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ESSENTIALS

e PARALLEL ALGOL =

shared-variable parallel programs
+ call-by-name A-calculus

e simply typed
0 ::=exp|r| | var|r] | comm
| (9 — 9/) | A phrase types
T = Int | bool data types

e recursion and conditional at each type

cf. Reynolds: The essence of ALGOL



RATIONALE

e Can write parallel programs that cooperate
by reading and writing shared memory

e Procedures can encapsulate parallel idioms
(e.g. mutual exclusion, readers—writers)

e [ _ocal variable declarations can be used to
limit the scope of interference

INTUITION

Procedures and parallelism are orthogonal
e should combine smoothly
e semantics should be “modular”

e should obtain a conservative extension



MUTUAL EXCLUSION

procedure mutex(ny, ci,n9, c9);
new bool] s in
s:=true;
(while true do
(n1; await s then s:=false;
c1; s:=true)
| while true do
(no; await s then s:=false;
co; s:=true)

® mutex : comm4 — comm

e Encapsulates common use of a semaphore
e Correctness relies on locality of s

e Independent of n; and ¢;



OUTLINE of SEMANTICS

e Traditional global state models fail to validate
natural equivalences, e.g.

new|r|cin P =P if . & free(P)

e Adapt possible worlds model of sequential ALGOL
to the parallel setting. . .

e ...and simultaneously extend transition trace
semantics of shared memory parallel programs
to include procedures and recursion.

e Adapt a relationally parametric model of
sequential ALGOL to the parallel setting. ..

e ...and introduce a form of parametric reasoning
for shared-variable programs.

cf. Reynolds, Oles

cf. O’Hearn, Tennent



CATEGORY of WORLDS

e Objects are countable sets (of “allowed states™)
e Morphisms are “expansions”
h=(fQ)W—=X
where

— f 1s a function from X to W
— () 1s an equivalence relation on X
— f puts each ()-class in bijection with 1V

INTUITION

e X 1s asetof “large” states extending the “small”
states of W/

e f extracts the “small” part of a state

e () identifies states with the same extra parts

cf. Frank Oles’ Ph.D. thesis



DETAILS
A morphism (f, Q) : W — X satisfies:

e f: X — W is a (total, onto) function

e () 1s a (total) equivalence relation on X
—reflexive, symmetric, transitive

e Let |x]() be the equivalence class of x
-l = {2 € X | (z.2') € Q}

e Foreachr € X, f: [r]g — W is a bijection



IDENTITY

e For any W the identity morphism on W 1s
idyy = (idy, W x W)
where idyy 1s the identity function on W

e The equivalence relation of idy has a single
equivalence class: for all w € W, [w| = W.

BIJECTIONS

More generally. ..

e A bijection f : X — W givesrise to a morphism
from W to X given by

(f, X x X)



COMPOSITION

e When (f,QQ) : W — X and (¢,R): X =Y
are morphisms, define the composite to be

(fog,S): W =Y,
where

S ={(y1,y2) | (gy1,9y2) € Q}.

e This 1s a morphism from W to Y, because:

— fog:Y — W is a function (total, onto)
— .S 1s a (total) equivalence relation on Y
—ForallyeY, fog:|ylg — W is a bijection

PROPERTIES

e Composition 1s associative
e When (f, Q) : W — X is a morphism,

idy; (f,Q)=(f,Q) (f,Q);idx =(f,Q)



ISOMORPHISMS

e A morphism (f, Q) : W — X is an isomorphism
iff there is a morphism (g, R) : X — W such

that (f,Q); (g, R) = idyy
e This happens iff f is a bijection from X to W
and () 1s X x X

—gwillbe f~!
—Rwillbe W x W
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EXPANSIONS

e For each pair of objects W and V' there is a
canonical expansion morphism

—x VW -=WxV
given by
—xV=>{fst: W xV =W, Q)
where
((wo, vo), (w1,v1)) € Q <= vy =11
so that () is (=y/) o snd

e An expansion — X V- models the introduction
of a new variable of datatype 7.

THEOREM

Every morphism 1s an expansion composed with
an 1somorphism. (Oles)
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CATEGORIES

e Let W be the category of worlds, with
morphisms representing expansions

e Let D be the category of domains,
with continuous functions as morphisms

— A domain (D, C) is a complete partial order
with a least element | p

— A function F' : (D,C) — (D", )
is continuous iff for all chains (dp)>° , in D,
the sequence (F'(dy)) 2 is also a chain, and

u F(dn):F(I_l dn)
n=0 n=0
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SEMANTICS

e Types denote functors from worlds to domains

0] : W — D

e Phrases denote natural transformations,
ie.whenm = P:0,[P]: [x] — [0]
e This means that when h : W — X,

commutes.

