
u(X — dec(A)) U u(free(A)),

N 1M

as required. |

Proposition (vi). For all T and all (u,s) in Cgyeery the store STIIF](H,S) agrees with
s on rge(u) — u(free(T)).
Proof. By structural induction on I,

e For skip the result is trivial.

e For I:=E, the result follows from the fact that, for any v, the store s + [u(I) — v]
agrees with s except at u(J).

e For I" of form I'y; Ty, we have

M[Tu,s) = MT1]J(M[To](u,s)),
so that SJ[[[‘](u,.s) = st [C1J(MTo){u, s)).

The environment of M[I'o](u,s) is still u. Hence, by the induction hypothesis for I'y,
ST[I‘I:H(M[FQ]](U,S)) agrees with st [Tol(u, s) except on u(free(T'1)). By the induction hy-
pothesis for T, st [To]{u,s) agrees with s except on u(free(I's)). Hence, ST[I‘](u, s) agrees
with s except on u(free(Ig)) U u(free(I';)). Since free(T') = free(T'y) U free(T';), the result
follows.

e For a block ' = begin A; 'Y end, we have
ST, s) = STMI@T ALy, 5)).
We also have, by Corollary (v),
('RT [Al{u, s))(free(I*)) N dom(s) C u(free(T’) — dec(A)) U u(free(A)) = wu(free(I)),

By the inductive hypothesis for IV, st [F’]](DT[[A](H,S)) agrees with STHA](H,S) except on
RY[A](u, s)(free(I")). Hence, this agreement holds on rge(u) — u(free(I’)). By Corollary
(1i1), st [A]{u, s) agrees with s on all of rge(u). Hence st [P'](I)t [A](u,s)) agrees with s on
rge(u) — u(free(I')) as required.]

Corollary. TFor all T and all (u,s) € Cfree(r‘)’
M[T]{u,s) =~ (u,s) on dom(u)— share(u)(free(I')). u

Note also that

22

Corollary. For all T, A, and (u,s) € Cfree(begin a; T end)’
val(M[begin A; T end](u,s)) = val(u,s) + val(M [I‘](’Di[A]{u, s))) o TT[A](u, 5).

Proof. As in the proof of the analogous property for declarations (Corollary (*)). It is
enough to show that when I is not in the range of Tt [Al(u, s), the value in location u(I) is
unaffected by the block, and when (I’,1) € TT[A](u,s) we get

val(M[begin A; T end](u,s)(I) = val(M [l"](’Dt [AKu, s))(T')

. The first part is easy: if I is not in the range of /L [A]{(u, s) then u(I) is inaccessible from
the environment R [A]{u,s). Hence, its contents cannot be modified by any command
executing in that environment. For the second part, we argue as follows.

(', 1) e TT[AL(u,8) & (RT[ANu,s))I') = u(D).

Hence, if (I',I) € 7t [AX(u,s) then

(STrI@ AN,)(u())
(ST AL, 8))(RT ALy, 5)(I))
val(M)P [AN(w, s))) (1)

val(M[begin A; T end](u,s))(I)

1

Influence Properties.

In statically scoped languages such as ours it is well known that the meaning of a
term depends only on the semantic attributes of its free identifiers. One might attempt
a formal statement of this type of property for commands as follows: if {u,s) and (u,s’)
are configurations involving the same environment u, whose stores s and s’ agree on the
contents of the locations accessible from the identifiers occurring free in T, then the final
stores M[T']{u,s) and M[I'](u,s’) will also agree on these locations.

However, in trying to prove these properties by structural induction on I' the case
for blocks requires an analogous property for declarations. But whereas DWA}(u,s) ex-
tends (u,s) in a natural manner, there is no need for it to have the same environment as
pi [Al{u,s'), given only that s and s’ agree on u(free(A)). Certainly their environments
have the same domain, but the environments need not agree on dec(A), because the lo-
cations generated by new(s) and new(s’) need not be the same. Similarly, the stores may
differ.

Instead, the most one can say here is that D[A](u,s) and DI[A](u,s') are sharing
equivalent as defined earlier. In fact, an even more general property holds: whenever (u, s)
and (u’,s’) are sharing equivalent on the free identifiers of A, D[A](u,s) and D[A{v’, 5')
are sharing equivalent on dec(A); and ’DT[[A](u,s) is sharing equivalent to pt [A](«,s") on
ids(A).

In formulating Influence Properties we start with a natural assumption about the se-
mantics of expressions.

Assumption 1. For all expressions E and all {u,s) and (u’,s’) in Ctree(ry:
(u,s) Sfree(E) (',s") = E[ENu,s) = E[E](¥,s"). n

23

Proposition 2. For all A and all (u, s) and (v, s} in Cfree(ays
(u,8) mx (u,s) & X Dfree(A) = DIAw,5) myydecia) PHIAKY, o).

Proof. By structural induction on A.
e For A = null the result is trivially true.

e For A of form new I = E, assume (u,s) xx {v,s') and X D free(E). Let | =
new(dom(s)) and I = new(dom(s’)). By assumption on E, £[E](u,s) = E[E](v',s') = v,
say. Thus,

Il

DI[A](u,)
DA, s
Since | & dom(s) we get

(w+[I—1],s+ [l — v]),
(W + [Tl +[I'—v]).

share(u + [—1]) (share(u)|{I}) U{(L, 1)},
val(u + [I — I],s + [l — v]) = val(u,s) + [I — v],

so that

[

share(u + [I — {]) § (X U{I})
val(u + [L —],s + [{ — v]) (X U{I})

(share(u) 4 (X — {I})) U {(Z, D)},
val(u, s)| X + [I — v].

Similarly

share(u’ + [T — I']) (X U{I})
val(u' + [I — U'],s" + [I' = o)) (X U {I})

By assumption, share(u) || X = share(u’) § X and val(u,s)]| X = val(u’,s’)| X. The result
follows immediately.

(share(uw’) § (X — {1})) U{(Z, D)},
val(u', s")| X + [T — v].

For A of form alias Iy = I; we argue as follows. Assume (u,s) ~x (u',s’) and I € X.
We have
DAY w,s) = (u+ [fo— u(l)].8),

PHAN, s') = (' + Lo — (1)), s').
Clearly,
share(u + [lp — u(l1)]) = (share(u)|{Io}) U {(Zo,10)}
U{(I, Io), (Lo, I) | u(I) = u(l1) & I # o},
val(u + [Ip — u(l1)],s) = val(u,s) + [lo — s(u(1y))].

Similar equations hold for the primed versions. As in the previous case, the hypothesis that
share(u) |} X = share(u’) § X and that val(u,s)| X = val(u',s’)| X guarantees the desired
property, that

share(u + [Io +— u(11)]) U (X U {lo}) = share(u’ + [Io — u'(11)]) I (X U {})
val(u + [Io — u(1)], s) (X U {Io}) = val(u' + [Io — ¥'(I1)],s") (X U {Io}).

For the case of Ag; A; we may assume the property holds of Ay and of A;. Assume
(u,s) mx (u',s') and X D free(Ag; A;). That is, X D free(A¢) and X D (free(A;) —
dec(Ayp). By definition,

DA Ail(y,s) = DA [A(u,s))
Ay A, s) = DA AW, s).

24

By the induction hypothesis for Ag, since X D free(Ay),

ol [Aol(u, s) Fxudec(ao) ol [Ao)(w', &)

By the induction hypothesis for Aj, since X Udec(Ay) D free(A,),

ol [AII('DT[ﬂB]}(H, 5)) ~xudec(ao)udec(a,) o ﬂAl](Dt [Ao](w', 5)).

Since dec(Ag; A;) = dec(Ag) U dec(A;) the result follows.
|
Corollary. For all A, and all (u,s) and (v, 5') in Cfree(a)

(4,9) Mfree(ay (W5) = DIANu,8) Mgee(a) PIANY, &').

Proof. Assume (u, s) Rfree(a) (u’,s'). Then by the previous result pt [Al{(u, s) Rids(a)
pf [A](u', s'). By definition, 'R,T[A](u, s) agrees with R[A](u, s) on dec(A); and st [Al(u, s)
agrees with S[A](u, s) on rge(R[A](x, s)). Thus, on identifiers in dec(A), both pf [Alu,s)
and D[A]{u, s) determine the same sharing relationships and the same valuation. Similarly
for the primed version. The result follows immediately.]

The fact that the effect of a command depends only on the attributes of its free iden-
tifiers (specifically, their sharing properties and their values) is shown by:

Proposition 4. For all commands I' and all {(u, s) and (u’, s’) in Cfree(r‘)r
(u,s) mx (v, 8') & X Dfree(T) = M[IKu,s) Nppeery MITHY, s').

Proof. By structural induction on T'.

It is enough to show that
(u,s) mx (v,s') & X Dfree(l) = valM[I'y,s))lX = val M[T']{v, s')) | X,

since the sharing property is trivial.
e For I' = skip this is obviously true.

e For I:'=F we have

M[I:=E](u,s) = (u,s+ [u(I) — E[E(u,s)]),
so that val(M[I:=E](u,s)) = val(u,s) + [share(u)(I) — E[E](u, s)].

Similarly, val(M[I:=EJ{v’, s')) = val(u/, s') + [share(u')(I) — E[E](u’,s’)]. Assuming that
(u,s) =x (u',s') and X D free(E) U {I}, we have

share(u)(I) N X
val(u, s)| X

share(u')(I) N X,
val(u',s')| X,

from which our desired result follows.

e For I of form Ty; Ty we argue as follows. Assume (u,s) =~x (u/,s’) and X D
free(Tg; I'1) = free(Tg) U free(T'1). By definition,

M[To; I1[(u,5) = MIT1J(M[Tol(u,).

25

By assumption, X D free(Lg) and X D free(I'1). Hence, by the induction hypothesis for I'g,
M([Tol{u, s) mx M[Tol(u,).
By the induction hypothesis for A;,
ML J(M[To]{u, 5) mx M[T1}(M[To](w', '),

as required.

e For a block of the form begin A; I’ end, assume that (u,s) ~x (u’,s’) and
X D free(A) U (free(I") — dec(A)). By Corollary (*),

val(M[begin A; I' end](u,s)) = val(M[I'](DPI[ANu, s))) o TT[ANu, s),
val(M[begin A; T’ end]{u,s)) = va(M[I'|(DT[AL, 5))) o TT[A] (W, 5').

By Proposition * for declarations, since X D free(A),

DHANu,) % xudec(ay DT AN,).

Since X U dec(A) D free(I’), we can use the induction hypothesis for I, getting:
MNP AN, 5)) % ydec(ay MITIPTANKY,).