When h 1s an expansion, naturality enforces locality.
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CARTESIAN CLOSURE

e The functor category DW is cartesian closed.

e Can use ccc structure to interpret arrow types.

Procedures of type § — 6’ denote, at world W,
natural families of functions p(—):

eWhenh: W — Xandh' : X =Y,

o)x P [p]x
o)’ 07
1Y — 1Y
commutes.
INTUITION

Procedures can be called at expanded worlds,
and naturality enforces locality constraints.
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COMMANDS
e Commands denote sets of traces
[comm]W = o (W x W))
e Trace sets are closed, e.g.

—afeckweW = alw,w)bec
—a(w,w) (W, w"B cc = alw,w)pBcc

e When h : W — X, [comm]|A converts a trace
set over IV to a trace set over X

[comml](f, Q)c =
{6 | map(f x f)F € ¢ & map(Q)5}

INTUITION

o A trace (wp, w))(wy, w)) ... (wy, wy,) represents
a fair interactive computation.

/ .
e Each step (wi, wz) represents a finite sequence
of atomic actions.

e [comm]|/c behaves like ¢ on the W-component
of state and has no effect on the “extra” component.
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SPECIAL CASE

e et h be an expansion from W to W x V
e Let 7' € [comm]|W be a trace set over W

o [comm]|hT is the trace set 7/ over W x V
such that, for « € (W x V) x (W x V))*°,

o c T iff
mapfsta e T & V((w,v), (W, v) e a. v =1
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EXPRESSIONS

Expressions denote trace sets
[exp[r]]W = oI(WT x V; U W¥)

[exp[7]](f,Q)e = {(p',v) | (mapfp',v) € e}
U{p" | mapfp' e en W<}

VARIABLES

“Object-oriented” interpretation a la Reynolds:

variable = acceptor + expression

[var|7||W = (V; — [comm|WV) x [exp|7||W
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RECURSION

Requires a careful use of greatest fixed points

e Embed [0]WW in a complete lattice [9]WV
(like [#]W but without closure and naturality)

e Generalize semantic definitions to | P|WV.
e Introduce natural transformations

stutg : [0] — [0]  closg : [0] — [0]

e Can then define [rec ¢.P|IWWu to be
closgW (va.stutyW ([PIW (u | ¢ : x)))

EXAMPLE
e Divergence = infinite stuttering:

[rec L. ]Wu = (ve{(w, w)a | a € )l
= {(w,w) | we W}

18



AGREEMENT THEOREM

Suppose 7 = P : 0 is valid.
Then for all W, all u, v’ € [n]|W,
if u and v’ agree on free(P) then

[P]Wu = [P]W
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LAWS

e This semantics validates:

new
new
new

7] vin P’ = P’
7] vin (P||P") = (new[r] ¢ in P)|| P’

| vin (P; P') = (new[r] ¢ in P); P’

T

when ¢ does not occur free in P’.

e Also (still) validates:

(Ae:0.P)(Q) = PQ/]
rec ..P = Plrec 1.P/\]

e Orthogonal combination of laws of shared-variable
programming with laws of A-calculus.

20



LAWS

For all suitably typed P,

new|7|| ¢| in new|my| (9 in P
= new|7y| o in new|7q] ¢1 in P

new|7| t1 in new|7| 1o in P(u1,19) =
new|7| 11 in new|7| 1o in P(19, 7).

Reason: naturality of | P| wrt the obvious isomorphism
between

(W x Vi) x Vg,

and
(W x Vg,) x Vg,
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EXAMPLE

Semantics validates some program equivalences
based on representation independence. ..
e.g.

new|bool| .:=true
procedure flip:; .:=not ¢;
procedure test; return ¢;
in
P(flip, test)
and
new|bool| .:=false
procedure flip; .:=not ¢
procedure test; return (not ¢);
in

P(flip, test)

are equivalent
(Reason: naturality wrt the obvious isomorphism)
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PROBLEM

Semantics fails to validate
new|int| ;:=0in P(.:=.+ 1) = P(skip),

where P 1s a free 1identifier of type comm — comm.