By Proposition (*), 7[A]{u,s) = a(A)eshare(u) and T[A](v/, s’} = a(A)oshare(u'). Hence,
for I € X and I' € X Udec(A), using the assumption that share(u) { X = share(u’) § X,

we see that

', D eTlalu,s) o (1) eTHAl,s).

The result follows. 1

Corollary. For all commands I' and all (u,s), {u,s’) such that s agrees with s’ on
u(free(T)), ST[T](u, 5) agrees with ST[[](u,s’) on u(free(T)).

These results can be used to prove (for instance) that the effect in any program context
of a term is invariant under change of storage allocation primitive, up to sharing equivalence.
We omit the details, since this property is not germane to this paper.

It is worth remarking that the abstract versions of Invariance and Influence Properties,
phrased in terms of ~, may be proved directly, without relying (as we did above) on the
concrete versions which mention locations explicitly. If one were to change storage man-
agement details, perhaps by altering the semantics of commands so that instead of garbage
collecting all inaccessible locations on block exit we merely restrict the store to dom(s), or
even of we omit the restriction, the concrete properties would need to be altered. But the
abstract properties still remain true.

26

Syntactic Substitutlion.

A (syntactic) substitution is a bijection between two finite sets of identifiers. We write
: X — X' to indicate that the domain and range of the substitution are (respectively)
X and X’. We say that such a @ is a substitution on X, and write # : X when only the
domain of @ is important. Clearly ! is also a substitution on X’. We say that 0 affects
I if and only if 0(I) # I. If @ is a substitution and Y is a set of identifiers we will abuse
notation and write 8(Y) for {#(I) | I € Y}, and similarly ' (Y) = {I | 6(I) € Y}. Clearly
H(XUY)=68(X)Ub(Y) and (X —Y) = 0(X)—6(Y). We use the symbol ¢ for an identity
substitution.

If 6 is a substitution on X and E is an expression with free(£) C X, we will write [0]E
for the expression obtained by applying 0 to all free identifier occurrences of E. Since 4
is a bijection there will be no accidental merging of occurrences of previously distinct free
identifiers when the substitution is performed. Hence, although we are as usual ignoring the
details of expression syntax, we may assume that

free([0]E) = O(free(E)).

In particular, a substitution applied to an identifier does the obvious: [f]] is defined to be
o(I).

We use a similar notation for substitution on commands: if # is a substitution on
free['] we write [#]T for the command resulting when the substitution @ is applied to all
free identifier occurrences of I'. A formal definition of [f]T', by structural induction on I will
follow shortly.

To obtain a satisfactory account of substitution for declarations we need to take into
account both bound and free identifier occurrences. It is sometimes necessary to apply one
substitution to the free identifier occurrences and another to the bound; two natural special
cases are when we wish to change free identifiers but leave declared identifiers fixed, or to
change declared identifiers but leave free identifiers fixed. For a fully general definition we
will write (6)[¢’] for the combination of a substitution & for the declared identifiers with a
substitution #’ for the free identifiers. Thus, (6)[6’]A will be the declaration resulting from
the application of this combined substitution to A. The special cases mentioned before will
then be of the form (¢)[¢’'] and (8)[¢] respectively.

The formal definition is:
Definition. For 0 : dec(A) and ¢’ : free(A) we define (8)[0']A by:

null

(new 61 = [¢]E)

(alias 61y = 6'I)

((0)[6"]A0); ((6)[6" + 6ldec(Ao)]Ar)

(6)[¢'Jnull
(0)[¢'](new I = E)
(0)[¢'](alias Iy = 1))
(0)[6')(A0; A1)

1l

Il

Clearly, if # and 6’ have overlapping ranges, the combined substitution (6)[¢'] on A may
result in capture of previously free identifier occurrences. Hence the following definition of
safe substitution.

Definition. The combination (0)[0'] is safe for A if 8’ + 0 is itself a substitution, or
equivalently if
B(dec(A)) N @' (free(A) — dec(A)) = 0.

The following lemma shows that safe substitutions do not cause capture.

27

Lemma. 1If (8)[¢'] is safe then

free((0)[0']A) = 6'(free(A))
dec((0)[0]A) = O(dec(A))
a[(0)[']A] = 6~ o a(A)o '
= {(6(1"),¢"(D) | (I', 1) € aA]}.

Proof. By structural induction on A.

e When A = null the properties are trivial, since free(null) = dec(null) = a(null) =
0 and 6(0) = 6'(0).

e For new I = E we have:
(0)[0')(new I = E) = (new 08I = [¢']E),

so that clearly

free[(6)[¢'Inew I = E] free([¢'] E),
dec[(0)[0'Inew I = E] = {01},
af(0)[¢'lnew I = E] = 0.
By assumption, free([¢'] E) = @'(free(E)). The result follows.

e For alias Iy = I; we have
free(alias 0o = 0'L1) = {¢'L,},
dec(alias 01, = 0'T) = {0Ip},
a(alias I, = 6'1,) = {(01,,0'11)}

as required.
e For A = Ag;A;, we have

free(A) = free(Ag) U (free(A;) — dec(Ao)),
dec(A) = dec(Ap)Udec(Ay),
a(A) = (a(A)o/dec(A1)) U (a(Ar)\dec(Ag)) U (a(Ar) o a(Ag)).

Let Al = (8)[8'] Ao and A} = (8)[0' + 01dec(Aq)]A1, so that (9)[0']A = Ab; Af. Hence,
dec[(D)[0')A] = dec[A] U dec[A!]
= O(dec(Ay)) U b(dec(Ay)),

by induction hypothesis for Ag and for Ay (using the fact that (8)[6’] safe for Ag; A; implies
(0)[0' + 6]dec(Ao)] safe for Ay).

Similarly,

free[(9)[¢']A] free[Ap] U (free[A]] — dec[AG])
0/ (free(Ao)) U [(6 + 01dec(Ao))(free(Ar)) — B(dec(Ao))]
0’ (free(Ao)) U 0’ (free(A1) — dec(Ag))

¢'(free(T)

1

I

as required.

28

Finally,
a((0)[0']A) = (a(Ap)/dec(A])) U (a(A])\dec(Ap)) U (a(A7) o a(Ag)).
By the induction hypotheses,

a(Ap)/dec(A}) = {(01,0']) | (I',I) € a(Ao)}/0(dec(Ar))
(6,01 | (I', T) € a(Ao) & I' & dec(A4)}
= 07! o (a(Ao)/dec(A)) o 0.

Similarly,
a(Af)\dec(Ay) = 071 o (a(A1)\dec(Ag)) o 8.

And a(A))oa(Ay) = (67 oa(Ar)o (0" + 0]dec(Ag))) o (67! o a(Ag) 0 8)
= 07 oa(A1)oa(Ag) ol
because (8 + 0|dec(Ap)) o 8]dec(Ap) is the identity on dec(Ao).
The result follows easily. |
Now we are ready to establish the proper semantic behavior of substitution.

If 8 : X — X' is a substitution and u is an environment defined on X, then uof~! is an
environment defined on X', with the obvious characteristic property that «o8~! treats the
image of I under @ exactly as u treats I. Hence, any substitution # : X — X' determines a
function Cy : Cx — Cx+ by

Colu,s) = (uof™1,s).

And, for identifiers I it is trivial that for all (u, s):

E[01I)(uo67",5) = E[I{u,s),
ie, E[61]oCs = E[I].

We make the obvious assumption that this property extends to all expressions:
Assumption 2. For all E and all ¢ defined on free[E],

5[[[9]15']]009 = SIIE]] [|

The proper semantic effect of syntactic substitution on declarations is expressed as
follows.

Proposition S1. 1f (0)[0'] is safe for A, then

D[(8) [91] AloCo = Cyo D[ﬂ]

Proof. By structural induction on A.
Case (a). For A = null we merely require that for all # and 6,
D[null] o Cy = Cp o D[null].
This is trivially true, since D[null](u,s) = (0,0).

29

Case (b). For A of the form new I = E, let (u,5) € Cree(y- We have:

(DLO)[0')A] o Co)(u,s) = Dlnew 8(I) = [0')Eu o6’ s)
([0(1) = 1], [t — E[O1ENu 0 ', 5)])

where I = new(dom(s))

([6(1) = 1), [l — E[EX(u,)])

by Assumption
([T =106~ [l — ELENy, 5)])

= Co([l = 1], [l = E[E](u, 8)])
= Cy(D[new I = E](u,s)) as required.

That completes the analysis for a new declaration.
Case (¢). For A of the form alias Iy = I, we have:

Dlalias 0(Io) = 6'(I1){uo 6", s)

([0(Io) — (uo 0"~)(0'(11))], sL(uo 07 (6'(11))))
([0(To) — u(1)], slu(f))

([To — u(I1)] 0 67, sl u(l1))

Co (Lo — u(ly), slu(1))

Cy(D[alias Iy = I](u,s))

D[(0)[0)alias Io = I;]{u o' ™", s)

1l

as required.
Case (d). For A of form Ag; Ay, let

(HQ,SQ) = 'DIIA(]]KH,S),
(u1, 51) D[AL](u + uo, s + s0),
so that D[Ag; A1](u,s) = (uo+ u1,80 + 81}

Let ¢ = 6' + 6]dec(Ap), and

(b, s6) = DO[IAcl(uo 8", 5),
(u},s1) = DO AN uo 0™ +uf, s +5p),

so that

DIOFIA0; AN uo 0™, 5) = DUO)PIAG ()" 1A 08", 5)

= (ug +u1, 80 + 51)

We want to prove that so + s; = sh + s] and that (ug + u1) 0 871 = uf + uj.

By induction hypothesis for Ag,
(UE,SQ-') = (U[] o] 9_1,50).

Thus, u} = ug o 6~! and s} = sg.
The induction hypothesis for A; is not immediately applicable, since in general we do
not have the identity uo 8 ' +ugo8~! = (u+ug)o08”'. However, these two environments

30

agree on the free identifiers of (6)[6"]A1, i.e. on 8'(free(A;) — dec(Ao)) U O(free(A;) N
dec(Ag)). That is enough to guarantee that

DIO)O"AT (w0 '™ +u3, s+ 50) = DLO)O"|AI(u+u0) o (6”)7,5 + s0),

by the Agreement Property for declarations. Now we have a form to which we may apply
the inductive hypothesis, yielding

(uf,s1) = (u1007",51).

The result follows, since (up + u1) 0 8~ = (ug 0 =1 + uy 0 8~ 1). That completes the proof.
|
A corresponding property for DI is easily derivable: in general, when (8)[#'] is safe,
RUO)[0)A w00, s) = uob' ™" + (R[Al(u,s)) 067,
st uo o™, s) = St[ANu,s).

In the special case when dec(A) is disjoint from dom(u) we obtain the following simple
property:
Lemma. If (0)[0']is safe and dec(A) N dom(u) = @ then

DH©B)[E)Alo Co = Cprpgydeciay ° PTIAL
Proof. By the previous result, if D[A](u, s) = (ug, s0) then
D[(O)[0') A (uo0 " s) = (ug o871, s0).
By definition,
DH(O)[0]ANuo 0" s) = (w08 ™" +ugo08™1,5+ s0).
We must show that (u + ug) o (6’ + 6ldec(A))™! = uo 0'~' + up 0 6~. Both of these
environments have domain 0(dec(A)) U ¢'(dom(u) — dec(A)) = #(dec(A)) U ¢'(dom(u)) by

assumption.

Now dom(ug) = dec(A), so that ug o 8! is defined only on rge(f|ldec(A)). Clearly, if
I € dec(A) we get

((u 4 uo) o (0" + Oldec(A))")(OI) = uo(I)

= (uo 0™ + ug o 6-1)(0I).

And for I € dom(u) we have

((u+ up) o (8" + 6ldec(A))"1)O'T) = (u+uo)(])
u(I)

(w0 8'™" +ug0871)(0'T).

As a counterexample to show the necessity of the disjointness constraint on A, choose
u = [z], up = [z — o] (coming perhaps from A = new z =0), fz =y, 6’c = . Then
(u+up)o (8 +6)~1 = [y l), whereas uo 0~ 4 ug 08! = [& 1,y).

31

For commands we specify free substitution as follows: The definition is straightforward,
except for the renaming of bound identifiers in a block in order to avoid capture.
[f]skip skip
V(I:=F) = [0]I:=[fE
[0)(To; T4) [6]To; [6]T1
[f]begin A; T end begin (n)[0]A; [6 + n]T' end,

where 7 is a substitution on dec[A] chosen to make (n)[f] a safe substitution. There are
of course many such 5, but we will show shortly that the choice is semantically irrelevant.
However, it would perhaps be worth mentioning that a completely unambiguous definition of
substitution can be obtained by choosing a particular renaming function newsubst that, given
a substitution 8 and a finite set of identifiers X returns a substitution on X consistent with
6 on all identifiers in dom(#) N X. Then we may always choose 7 to be newsubst(f, dec[A]).
This use of an auxiliary function satisfying a newness condition is of course reminiscent of
what was done earlier in the location semantics with the new function.

To express the proper behavior of substitution on commands we state:
Proposition S2. For all T and all substitutions ¢ defined on free(T'),

MI[6]T] o Cs = Cp 0 M[T].

Proof. By structural induction on T'.
Case (a). For I' = skip the property is trivial.
Case (b). For T of the form I:=F, we have
M[O)(I:=E){uo 07,5) = M[O(I):=[0]E|(uod",s)
(wo 81,5 +[uod~"(8(1)) — EO1ENuo 67", 5)))
(o1, + [u(l) — ELEN(u,)
= Co(M[I:=E](u,s))

1l

as required.
Case (c). For I of the form ['g; I'; we have:
MI6T] o Cs = MI[O]To; [6]T1] o Co
= M([0]T1] o M[[6]Tc] o Co
= MI[0]T1] o Cs o M[I'o] by hypothesis for T'g
= Cyo M[I'1] o M[[] by hypothesis for T'y
= CypoM[Iy; T4] as required.

Case (d). For T of form begin Ag; I’y end we have:
M[[f]begin Ag; Ty end](uod™,s) = M[begin (9)[6]Ac; [0 + n]l end](uo 671, s).
Let {uo,s0) = DA (u,s) and (uo,s1) = M[To]{uo,s0). By definition, M[T](u,s) =

(u, s1|rge(u)). By induction hypotheses we have:
DHBIAd(ob7"5) = Corn(P[Al(u,5))
= (ﬂg o (3 + T})_l, 30}
Co4n(M[Tol(P[A0])(u, 5)))
= (uoo(6+m)7", 1)

MI[8 + nITol(Con (DT [Ac)(u, 5)))

32

Hence,

M[OT (o007, s) = (uoB~?, s rge(uod™t)).

But since @ is a substitution on dom(u), rge(u) = rge(u o #~1). The result follows easily.
]
Corollary. If n : dec(A) has range disjoint from dom(u) then

M[begin A; I’ end](u,s) = M[begin (9)[c]A; [t + 9] end](u,s).

Proof. By previous results. 1
Corollary. If : dec(A) makes (n)[¢] safe, then

M{[begin A; T end](u,s) = M[begin (1)[¢]A; [t +]I end](u, s).

Proof.
M{[begin (9)]A; [t + 7T end](u,s) = M][[]|begin A; T end]{u, s)
= M][[¢]begin A; T end]{uo ¢!, s)
= M|begin A; T end](uo:™},s)
= M|[begin A; T end](u,s).
|
To show the necessity of these constraints:

Ezamples.
1. Let Ag be the declaration heading the block

begin
alias z = z;
new y = 0;
=z +1
end.

This contains a declaration for y, although y does not occur free in either the declaration
or command of the block. Clearly, the effect of the block is identical to that of the single
assignment z:=z + 1. However, when we change the bound identifier from z to y, we get
the block

begin
alias y = z;
new y = 0;
y=y+1
end

which is semantically identical to skip, because the assignment now affects only a local
identifier of the block. &

2. In this example, y occurs free in the declaration, but not bound in the declaration
or free in the command:

begin
new z = (;
alias z = y;
zi=z+1
end.

33

This block is semantically equivalent to the single assignment y:=y+ 1. Again, the renamed
version has no effect. §

3. In each of the above examples, if we choose instead a fresh identifier w which does
not occur free or bound in the block, the semantics is preserved by the change in bound
identifier. For instance, the first example becomes

begin
alias w = z;
new y = 0;
wi=w+1

end,

which is still semantically equivalent to the assignment z:=z + 1. &

4. In the block
begin null; z:=y+ 1 end

y occurs free in the command. This single assignment will not always have the same effect
as the renamed version, which is y:=y+ 1. 1

5. Finally, in the block
begin null; z:=1 end

the identifier z is not declared. If we rename x to y we get
begin null; y:=1 end,

which is not semantically equivalent to the original block. &

34

Abstract Semantics.

The standard semantics was based on configurations; we have seen that the semantic
effect of all terms in our language is determined uniquely up to sharing equivalence. It is
therefore possible to factor out the standard semantics by means of this equivalence and
obtain a semantics based directly on equivalence classes of configurations, in which sharing
relations and valuations are the primary objects of construction. To distinguish between
this “abstract” semantics and the standard one, we will use £, D, M, and P for the abstract
semantic functions. First some notation.

We let p range over the set R of sharing relations, which are equivalence relations on a
finite set of identifiers. The domain of p is defined to be the set of identifiers involved in p,
which may be described simply as dom(p) = {I | (I,I) € p}. We let o range over the set £
of valuations, which are finite partial functions from Ide to V. A pair (p, o) is consistent iff

V(lo, I1) € p. [o(1o) = o (1))
Equally well, when o is consistent with p it determines a total map from the equivalence

classes of p to V.

We refer to consistent pairs (p, &) like this as frames, and we let f range over the set
F of frames. Where necessary, Fx denotes the set of frames defined on (a superset of)
X, Rx denotes the set of sharing relations whose domain includes X, and Zx denotes the
set of valuations whose domain includes X. Frames are essentially abstract configurations,
representatives of equivalence classes of configurations.

We now introduce the notation

(u,s) = (share(u),val(u,s)).

It is clear that every configuration (u,s) determines a consistent pair (p, o) = (u,s), with
dom(p) = dom(c) = dom(u). Clearly, a configuration in Cx determines a frame in Fx.
Moreover, every frame (p, o) in Fx is obtainable as (u, s) for a suitably chosen configuration
(u,s) in Cx.
The abstract semantic functions are:

¢[E] : Ffree(E) =¥

D[A]: Firee(a) — Fdec(A)

M Ffree(r‘) - Ffree(l")

P : Prog — V.

They may be defined implicitly with respect to the standard semantics, as follows:

E[E(u,s) = E[Eu,s)

ﬁ[A] (“!3} 1)[A] (urs)

ﬂlrl (u,8) = M[TKy,s)

Plbegin A; T; result E end] = E[EJ(M[TI(D[A](0,0))).

These definitions are unambiguous, and suffice to define the semantic functions on their
entire domains as given above. In fact, we will show soon that P = P.

35

As with the standard semantics, we introduce auxiliary functions describing the separate
effects of a declaration on the sharing relationship and on the values of identifiers. However,
in this abstract setting we can slightly simplify the types of these auxiliaries, since it is easy
to see that the effect of a declaration on the sharing relation depends only on the sharing
relation, and the effect of a declaration on the valuation depends only on the values of
identifiers: thus, we put -

R[A]: Rpoecay = fdec(a)y:
S[A] : Lfree(a) — Zdec(ay’
with the definitions being:

D[Alp,0) = (R[Alp,S[A]0).

We also define E and its two component functions E,E by

_ Df[AT{ws) = DIAw,s)
(R1[Alp, ST[A)0) = DI[A](p,0).

Given a pair of sharing relations p and p/, and a relation @ C dom(p’) x dom(p), we
will define

p+ap = pldom(p’) Uy’
U{(,I'),(I',I) | I ¢ dom(p’) & (I',I) € p’ o x 0 p}.

Then we have the identity:

share('RT [Al(u,s)) = share(u) +q(a) share(R[A](u, s)).

Hence, H[A]p = p+a(a) R[Alp. In the special case where a(A) = @ and dec(A) N
dom(p) = 0 we simply get RT[A]lp = pUR[A]p.
The abstract version of 7 is simply
T[Alp = (R[Alp)oaAop.
Similarly, L L
Ti[Alp = (Ri[Alp)oadop
= pldec[A]U T [A]p.

Next we give a set of equations defining the abstract semantics of a term as a function of
the abstract semantics of its immediate syntactic subterms. In other words, a denotational
semantics. All of these equations are derivable directly from the semantic definitions given
above.

E[1(p,0) = o(I)

Di[nulll(p,0) = (p,0)
Dinew I = El(p,0) = (p+ (1,0 + (I ~ E[E}(p, o))
Difalias I = L](p, o) = (p+[lo— L], 0 + [Io — o(L1)])
Di[Ag; All(p,0) = DI[ANDI[A(, 0))

36

where we use the notation p + [I] for the sharing relation obtained from p by removing I
from its sharing class and inserting it in a trivial class by itself, and p + [Io — I,] for the
sharing relation obtained from p by removing Iy from its sharing class and inserting it into
the sharing class of I;:

pt[ll = p+e{(,D)} = {(I)ep|h#1 & L # I}U{(I,1)}
p+[lo—n] = ptue—r){To, 1)} = (p+[L]) U{(Zo, 1), (1, 1o) | (I1,I) € p}-

I

The notation ¢ + [I — v] is the usual function overwriting.