REASON

e Equivalence relies on relational reasoning.

e Naturality does not enforce enough constraints
on procedure meanings.

SOLUTION

e Same problem arose in sequential setting.

e Develop a relationally parametric semantics. . .

cf. O’Hearn and Tennent
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PARAMETRIC MODEL

e Category of relations R : Wy < W;

e A morphism from R to .S is a pair (hg, hq) of
morphisms in W such that

W, . x,
R| |S

. X
|44 hy N

e Types denote parametric functors, e.g.
—if R: Wy« Wy, [0]R: [0]Wy < [0]W;
~ (do, dq) € [0]R = ([0]hodo, []hdy) € [0]S

e Phrases denote parametric natural transformations
(ug, u1) € [7]R = ([P]Woup, [PIWru) € [0]R

e The parametric functor category is cartesian closed.
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COMMANDS

When R : Wy <« Wy define:
(cp,c1) € [comm|R <=

V(po, p1) € map(R).
[VO&Q € co. map fst ag = pg =
Jag € ci. mapfst g = p1 &
(map snd a, map snd a;j) € map(R)
&
Vag € ¢p. map fst o] = p; =
Jag € cg. map fst ag = pg &
(map snd «, map snd «1) € map(R)].

This is parametric!

INTUITION

When related commands are started and
interrupted 1n related states their responses
are related.
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LAWS

e As before,
new|r| cin P’ = P’
new|7| . in (P||P’) = (new|[r] ¢ in P)|| P’
new|7r| ¢ in (P; P') = (new[r] ¢ in P); P’

when ¢ does not occur free in P’.

e As before,

(A:0.P)Q = |Q/|P
rec ..P = [rec t..P/.|P

e In addition,

new|int| ¢ in (.:=1; P(1)) = P(1)
new|int| . in (1:=0; P(t.:=t+ 1)) = P(skip),

relying crucially on parametricity.
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EXAMPLE

new|int| = in
(2:=0; P(r:=0+ 1;2:=0+1);
if even(x) then diverge else skip)

and
new|int| = in
(:=0; P(x:=x + 2);
if even(z) then diverge else skip)

are equivalent in sequential ALGOL
but not equivalent in PARALLEL ALGOL.

The relation
(w, (W', 2)) e R <= w =& even(z)

works for sequential model but not for parallel.
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CONCLUSIONS

e Can combine parallelism and procedures smoothly:

— faithful to the essence of ALGOL
— allows formalization of parallel idioms
— retains laws of component languages

e Semantics by “modular” combination:

— traces + possible worlds
— traces + relational parametricity

e Advantages:

— full abstraction at ground types
— supports common reasoning principles:

o representation independence
o global invariants
o assumption—commitment

e [.1imitations:

— does not build in 1irreversibility of state change
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SEMANTICS of skip

Finite stuttering:

[skip]Wu = {(w,w) | we W
= {(w,w) |weW}T
ASSIGNMENT

Non-atomic; source expression evaluated first:
[=E|Wu =
{(mapAyp)8 | (p,v) € [E]Wu
& 3 e fst([I[Wu)v}
U {mapAyyp | p € [E]Wu N WY,
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PARALLEL COMPOSITION

[P Po]Wu = {a | 3oy € [A]Wu, ag € [B]Wu.
(a1, a2, @) € fairmergeyy .y}
where

fairmerge 4 = both’y - one 4 U both*)
bothy = {(a, 3,ap), (o, 8, Ba) | a, 3 € AT}

oney = {(a, € ), (6a,a) | ae A}
LOCAL VARIABLES

[new|7| ¢ in P|Wwu = {map(fst x fst)« |
map(snd x snd)« interference-free &

a e [P{(W x Vo) ([r](—= x Vo)u|e: (a,e))}

e No external changes to local variable

e (a,e) € |var|T]|(W x V) is a “fresh variable”

corresponding to the V- component of the state
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AWAIT

lawait B then P|Wu =
{(w,w") € [P]Wu | (w,tt) € [B]Wu}!
UA{(w,w) | (w, £f) € [B]Wu}¥
U {mapAyyp | p € [B]Wun W},

e P 1s atomic, enabled only when B true.

e Busy wait when B false.

A-CALCULUS

[L]Wu = ue
[\e: 0.P|Wuha = [P]W([x]hu ]| ¢ : a)

[P(Q)[Wu = [P]Wulidy )([Q[Wu),

e This 1s the standard interpretation, based on the
ccc structure of the functor category.
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