We also inherit at this abstract level the analogues of the (abstract versions) of the
semantic properties proven earlier for the standard semantics (modulo the abstract versions
of the assumptions we made about the semantics of expressions).

We first define an appropriate notion of agreement on frames. Two frames agree on a
finite set of identifiers X iff they describe the same sharing relation on X and give the same
values to all identifiers in X:

(p,o)=x (p,0') & (IX=pUX)& (¢lX=0'|X).

Clearly, (u,s) ~x (u,s') iff (u,s) =x (u',s’). Two frames are identical if they have the
same domain and agree on this domain.

Assumption. For all E and all (p, o) and (p',¢’) in Fyee)
(p.0)=x (¢,0') = E[Elp,0) = E[E){p,0"). ¥
Theorem 1. For all A and all frames (p, o) defined on free(A),
DH[A](p, o) = (p,7) on dom(p) — dec(A).
Theorem 2. For all A, if f and f’' agree on free[A] then

'I_)[[A]f Edec(g) “D‘IIA])H
DHALS =igga) PIIALS. 0

Commands. The abstract semantics of commands is characterized by the following
equations:

M(skip](p,o)} = (p,0)
M[I:=E](p,0) = (p,o +[p(I) — E[E]0])
M([Lo; T1){p,0) = MIT1J(MITo](p, o))
M[begin A; T end](p,0) = (p,c+0"07),

where o' = E'F[[‘](EEA] {(p,o))
and T = ’JTT[A],O.
When dec(A) is disjoint from dom(p), the equation for a block can be greatly simplified to:
MIr)(DT[Ap, o))lp,

where we use the notation (p’, 0’) lp for (p, o’ |dom(p)). In the case where dec[A] N dom(p)
is empty, 7T[A]p simply behaves like an identity function on dom(p), in that for all I €

37

dom(p), (I, I) € T[A]p; thus, composition with this function is equivalent to restriction to
dom(p).

An alternative treatment of blocks is suggested if we take advantage of the result that
the standard semantics of blocks is invariant under safe substitution, so that:

Mi[begin A; T end]{p,c) = M[begin (n)[t]A; [t + n]T end]{p,o),

whenever 7 is a substitution on dec[A] with range disjoint from dom(p). This guarantees
that the first equation will be applicable to the substituted block, so that we may define

Mibegin A; T end](p,0) = M +nt)(DT ()AL, o).

Note that this fails (strictly speaking) to be a denotational description of the meaning of a
block, because the right-hand side involves the meanings not of syntactic subterms of the
block but of substituted versions thereof.

The following properties are inherited from the standard semantics.

Lemma 3. For all frames (p, ¢}, and for all T,

MIT)(p,0) = {p,o) on dom(p) — p(free(T)).

Theorem 4.
(P,0) Zfreery (P0") = MITp,0) Sgeery MITNP, o).
Lemma 4. For all A, all T, and all frames {p, ¢}, the valuations
M]begin A; T end](p,c) and MI[TI(D[AL(p, o))
agree on all identifiers I ¢ dec[A]. &

Programs. We defined the abstract semantics of commands to be:
Plbegin A; T; result E end] = E[EJ(M[T)(D[A](0,0))).
For example, the program
begin new z = 0; new y =z +1; y:=y+ 1; result y end

has result 2.

By our previous results, it is evident that 7 = P: all programs have the same results
in the standard and abstract versions of the semantics.

Theorem. For all programs II, P[II] = P[I].

Proof. The configuration (§),0) determines the empty sharing relation and the empty
valuation. We have

Plbegin A; T; result E end] = E[EJ(M[T](P[A](9,0)))

= E[ENMITI(P[ALO,0)))
E[EYMITI(DIAN0,0)))
E[EYMITI(PIANO,0)))
= P[begin A; T; result E end].

38

4. Full Abstraction.

In this section we prove that the sharing class semantics is fully abstract with respect
to the notion of program behaviour represented by P. We also mention briefly what the
corresponding results are for the location semantics given earlier.

We define the usual semantic equivalence relations as follows. Two commands are
semantically equivalent iff they denote the same value:

I'o=I4 =1 H[Fo] = H[I‘ll

Implicit in this is the requirement that the two commands have the same set of free iden-
tifiers. Thus, two commands are identified by the semantics iff whenever executed from
the same frame they produce the same valuation: for all frames (p, o), M[T'o]{(p,0) =
M[T1){p, o).

Similarly, for the other syntactic categories we can define

Ey=E;, & E[EJ =E[E1],
Ao=A, & D[A=D[A4]

Two expressions are equivalent iff they have the same free identifiers and always evaluate
to the same value: for all frames (p, o), £[Eo](p, o) = E[E1]{p,0). And two declarations
are equivalent iff they have the same free identifiers, the same declared identifiers, and they
always produce the same effect: for all frames f, D[A]f = D[A1]f. Semantic equivalence
of identifiers is trivial, coinciding with syntactic identity, so we do not bother to introduce
a new notation for it. Finally, for programs we define

IIp=1I; <« 5[“0} = “'p"[l'[l]]

Two programs are equivalent iff their results are the same.
It should be evident that £ and £ determine exactly the same semantic equivalence, in
that
VEI,EQ.[S[El:H = g[Ez] i=4 S[E]_] = E[[EQ]]

The same is almost true of the pair M and M, the only difficulty being that because
of the fact that we allowed configurations containing inaccessible locations but block exit
causes deallocation, the M semantics can distinguish between commands such as skip and
begin A; skip, whereas these are identified in the M semantics. No matter what decision
is made about storage management, as discussed before, we get

VIy, Do M[T1] = M[T2] & M[T1] = M[T:]].
Similarly, again because of the storage issues,

YA, ,Ag.[@[ﬂ]]] ~ D[ﬁg]] — 1_)1[&1]] = I_)Ilﬂg]]]

From now on we concentrate on the abstract semantics.

Clearly, each of these semantic relations is an equivalence relation. We would like to
be sure that our semantics identifies pairs of terms if and only if they are interchangeable,
without affecting the semantics, in all program contexts. In other words, we would like
semantic equivalence to coincide with behavioural equivalence.

39

There is, for each syntactic category, a set of program contezts suitable for filling by
members of that category. For instance, the following are program contexts of type ezpres-
ston:

begin new z = [-]; z:= 1; result 42 end,
begin new z = 0; new y =z + 1; y:=[-]; result y end
begin new z = 0; new y =z + 1; y:=y + 1; result [- | end.

It is possible, but not particularly illuminating, to define rigorously a syntax for program
contexts of these types. We omit the details. We will use the notation II[-] for a program
context, with the type being inferrable from the usage. We also use the notation II[t] for
the result of filling the hole of a context with a term ¢ of the appropriate type. It should
be understood that we will only consider this substitution to be defined when the result is
indeed a syntactically correct program.

Since we have defined our semantics in the denotational style, we know that semantic
equivalence implies behavioural equivalence. In other words, for all A;, all E;, and all T,

Ay = Ay = VH[:](H[A[)] = H[Al}),
Eo=E, = V]][£](H[E[)] = H[El]),

The converse relations, however, are not so obvious. Does behavioural equivalence guar-
antee semantic equivalence? We devote the rest of this section to proving this. These full
abstraction results depends on a simple ezpressivity property of the expression language
Exp (Assumption 2):

Assumption 2. For every v € V there exists a closed expression E, € Exp such that
for all valuations o, E[E,]Je =v. 1

Provided the expression language Exp satisfies this (very reasonable) condition, we can
always define a program which, given a finite piece of information about a state, produces a
state consistent with this information during a computation. If two terms have a different
semantics in some state, then we can build a program context in which the two terms would
induce different behaviours. The important property of terms is that they only depend on
and affect finitely many identifiers.

Lemma 5. For any frame f there is a closed declaration Ay that defines f, in the sense
that

’I_)[Af](@!ﬂ) =f

Proof. By induction on the size of the set dom(f).

e If dom(f) =0, we have f = (0,0) and we may simply put A; = null.

e Otherwise, if dom(f) is non-empty, let Iy € dom(f). Let f = (p, o), and let p(I;) =
X ={hL,Ih,...,It}. Let v = o(l1). Let {p1,01) = {p|X,0\X), so that p = (py U X?) and
o = o1+ [X — v]. Clearly, (p1,01) is a frame defined on A— X, a set with smaller size than
A. By the induction hypothesis we may choose a closed declaration A; defining fi, i.e. so
that

D[A1](0,0) = {p1,01).

By Assumption 2, there is a closed expression FE, with value v. We may then choose A; to

be:
Ay = Ag; Ay,

where Ay =new I) = E,; alias I = I;;...; alias I} = I;.

40

Clearly, Ag is also closed, and its effect is to place the identifiers Iy,..., I} into a single
sharing class initialized to the value v:

D[A0](0,0) = (X2%,[X — v]).

Since both Ag and A; are closed, so is Ay. Since dec(Ap) Ndec(A;) = 0 and A, is closed
(so that a(Aq) = 0),

5EAO; ﬂll(@,ﬂ) — (Pl UX2351+[XHv])
= (,O,U),

as required.
A similar result for commands may be stated and proved in an analogous manner:

Lemma 6. For any frame f = (p,o), and any finite set A C dom(p), there is a
command I‘}" such that for all ¢/ consistent with p the valuation of H[l‘?](p, o') agrees
with ¢ on A.

Proof. e If A=0 put I'{ = skip.

e If A is not empty, let I € A and B = A — p(I). Let v = o(I). By inductive
hypothesis, there is a command I‘f." such that whenever ¢’ is consistent with p, the valuation

St [I‘? I{p,o’') agrees with o on B. This valuation is also consistent with p. There is a closed
expression E, with value v. We may therefore put

A o B T
r4 = r¥; I:=E,,

so that whenever o' is consistent with p we will get

@g;:a,](p, SHTZ1(p, o))
STIC2)(p, o') + [p(1) = 0.

St 41(p, o)

This valuation agrees with o on A, as required.
[|
These results may be used to prove the full abstraction theorem:
Theorem 5. The semantic functions £, D, and M are fully abstract.
Proof.

e For £, we wish to show that for all expressions Eq and Ej,
viI[- L(I[E) = M(Ey]) = £[Eo] = E[EA].

This is easy to prove. If E[Ep] # E[E1], there is a frame f = (p, o) such that E[Ep]e is
different from E£[F]o. Choose a closed declaration Aj defining f as in Lemma 5. The
program context

begin Ay; skip; result [-] end

will distinguish between Ejy and E;.

e For D, we wish to show that for all declarations Ay and A,
VI - [.(I[Ad] = [Ay]) = D[Ao] = D[A4].

41

Suppose that D[Ag] # DP[A1]. We will construct a program context to distinguish between
these two declarations. By assumption, there is a frame f and an identifier I such that

(D[2olA)(I) # (P[AAD).

Let D[A;]f = (pi,0:) = fi , for i = 0,1. We know that either the values o;(I) differ, or the
sharing classes p;(I) differ. There are thus two cases to consider.

Firstly, if the value of [is different in fy and f;, we may choose using Lemma 5 a closed
declaration Ay defining f as above. Then the program context

begin Af; [-]; skip; result I end

will distinguish between Ay and A;.

Secondly, if the sharing class of I is different in fo and f;, we can choose an identifier I’
which shares with I in only one of the frames fy, fi. And we can choose an expression E' to
have a different value from the value of I in fy and f;. By Lemma 5 there is a declaration
Ay defining f. The program context

begin Ay; []; I''=E’; result I end

will distinguish between Ay and Aj.

e For M a similar argument can be based on Lemmas 5 or on Lemma 6. Here is a
proof using Lemma 5. A different distinguishing context can be built based on Lemma 6.
If M[I'o] and M[I'1] differ, there is a frame f and an identifier I such that

(MITolF)(I) # (MIT11f)(T).
Choose a closed declaration A; defining f as in Lemma 5. The context
begin Ay; [-]; result I end

distinguishes between I'p and T';.
[|
Location Semanlics.

We have proved that the sharing relation semantics is fully abstract with respect to
the behavioural equivalence corresponding to P. Since we have indicated that the location
semantics failed in this respect, it is worth noting here briefly that nevertheless the loca-
tion semantics is still fairly close to being fully abstract. These properties are immediate
corollaries of previously stated results.

viI[- J(PI[E\]] = PIU[EL]]) <« E[En] = E[E],
vI[- J(PI[T4]] = PI[TL]]) & M) = M[T:],
VII[- J(P[I[A]] = P[I[Az]]) <« D[Ai]~ D[Ag].
Now we return to the sharing class semantics. Having shown that it is fully abstract,

we now build an axiomatic treatment of program properties based closely on the semantic
model.

42

5. Axiomatic Semantics.

In this section we show how we can use the structure of the semantics to suggest
assertion languages for expressing semantic properties of the terms of our programming
language, and then build an axiomatic proof system for the language. The choice of assertion
languages and the proof rules are suggested directly by the semantics, and this means that
soundness and relative completeness of the proof system are easy (if tedious) to establish.
Moreover, the fact that we have defined separate semantic functions for declarations and
commands allows us to separate the axiomatic treatment into two parts: an axiomatization
of the purely declarative part of our programming language, and an axiomatization of the
imperative part of the language. Since the semantic descriptions were denotational, i.e.
syntax-directed, we will be able to build syntax-directed (Hoare-style) proof systems.

In this programming language, declarations have effects on both the sharing relation
(a declarative effect) and on the association of identifiers to values (an imperative effect),
because of the initializations that take place when a declaration is performed. Commands
have an effect only on the values of identifiers, and do not alter the sharing relation (except
locally, during block execution). At all times during the execution of a program the sharing
classes are all finite, and all but finitely many of them are trivial. Moreover, the constitution
of each sharing class is determined by the set of declarations in whose scope a command is
executing. There is a reasonably obvious notion of when a declaration A specifies that the
set X of identifiers is a sharing class. We may formalize this notion precisely. Once we have
axiomatized the declarative semantics, we will then be able to construct a Hoare-style proof
system for the imperative effects of commands and declarations.

Declarative Proof System.

The purely declarative effect of a declaration is to alter the structure of the sharing
relation, in the manner described by the semantic function R. Qur approach is to choose a
simple language of assertions about sharing classes. Specifically, an assertion will be a finite
set X of identifiers, or more generally a finite conjunction (written as a list) of a disjoint
collection of such sets. The intention is that an assertion

X150 Xn

lists all of the non-trivial sharing classes. Since we know that sharing relations have a finite
domain, it is certainly possible to find a finite description of a sharing relation as such a
list. There is a simple “propositional” calculus of assertions, which we will largely take for
granted. In particular, we use juxtaposition for conjunction and we write

Xls"':Xn = Y].)"'}Ym

when the Yj list is simply a re-ordering of the X; list with the possible inclusion of some
extra trivial (empty) classes. The interpretation of such an assertion is clear: the two lists
describe precisely the same sharing relation; in this sense, “implication” is trivial for our
class of assertions.

We will use X, Y, and Z to stand for finite sets of identifiers (sharing classes) and ¢,
1, for conjunctions of these (sharing assertions). It is convenient to introduce the notation

o)=Y

to mean that the sharing class of I, specified by ¢, is Y. Thus, for instance, if ¢ is X;,..., X,
and I belongs to X;, then ¢(I) = Xj; if I is not included in any of the listed classes, then

43

¢(I) = 0. We also introduce the notation ¢ — I for the result of removing I from every
sharing class in the list ¢. And we use #\I for the result of deleting the sharing class ¢(I)
from the list ¢.

We now design a Hoare-style, syntax-directed proof system for declarations. The as-
sertion

(e)A(¥)

is interpreted as saying that if ¢ describes the sharing relation before executing the declara-
tion A then v will describe the sharing relation afterwards. We use angled brackets instead
of conventional set brackets merely to indicate that we are axiomatizing the properties of a
different syntactic category from the usual one (commands).

We give one axiom or rule for each syntactic form of declaration.

e An empty declaration, which we represent by null, does not alter any sharing classes:
{¢}null{¢) (A1)

e A simple declaration produces a new sharing class containing a single identifier; it
removes the newly declared identifier from its old sharing class, and all other sharing classes
remain unchanged:

(¢)new I = E({I},¢ — I) (A2)

e A sharing declaration has slightly more complicated properties. Specifically, the
declared identifier is to be inserted in the sharing class of the identifier on the right-hand
side of the declaration, while being removed from its old sharing class. Thus, we specify the
axiom:

(¢)alias Iy = Li(¢(L) U {L},(¢\I1) — Lo) (A3)

e Finally, consider a sequential composition. Since the second declaration is executed
within the scope of the first, the effects should accumulate from left to right. The desired
rule to capture this is analogous to the usual rule for sequential composition of commands:

(@)Bold) (#)01(8)
@50, D1(9) e

e The following rule allows us to “strengthen” pre-conditions and “weaken” post-
conditions:

=9 (¢AWY) ¢ =9y

(A5)

For an example, let () denote the assertion which states that there are no non-trivial
sharing classes. Then we have

()new z = 0({z})

({z})alias y = z({z,y})
({z,y})alias z = w({z,y},{z, w})
(

{z})alias y = z; alias z = y({z,y, z}).

44

It should be clear that these axioms correspond very closely to the semantic function
R. Indeed, it is easy to formalize the validity notion for our assertions: let us write

pE®

to denote that the sharing relation p satisfies assertion ¢. Formally, this is defined in a
manner corresponding to the informal interpretation given earlier: ¢ lists all of the non-
trivial sharing classes, so that

pE(X, ..., X)) & Vi(IeX; & p(I)=X;)
& dom(p) = U Xi.
i=1
Similarly, we define validity of an assertion (¢)A() :
F(#A®W) & Volpk¢ implies RI[AlpF).

This proof system is sound and complete. The proofs are almost trivial, and we relegate
them to the Appendix.

Theorem 7. (Soundness) For all A and all ¢, ¥,

F (#)A(y) implies k= (¢)A().
Theorem 8. (Completeness) For all A and all ¢, ¥,

F (¢)A(y) implies F (@)A(¥).

Finally, note that with our choice of assertion language we have the following important
properties, which state precisely that the assertion language is as discriminating as necessary
over the semantic structure in which it is being interpreted. Firstly, every sharing relation p
satisfies some assertion ¢; and, secondly, for every pair p; # pz of distinct sharing relations,
there is an assertion v satisfied by one but not the other, i.e. such that p; = but ps £ . As
a consequence, it is easy to show that the assertions about declarations are as discriminating
as Necessary:

Theorem 9. For all A, and As, E[Al] £ E[AZ] if and only if there are ¢ and ¢
such that
F (#)A1(y) but F (4)Ax().

In other words, adapting the terminology of Meyer and Halpern [21], “the set of valid
assertions (about declarations) defines the (declarative) semantics Ry
Imperative Proof System.

None of the assertions used above gives any information about the values denoted by
any of the sharing classes. We will see that this will not cause a problem; on the contrary,
it is a distinct advantage when we formulate proof rules for commands. Essentially, we are
separating entirely the purely binding effect of a declaration from the initialization effect
it causes. The latter is more properly regarded as a command-like feature, and we will
build it into the proof system for commands. For commands, we use assertions of a more
conventional style. Pre- and post-conditions are drawn from a simple logical language;
examples of conditions are

z =3, c=y&y#z

45

We use P and @ to range over conditions. Each condition represents a predicate on the
valuation. For concreteness, we will assume that the condition language includes atomic
conditions such as I = E and is closed under the usual logical connectives.

In conventional Hoare logics for simple sequential languages without sharing, assertions
of the form {P}T'{Q} are used and interpreted as follows: whenever I' is executed from an
initial state satisfying P then (if the computation terminates) the final state will satisfy Q.
For languages without sharing this is of course natural, since the effect of a command does
not depend on any notion of sharing. However, our semantics for commands involved the
sharing relation explicitly. We are led to a natural generalization of these Hoare assertions,
incorporating a condition or assumption on the sharing relation. The assertion

¢ -{P}r{Q}

states that whenever the command I' is executed, with ¢ specifying the sharing classes,
from an initial valuation satisfying P, then (provided the computation terminates) the final
valuation will satisfy Q. Note that the structure of our generalized assertion matches the
type of the semantic function M.

For declarations, we observed that the (local) imperative effect of a declaration, de-
scribed by the semantic function &, was uniquely determined by the valuation, and does
not depend on the sharing relation. This suggests that we use assertions of the form

{rra{el,

with the interpretation that when the declaration A is executed from an initial valuation
satisfying P, the resulting valuation satisfies Q.

We propose the following axioms and rules of inference for the imperative part of our
language.
For the imperative effects of declarations, we provide the following rules.

e A null declaration has no effect:
{P}null{ P} (B5)

e A simple declaration has an effect similar to that of an assignment, and it updates
the value of the declared identifier:

{[E\I]P}new I = E{P} (B6)
e For a sharing declaration, the initializing effect is similar:

{[I'\I]P}alias I = I'{ P} (B7)

¢ Sequential composition of declarations behaves simply:

{P}Ac{Q} {Q}A:{R}
{P}Ao; A1{R}

(B8)

Now we give the clauses for commands. As usual, we give a clause for each command
construct. By making use of the prior axiomatization of the semantics of declarations we
are able to obtain a rather simple treatment for blocks.

46

e A skip command has no effect, regardless of the sharing relation:
¢ = {P}skip{P} (B1)

e An assignment affects the values of all identifiers in the sharing class of the target
identifier, and is thus akin to a simultaneous assignment to a set of distinct identifiers.
We use the notation [E\Y]P for the simultaneous syntactic replacement in P of all free
occurrences of identifiers in ¥ by the expression E. This is a generalization of the single
substitution operation [EF\I]P, and coincides with the latter when Y is a singleton set. The
desired axiom is:

$(I)=Y
¢ ={[E\Y]P}:=E{P}

(B2)

The soundness of this rule relies on a standard property of syntactic substitution. The
statement of this property for our expression language is that for all valuations ¢ and all
Y C Ide we have

ENE\YIE]e = E[EN (o +Y — E[E]0)). (SUB)

e The rule for sequential composition is again simple. The two commands are to be
executed with the same sharing relation, their effects accumulating from left to right.

oH{PIN{Q} ¢ {Q}T2{R}

#F (PYT3; T2{R) 62

e For a block beginning with a declaration we have to bear in mind both the declarative
and imperative aspects of the declaration, which may affect the execution of the block body.
The following rule takes all of these factors into account. Note that the premisses of the
rule involve assertions about both the imperative and declarative effect of the declaration
at the head of the block. It is here more than anywhere that the separate axiomatization of
declarative semantics is helpful. The rule is sound provided none of the declared identifiers
in A occurs free in R:

{(PIA{Q} (9)A(¥) ¢ H{QIT{R}
¢ {P}begin A; T end{R}

(B4)

The need for the syntactic constraints was mentioned earlier in the statement of Lemma 4,
which guarantees the soundness of this rule.

So far we do not have any rule corresponding to “change of bound variable.” The block
rule (B4) above only allows us to use pre- and post-conditions which do not involve the
bound identifiers of the block. This is as it should be, since these identifiers are redeclared
on entry to the block, and they may refer to different variables inside the block. We can
suppress the need to reason explicitly about the 7 semantics by changing bound identifiers to
avoid hole-in-scope problems. We need, therefore, to be able to deduce an arbitrary partial
correctness formula for a block if we can first prove a version in which we have renamed
some of the bound identifiers. The following is an adaptation to our setting of standard
rules from the literature (see [1,2] for example). Its soundness relies on the Substitution
Properties established earlier. The rule is:

¢ |- {P}begin (n)[1]A; [+ 7]’ end{R}
¢ - {P}begin A; T end{R}

(B9)

47

when 7 is a substitution on dec(A) with rge(n) disjoint from free(R). The premiss of this
inference rule involves a block in a form to which rule (B4) may be applied directly.

In addition to the above syntactically motivated rules, the utility and necessity of the
following rule should be self-evident. It allows us to use the consistency property of frames
to conclude from an assertion about a single identifier I a corresponding assertion about all
identifiers in its sharing class. Let us use the notation

P¥ = A [r\nP

I'ex
when X is a finite set of identifiers. For example, we have
(z=z+1)EV = @=z2+4+1&y=2+1).

The rule we propose is simply:

o)=Y

iF P> P (B10)

Finally, we include versions of the rule of consequence. Note that it is necessary to include
the sharing assertion explicitly in the rule of consequence for commands.

¢E(P=P) ¢-{PIT{Q} ¢-(Q=Q)

oF (PIT(Q) (511)
(P> P) (PIAQ) (@ =Q)
(PYA(Q) (B13)

Comparison with other proof rules.

Clearly, many of our proof rules and axioms have essentially the same form as well
known rules in the literature. Indeed, in the absence of (non-trivial) sharing, our axioms
and rules for commands collapse down to standard rules, as we would expect. In particular,
the assignment rule collapses to Hoare’s original axiom [16]:

{(E\I\P}I:=E{P},

and our rule for sequential composition of commands collapses to Hoare’s rule. The main
differences are evident in the treatment of aliasing relationships. By axiomatizing the prop-
erties of declarations, we were able to build a rule for assignment which incorporates explicit
reasoning about sharing and generalizes Hoare’s assignment rule in the obvious simple man-
ner, replacing a single substitution by a multiple simultaneous substitution. A similar rule
for a multiple assignment statement appears in [11,12], although aliasing was not considered
there.

A further benefit of our prior axiomatization of the effect of declarations on the sharing
relation is that we are able to design simple proof rules for blocks. Our rule (B4) for blocks
can be said to be more truly syntax-directed than is usual in the literature, because the
rule as given here is in a “generic” form applicable to more than one form of declaration.
The structure of the rule does not depend on the precise form of declaration with which
the block begins. The following specialized rules are derivable. These are special cases of
our general rules in which we have chosen a specific form for the declaration at the head of
a block. They are related to rules in the literature, especially those of [1,2,4,5], although

48

direct comparison is somewhat hampered by the differences in syntax. In these references,
in particular, new declarations do not also initialize the value of the declared identifier to
the value of an expression. Aliasing is not treated in [1,2], so that the block rule stated
there is interpreted in a sharing-free setting,.

A rule for a block beginning with a new declaration can be obtained from rules (A2),
(B4) and (B9), together with rule (B6). Firstly, note that if I does not occur free in E and
P, then the following will be provable as a special case of (B6) after an application of the

rule of consequence:
{P}new I = E{P & I = FE}.

Therefore, if I does not occur free in P, E, or R, we can use rules (B4) and (A2) to derive
the rule:

¢ —I1,{I} H{P & I= E})T{R)}
¢ | {P}begin new I = E; I'{R}

(D1)

If we also make use of the change of bound variables rule to ensure the necessary constraints,
we obtain the following derived rule. If I’ is a fresh identifier which does not occur free in
I', E, P,or R, then

6—I'{I'} F{P & I' = B}[I'\I]T{R}
¢ - {P}beginnew I = E; T end{R}

(D2)

In this form, the rule is a generalization of the Variable Declaration Rule (Rule 16) of [1],
with suitable modification to allow for the initialization effect of a declaration and for the
sharing assumption.

A similar rule for a block headed by a sharing declaration is also obtainable:

(¢)alias I = Ii(y) ¢ {P & Iy = L}T{R}
¢5|_ {P}beginalias Is=Ii; I‘end{R} '

(D3)

provided Iy does not occur free in P, @}, I'. Again, a version incorporating a change of
bound variable can also be formulated, and an explicit representation for ¥ can be derived
from rule (A3).

An important point to note here is that these block rules from the literature turn up
as derived rules and not primitive rules in our system. This suggests, as we claimed earlier,
that our formulation of the proof system is more truly syntax-directed. We would be able
to add new forms of declaration to the language, and to add new axioms and rules for these
extra constructs, without modifying the structure of the proof rule for blocks (provided,
of course, that the additional constructs can be semantically modelled inside our current
framework); we would not have to introduce a separate proof rule for blocks beginning
with each different form of declaration, although of course specialized versions of the block
rule would be derivable. It is this adaptability of our proof system that we regard as an
important asset.

In the language under consideration in this paper, declarations have both imperative
and declarative aspects, and we were able to focus on these aspects independently. If the
programming language only allowed purely declarative declarations which do not have any
non-trivial initializing effect (for example an uninitialized declaration new z), we would
not need any assertions of the form {P}A{Q}; our proof system could then be adapted
to this setting in an obvious way. Conversely, if we add declarations whose declarative
effect depends on the valuation as well as on the sharing relation, the imperative assertions

49

for declarations would need to be made more complicated. This would be the case, for
instance, if we allowed array declarations, so that one could then declare alias z = a[y].
The declaration-time value of y would then determine the sharing class of z. One solution
here would be to use assertions of the form ¢ = {P}A(4), or some alternative sugared form;
in any case, the assertion would need some subterm to represent an assumption about the
initial valuation. The point is that we believe that our general methods will be applicable
in a wider setting than the one considered in this paper, provided we are ready to adopt
the use of assertions whose structure more closely follows the semantic structure of the
programming language under examination.

50

Ezamples.

Ezample 1. Consider the following command, which we will denote I':

begin
newt = z;
=Y
Y=t

end.

We claim that this command exchanges the value of = and y, regardless of the sharing
relation. We can prove an instance of this very easily. Let ¢ be a sharing assertion with
#(z) = X and ¢(y) =Y. We will prove the assertion

(PF{z=0 & y=1}T{z=1 & y=0}.
The proof is simple. Firstly, we have
¢ {z=0 & y=1llnewt=z{z=0 & y=1 & t =0}
by (B6) and (B12). We also have, by (A2),
(¢)new t = z(y),

where ¥(z) = X — {t},¥(y) =Y — {t},¥(t) = {t}. This shows that ¢ does not share with z
or y inside the block. Then we have

vHE{z=0& y=1 & t=0}e:=y{z=1 & y=1 & t =0},
by the assignment rule (B2). Similarly,

Y {z=1& y=1& t=0}y=t{z=1 & y=0 & t=0}.
Applying rule (B3) for sequential composition, we get

{z=0 & y=1 & t=0}e=y; y=t{e=1 & y=0 & t =0}

The result follows by the block rule (B4) and the rule of consequence (B12).

Ezample 2. To illustrate reasoning about sharing, consider the command
begin alias z = z; alias y = z; y:=z + 1 end.

This should have the effect of increasing the value of all identifiers which share with z. We
prove this as follows. Let ¢ be a sharing assertion and let X = ¢(z). Let w be an identifier
which does not belong to X, so that w does not share with z. The rules for alias and
sequential composition of declarations give

I (¢)alias z = z; alias y = z(y),
where ¥(z) = X U {y, z}. From this, the assignment rule and the consistency rule gives
WyF{z=w}z=z+{z=y=2=w+1},

51

since w € X. From this, using the rule of consequence, and the block rule, we get
(¢) F {z = w}begin alias z = z; alias y = z; y:=z+ 1 end{z = w+ 1}.

That completes the proof.
Soundness and Completeness.

We claim that our imperative proof system is sound and relatively complete. We have
already established this for the purely declarative proof system, which is used in building
up the imperative system. Now we have to tackle the proof rules for imperative semantics
of declarations and commands. We have already given a satisfaction relation |= for sharing
relations and sharing assertions. We also need a satisfaction relation for valuations and
conditions. Although we have not been specific about the syntax of the condition language,
it is reasonable to assume that we are given a satisfaction relation o = P, which behaves
correctly with respect to the usual logical connectives and with respect to syntactic sub-
stitution. By this we mean that for all conditions P, all Y C Ide and all £ € Exp we
have

cE[E\Y]P <« (o0+[Y — E[E]lo])=P.
These are standard assumptions which are usually made tacitly in axiomatic treatments.
The above requirement on substitution is analogous to the property (SUB) mentioned earlier.

We also define a composite notion of satisfaction by:
(o E(6,P) & (Fd) & (0FP).

We say that an assertion

¢ H{PIr{Q}

is valid, denoted

E (o= {PIT{Q}),
iff whenever (p, o) satisfies (¢, P) then M[I']{p, o) satisfies (¢, Q): for all (p,0),

(w,s)=(6,P) = MIIlp,0)F(4,Q).

Similarly, an assertion { P}A{Q} is valid if whenever o satisfies P then E[A]a' satisfies
Q: for all o,

ckP = St[ale F Q.

We need to show that all valid assertions are provable, and every provable assertion
is valid. As usual, following Cook [7], we are assuming that we can use any true (valid)
assertion of the form ¢ - P or P as an assumption in a proof. Let Th be the set of valid
conditions of this form:

(¢F-P)eTh & E(¢FP),
PeTh < FP
We want to prove that all valid assertions are provable relative to Th, the standard notion
of relative completeness.

The proofs of soundness are straightforward. We prove that each axiom is valid, and
that each inference rule preserves validity. It follows that every proof preserves validity, and
that every provable assertion is valid.

52

Theorem 10.(Soundness) For all A and all P and @,
Th {P}A{Q} implies F {P}A{Q} 1
Theorem 11.(Soundness) For all T and all ¢, P and @Q,

Th | (¢ {P}T{Q}) implies k (¢} {P}T{@})

For example, the soundness of the block rule (B4) follows from Lemma 4. The soundness
of the rules for sequential composition of declarations and commmands follows directly from
the semantic definitions. The consistency rule (B10) is sound because it can be proved by
structural induction that the semantic definitions preserve consistency of the valuation with
respect to the sharing relation.

We already know that the declarative system is complete. For the imperative system,
we can show that “weakest pre-conditions” can be expressed for each syntactic construct
in our assertion language. In other words, our assertion language is ezpressive. Essentially,
we define weakest pre-conditions with respect to a sharing relation. The Appendix contains
proof sketches.

Theorem 12.(Completeness) For all A and all P and @,
FE {P}A{Q} implies Th | {P}A{Q} 1
Theorem 13.(Completeness) For all I' and for all ¢, P and @,

E (¢ {P}r{Q}) implies Th | (¢ {PIT{Q})

Although we did not fix the syntax of the condition language we did assume that it
contained atomic conditions such as I = F and that it possessed the usual logical connec-
tives. It follows that for every finite set of identifiers and every valuation defined on that
set we can find a characterisiic condition: for every o and every finite set of identifiers A
there is a condition P such that for all ¢/, ¢’ = P if and only if o and ¢ agree on A. Hence,
for every pair of distinct valuations on the same identifiers there is a condition true of one
but not the other, i.e., for every o1 # o9 there is a @ such that o = Q and o3 F Q. Using
these properties, the following results are obtainable:

Theorem 14. For all A; and A, S[A1] # S[A2] (equivalently, g[Aﬂ # E[Aﬂ]) if
and only if there are conditions P and @ such that

F{P}A1{Q} but K {P}A2{Q}. &

Theorem 15. For all I’y and 'y, M[I'1] # M[I'2] if and only if there are ¢, P, and @
such that

F(eH{PIT:1{Q}) but K (¢F{P}r:{Q}).

These results state precisely our claim that the semantics defined in the first part of
the paper does indeed identify terms if and only if they satisfy exactly the same partial
correctness assertions. The set of valid imperative assertions about declarations defines S,
and the set of valid assertions about commands defines M, in the sense of [21].

53

6. Conclusions.

The work reported in this paper is an attempt to design a clean and mathematically
tractable semantics for a programming language, a semantics which is specifically intended
to serve as a basis for reasoning about a particular type of program behaviour: in this case
partial correctness. We considered a simple programming language with block structure
and a form of aliasing, so that we were able to concentrate on the problems inherent in
these features alone. The underlying semantic model with respect to which we proved
soundness and completeness was location-free, and we proved its suitability as the basis for
formal reasoning about partial correctness by demonstrating that the semantics was fully
abstract with respect to a related notion of program behaviour. We further demonstrate this
suitability by using the semantics directly in the design of an assertion language and proof
system for reasoning about partial correctness of programs. The semantics may be used to
prove the soundness and relative completeness of this proof system, and as a consequence of
the choice of semantic model these proofs may be formulated rather cleanly. We were also
able to derive some well known proof rules from the literature.

As we stated earlier, we intended in this paper to focus on a small number of program-
ming language features and to concentrate exclusively on the problems caused by aliasing.
The programming language consequently omitted many features which would be required in
any more realistic setting. With minor modifications we can add loops and conditionals; the
only essential difference is that we then need to justify the use of recursive definitions in the
semantic description of loops. This is straightforward if we impose a natural partial order-
ing on the relevant semantic structure and follow the standard lines of the Scott-Strachey
approach. We can still obtain a full abstraction result for the enlarged language and its
semantics. Hoare’s proof rules for loops and conditional commands can be adapted in the
obvious way to this setting, by incorporating a sharing assertion. Similarly, although this
paper ignored the possibility of run-time errors such as an attempt to evaluate or assign to
an undeclared or uninitialized identifier, it is easy to modify the syntax and semantics of
the language in order to cope with these problems.

It is well known that block-structured languages with static scope rules can be imple-
mented with stacks, and several semantic treatments have been suggested which incorporate
such techniques, notably by Landin [19], Jones [18], Olderog [25,26] and Langmaack [20].
Indeed, our treatment can be rewritten to make the stack discipline explicit. Landin used
an abstract machine with a “sharing component” which explicitly described the sharing
relationships among program variables, and gave operational semantics to a variety of pro-
gramming languages. Jones also tried to use sharing relations and consistent valuations, in
an operational semantic framework. Langmaack and Olderog give axiomatic treatments of
aliasing which involve a notion of sharing classes, specifically to deal with sharing among
actual parameters in procedure calls. They did not give a separate denotational descrip-
tion of sharing classes and their manipulation during program execution, and their notion
of stacks seems to involve locations rather more explicitly. We feel that our treatment is
somewhat cleaner, and gains in simplicity and clarity by explicitly focussing on the need
to describe separately the denotational semantics of declarations; nevertheless, we should
also admit that some of the extra clarity is obtained because we are working with a less
complicated programming language.

An approach to the semantics of block-structured languages using category theory has
been developed by Oles and Reynolds [27], and there are connections between their abstract
store models and our sharing class model. Our frames and links can be regarded as the
objects and arrows of a category, and, as we observed in passing earlier, this is related

54

to the category of store shapes introduced by Oles and Reynolds. Further influences of
the work of Reynolds are visible in some of our semantic results which were used in the
full abstraction proof. Our Theorems 1-4 can be seen as a rigorous analysis of the relevant
notions of interference for our programming language [30,31,32,36], since they state precisely
the conditions under which a declaration or command can affect or be affected by the value
of identifiers.

Other related work includes the proof system of [13] and the semantic treatments of
[14,15], based on a rather intricate notion of “store-model”; in contrast to the approach used
there, our underlying semantic model is arguably cleaner and we have proved full abstraction,
albeit for a smaller language. We feel that our proof rules are more natural, although
again some of this “benefit” arises because we have a simpler programming language, and it
remains to be seen what happens when we extend our methods to a language with procedures
of higher type.

We believe that many existing programming language features still lack elegant and
tractable formal description, and that their axiomatization has been attempted somewhat
prematurely, with insufficient attention to semantic issues. Full abstraction gives one crite-
rion for judging the suitability of a semantics for supporting formal reasoning about program
behaviour; simplicity of semantic structure gives another (admittedly more subjective). The
construction of fully abstract semantics for many programming languages, even with respect
to such well known behavioural criteria as partial correctness, has not yet been adequately
investigated (notable exceptions being [23,28,29]). Indeed, it seems likely that full abstrac-
tion and simple structure are difficult and may often be impossible to achieve simultaneously.
However, it should be noted that our methodology does not depend on the achievement of
full abstraction; rather, it is crucial for us to begin with a semantics structure as simple
as possible while still powerful enough to support proper treatment of program properties.
Even in the absence of full abstraction, a clean semantic structure is advantageous if one
wants to construct semantically based proof systems.

An important suggestion illustrated by our results and technique is that Hoare-style
proof systems should be designed not only for imperative languages—as was the case in
Hoare’s original paper—but that it is advantageous to extend Hoare’s principle to syntactic
categories other than commands. Similar observations have been made by other authors,
notably by Sokolowski (with respect to expressions) in [33], by Goerdt in [9] (typed a-
terms), and by Boehm in [3] (expressions with side-effects). Indeed, Boehm describes an
axiomatic treatment of aliasing, again involving explicit reasoning about locations. Qur
decision to separate the different semantic aspects of the programming language and to build
a hierarchical proof system whose structure reflects the syntactic and semantic structure
of the language has been influenced by some of the ideas in Reynolds’ specification logic,
although Reynolds points out in [31] that in its present state specification logic does not
seem to support reasoning about call-by-reference (which is analogous to our form of alias
declaration).

In principle, it should be possible to use a semantics directly to build axiom systems
for each syntactic category of a programming language, and combine them to get a Hoare-
style proof system for the whole language, as we did here for our simple language. An
advantage of this approach is that the hierarchical structure of a proof system built in
this way will reflect the syntactic structure of the programming language: in the example
language considered here, for instance, the declarative system is a subsystem used inside
the imperative system, and this corresponds to the fact that declarations can appear as
syntactic components of commands. Of course, for more complicated languages, we may

55

need different choices of assertion language (and, indeed, for a language with many syntactic
classes, a richer notation would be needed for designating assertions about the various classes
of terms); and the axioms and rules may not be as clean as the ones we were able to use
here.

Our methods suggest, we feel, a general basis for constructing Hoare-like semantics
for some more complicated languages involving sharing, such as languages including array
declarations and array assignments. Although we have not worked out the details, our
approach here would lead to proof rules involving explicit reasoning about the sharing
classes of array expressions, unlike the rules of [2], which used a generalization of syntactic
substitution to cope with array assignments. It should also be possible to treat more complex
forms of sharing, such as the hierarchical sharing structures required to deal with ALGOL
68 ref declarations and pointers.

Adding procedures with various forms of parameter passing is a much more interesting
and difficult problem. It is known that procedure calls in statically scoped languages can
be implemented by a form of copy rule, replacing a procedure call by a block containing
a declaration which binds formal parameters to actual parameters (see, for example, Ten-
nent[37]). Our simple programming language contained two types of declaration, chosen
to correspond to two parameter mechanisms (we might use the terminology “call-by-alias”,
corresponding to call-by-reference (PASCAL var parameters), and “call-by-new”, similar
to PASCAL call-by-value). If we wish to add explicit procedures, by means of a procedure
declaration and call, we might add to the syntax the clauses:

A 2= proc P(new I) =T | proc P(alias I) =T
I == P(E)| P(I).

It would then be possible to mimic the style of proof systems such as [25,26] in which the
proof rules for procedures are based on copy rules. In future work, we plan to investigate
this, as well as the use of a more explicitly semantically based assertion structure; since pro-
cedures denote functions from argument values to command values, a semantically based
assertion language should use assertions which incorporate an appropriate type of “param-
eter condition”. An assertion about (for example) a procedure having a single call-by-alias
parameter should contain a parameter condition describing a sharing class. Some results
relevant to this have been discussed by Reynolds [30,31] in his Specification Logic. This,
and the consideration of further problematic features associated with procedures, such as
recursion and the use of procedures as parameters, are topics for future research.

In summary, the adoption of a more widely based notion of Hoare system, with more
attention to the semantic foundations, should lead to significant improvements in the ax-
iomatic treatment of many programming language constructs. The use of semantics directly
in the design and construction of assertion languages for reasoning about program proper-
ties should be advocated more extensively. Our work in this paper is a small step in this
direction.

Acknowledgemnents. The author is grateful to Robert Cartwright, Joe Halpern, Albert
Meyer, and Boris Trakhtenbrot for helpful comments and criticism, and to Allen Stoughton
for pointing out an error in an earlier definition of M. Suggestions by Paola Giannini,
Ulrik Jgrring, Brad White, and Bill Roscoe led to improvements in the presentation and
development of the material. The referees provided helpful constructive criticism which has
led to further clarification of the paper’s material.

56

7. Appendix.

In this Appendix we sketch the completeness of our proof systems, introducing strongest
post-conditions and weakest pre-conditions of appropriate types. The proof follows standard
lines, exemplified by the proofs in [7,2].

Weakest preconditions and strongest postconditions.

We define first a syntactic “strongest post-condition” for declarations and assertions
about the sharing relation. If A is a declaration and ¢ is an assertion, we define

sp[Al(9)

by induction on the structure of the declaration:

splnew I = EJ(¢) = {I},¢-1
splalias Iy = I;](¢) = (L) U {l},(o\]1) —
sp[Ao; A1l(¢) = sp[A1l(sp[Ad](4))

where we have used the notation ¢\I; for the assertion obtained by omitting ¢(I;) from ¢.
The intention is that sp[A](¢) is a strongest post-condition in the usual sense, so that for
all p, ¢ and A,

pk¢ it RI[Alpksp[A)(9).
The full property is expressed by the following lemma. Its proof is trivial.
Lemma CI1. For all A, and all ¢ and ¥, b (¢)A(p) iff F (sp[Al(¢) = ¥). 1
Lemma C2. TForall A,and all ¢, F (¢)A(sp[A](4)). 1
Next, we define weakest pre-conditions.

For declarations we define

wp[nullj(Q) = Q
wp[new I = E](Q) = [E\I]Q
wp[alias I = L](Q) = [L\L]Q
wp[Ao; 21)(Q) = wp[Ad(wp[A1](Q)).

The following syntactic construction will then suffice for commands.

wpy[skip](Q) = @
wpo[I:=E](Q) = [E\¢(])|Q
wpglT1; T20(Q) = wpue[T1l(wpg[T2](Q))
wpy[begin A; T end](Q) = wp[A](Wpspaye)[T1(@)),

provided dec[A] does not contain any free identifiers of Q. In a case where this constraint
is violated, we may simply rename bound variables, obtaining a more generally applicable
but slightly less attractive definition

wpg[begin A; T end](Q) = wp[A](wpy[I'](Q)),

where A’; T is a renaming of the block body to avoid binding the free identifiers of @} (and
avoiding free identifiers of A, T') and where 1 is sp[A’](¢).

57

The following lemmas show that this syntactic characterization does indeed define weak-
est pre-conditions. Again they are proved by structural induction.

Lemma C3. For all A, and all P and @,
F {P}A{Q} iff F (P= wp[A](Q))
Lemma C4. TFor all T, and all ¢, P and Q,

F (o {PIT{Q}) iff F (¢ (P = wp,r(Q))).

Next, we show that weakest pre-conditions can be used in proofs to establish complete-
ness.

Lemma C§. For all A, and all P and @,
Th F {wplAl(@)}Aa{Q}.
Lemma C6. For all I', and all ¢, P and Q,

Th b (6F {wp,[T)@)IT{Q}.

The completeness theorems follow immediately. We state the version for commands;
the corresponding result for declarations is similar, and may be proved in exactly the same
way.

Theorem 13. For all T, and all ¢, P and @,
E (¢ {P}IT{Q}) implies Th F (¢ {P}T{Q}).

Proof. Suppose that the assertion (¢ - {P}I'{@}) is valid. Then we know that

F (¢ (P = wpy[l)(Q))):

This assertion belongs to the set Th, so that trivially we have

Th b (1= (P = wpy[T](Q))) (1)

We also have

Th | (¢ {wp,[I1(@)}T{Q}) (2)

by Lemma C6. By the rule of consequence (B11), from (1) and (2) we get

Th - (¢ F {PIT{Q}),

where Th is the set of valid conditions. That completes the proof.

58

8. References.
(LNCS refers to the Springer Verlag Lecture Notes in Computer Science series.)

[1] Apt, K. R., Ten Years of Hoare’s Logic: A survey-Part 1, ACM TOPLAS, Vol. 3
pp 431-483 (1981).

[2] de Bakker, J. W., Mathematical Theory of Program Correciness, Prentice-Hall 1980.

[3] Boehm, H.-J., Side Effects and Aliasing Can Have Simple Axiomatic Descriptions,
ACM TOPLAS, vol. 7, no. 4 (October 1985).

[4] Cartwright, R., and Oppen, D., The Logic of Aliasing, Acta Informatica 15, pp
365-384 (1981).

[5] Cartwright, R., and Oppen, D., Unrestricted Procedure Calls in Hoare’s Logic, Proc.
5th ACM Symposium on Principles of Programming Languages, ACM New York.

[6] Clarke, E. M., Programming language constructs for which it is impossible to obtain
good Hoare axioms, JACM 26 pp 129-147 (1979).

[7] Cook, S., Soundness and completeness of an axiom system for program verification,
SIAM J. Comput. 7, pp 70-90 (1978).

[8] Donahue, James, Locations Considered Unnecessary, Acta Informatica 8, pp 221-242
(1977).

[9] Goerdt, A., A Hoare Calculus for Functions Defined by Recursion on Higher Types,
Proc. Logics of Programs, Brooklyn College, Springer Verlag LNCS 193, pp 106-117 (1985).

[10] Gordon, M., The Denotational Description of Programming Languages, Springer
Verlag 1978.

[11] Gries, D., The Multiple Assignment Statement, IEEE Trans. Software Engrg, SE-4,
pp 89-93 (1978).

[12] Gries, D., and Levin, G., Assignment and procedure call proof rules, ACM TOPLAS
2, pp 564-579 (1980).

[13] Halpern, J., A Good Hoare Axiom System for an Algol-like language, Proc. POPL
1984.

[14] Halpern, J., Meyer, A., and Trakhtenbrot, B., The Semantics of Local Storage, or
What Makes the Free-list Free?, Proc. POPL 1984.

[15] Halpern, J., Meyer, A., and Trakhtenbrot, B., From Denotational to Operational
and Axiomatic Semantics for ALGOL-like languages: An Overview, Proc. 1983 Workshop
on Logics of Programs, Springer Verlag LNCS 164 (1984).

[16] Hoare, C. A. R., An Axiomatic Basis for Computer Programming, CACM 12, pp
576-580 (1969).

[17] Hoare, C. A. R., Procedures and parameters: An axiomatic approach, Symposium
on Semantics of Algorithmic Languages, Springer Verlag LN Maths 188 (1971).

[18] Jones, C. B., Yet Another Proof of the Correctness of Block Implementation, IBM
Laboratory, Vienna (August 1970).

[19] Landin, P. J., A Correspondence between Algol 60 and Church’s lambda notation,
CACM 8, 89-101 and 158-165 (1965).

[20] Langmaack, H., On Termination Problems for Finitely Interpreted ALGOL-like
Programs, Acta Informatica 18, pp 79-108 (1972).

[21] Meyer, A. R., and Halpern, J. Y., Axiomatic Definitions of Programming Lan-
guages: A Theoretical Assessment, JACM 29 (1982), pp 555-576.

59

[22] Milne, R., and Strachey, C., A Theory of Programming Language Semantics, Chap-
man and Hall 1976.

[23] Milner, R., Fully Abstract Models of Typed a-calculi, Theoretical Computer Sci-
ence (1977).

[24] Mosses, P. D., The Mathematical Semantics of ALGOL 60, Technical Monograph
PRG-12, Oxford University Computing Laboratory, Programming Research Group (1974).

[25] Olderog, E-R., Correctness of Programs with Pascal-like Procedures without Global
Variables, Theoretical Computer Science 30 (1984) 49-90.

[26] Olderog, E-R., Sound and Complete Hoare-like Calculi Based on Copy Rules, Acta
Informatica 16, pp 161-197 (1981).

[27] Oles, F. J., A Category-theoretic Approach to the Semantics of ALGOL-like Lan-
guages, Ph. D. thesis, Syracuse University (August 1982).

[28] Plotkin, G. D., LCF considered as a Programming Language, Theoretical Computer
Science 5, pp 223-255 (1977).

[29] Plotkin, G. D., and Hennessy, M. C. B., Full Abstraction for a Simple Parallel
Programming Language, Proc. MFCS 1979, Springer LNCS 74, pp 108-120 (1979).

[30] Reynolds, J., The Craft of Programming, Prentice-Hall 1981.

[31] Reynolds, J., Idealized Algol and its specification logic, Technical Report 1-81,
Dept. of Computer and Information Science, Syracuse University (July 1981).

[32] Reynolds, J., Syntactic control of interference, Proceedings of the sth AcM Sym-
posium on Principles of Programming Languages, ACM New York, pp 39-46 (1978).

[33] Sokolowski, S., Partial correctness: The term-wise approach, Science of Computer
Programming, vol. 2, no. 4, pp. 141-157, (August 1984).

[34] Stoy, J. E., Denotational Semantics, MIT Press 1977.

[35] Strachey, C., Towards a formal semantics, in: Formal Language Description Lan-
guages for Computer Programming, ed. T. B. Steel, Jr., North-Holland, Amsterdam (1966).

[36] Tennent, R. D., Semantics of interference control, Theoretical Computer Science
27 (1983) 293-310.

[37] Tennent, R. D., Principles of Programming Languages, Prentice-Hall (1981).

60

