
The essence of
PARALLEL ALGOL

Stephen Brookes
Department of Computer Science

Carnegie Mellon University

Slides based on paper
presented at LICS ’96

1

ESSENTIALS

• PARALLEL ALGOL =

shared-variable parallel programs
+ call-by-name λ-calculus

• simply typed
θ ::= exp[τ] | var[τ] | comm
| (θ → θ′) | θ × θ′ phrase types

τ ::= int | bool data types

• recursion and conditional at each type

cf. Reynolds: The essence of ALGOL

2

RATIONALE

• Can write parallel programs that cooperate
by reading and writing shared memory

• Procedures can encapsulate parallel idioms
(e.g. mutual exclusion, readers–writers)

• Local variable declarations can be used to
limit the scope of interference

INTUITION

Procedures and parallelism are orthogonal

• should combine smoothly

• semantics should be “modular”

• should obtain a conservative extension

3

MUTUAL EXCLUSION

procedure mutex(n1, c1, n2, c2);
new[bool] s in

s:=true;
(while true do

(n1; await s then s:=false;
c1; s:=true)

‖ while true do
(n2; await s then s:=false;
c2; s:=true)

)

•mutex : comm4 → comm

• Encapsulates common use of a semaphore

• Correctness relies on locality of s

• Independent of ni and ci

4

OUTLINE of SEMANTICS

• Traditional global state models fail to validate
natural equivalences, e.g.

new[τ] ι in P = P if ι 6∈ free(P)

•Adapt possible worlds model of sequential ALGOL

to the parallel setting. . .

• . . . and simultaneously extend transition trace
semantics of shared memory parallel programs
to include procedures and recursion.

•Adapt a relationally parametric model of
sequential ALGOL to the parallel setting. . .

• . . . and introduce a form of parametric reasoning
for shared-variable programs.

cf. Reynolds, Oles
cf. O’Hearn, Tennent

5

CATEGORY of WORLDS

•Objects are countable sets (of “allowed states”)

•Morphisms are “expansions”

h = (f, Q) : W → X

where

– f is a function from X to W

– Q is an equivalence relation on X

– f puts each Q-class in bijection with W

INTUITION
•X is a set of “large” states extending the “small”

states of W

• f extracts the “small” part of a state

•Q identifies states with the same extra parts

cf. Frank Oles’ Ph.D. thesis

6

DETAILS

A morphism (f, Q) : W → X satisfies:

• f : X → W is a (total, onto) function

•Q is a (total) equivalence relation on X

– reflexive, symmetric, transitive

• Let [x]Q be the equivalence class of x

– [x]Q = {x′ ∈ X | (x, x′) ∈ Q}
• For each x ∈ X , f : [x]Q → W is a bijection

7

IDENTITY

• For any W the identity morphism on W is

idW = (idW , W ×W)

where idW is the identity function on W

• The equivalence relation of idW has a single
equivalence class: for all w ∈ W , [w] = W .

BIJECTIONS

More generally. . .

•A bijection f : X → W gives rise to a morphism
from W to X given by

(f, X ×X)

8

COMPOSITION

•When (f, Q) : W → X and (g,R) : X → Y
are morphisms, define the composite to be

(f ◦ g, S) : W → Y,

where

S = {(y1, y2) | (gy1, gy2) ∈ Q}.

• This is a morphism from W to Y , because:

– f ◦ g : Y → W is a function (total, onto)
– S is a (total) equivalence relation on Y

– For all y ∈ Y , f ◦ g : [y]S → W is a bijection

PROPERTIES

• Composition is associative

•When (f, Q) : W → X is a morphism,

idW ; (f, Q) = (f, Q) (f, Q); idX = (f, Q)

9

ISOMORPHISMS

•A morphism (f, Q) : W → X is an isomorphism
iff there is a morphism (g,R) : X → W such
that (f, Q); (g,R) = idW

• This happens iff f is a bijection from X to W
and Q is X ×X

– g will be f−1

– R will be W ×W

10

EXPANSIONS

• For each pair of objects W and V there is a
canonical expansion morphism

−× V : W → W × V

given by

−× V = (fst : W × V → W, Q)

where

((w0, v0), (w1, v1)) ∈ Q ⇐⇒ v0 = v1

so that Q is (=V) ◦ snd

•An expansion − × Vτ models the introduction
of a new variable of datatype τ .

THEOREM
Every morphism is an expansion composed with

an isomorphism. (Oles)

11

CATEGORIES

• Let W be the category of worlds, with
morphisms representing expansions

• Let D be the category of domains,
with continuous functions as morphisms

– A domain (D,v) is a complete partial order
with a least element ⊥D

– A function F : (D,v) → (D′,v′)
is continuous iff for all chains 〈dn〉∞n=0 in D,
the sequence 〈F (dn)〉∞n=0 is also a chain, and

∞⊔
n=0

′
F (dn) = F (

∞⊔
n=0

dn)

12

SEMANTICS

• Types denote functors from worlds to domains

[[θ]] : W → D

• Phrases denote natural transformations,
i.e. when π ` P : θ, [[P]] : [[π]]

·→ [[θ]]

• This means that when h : W → X ,

[[π]]X

[[π]]W [[θ]]W

[[θ]]X-

[[P]]X

?

[[θ]]h

-
[[P]]W

?

[[π]]h

commutes.

When h is an expansion, naturality enforces locality.

13

CARTESIAN CLOSURE

• The functor category DW is cartesian closed.

• Can use ccc structure to interpret arrow types.

Procedures of type θ → θ′ denote, at world W ,
natural families of functions p(−):

•When h : W → X and h′ : X → Y ,

[[θ]]Y

[[θ]]X [[θ′]]X

[[θ′]]Y-

p(h; h′)

?

[[θ′]]h′

-
p(h)

?

[[θ]]h′

commutes.

INTUITION
Procedures can be called at expanded worlds,

and naturality enforces locality constraints.
14

COMMANDS
• Commands denote sets of traces

[[comm]]W = ℘†((W ×W)∞)

• Trace sets are closed, e.g.
– αβ ∈ c & w ∈ W ⇒ α(w,w)β ∈ c

– α(w, w′)(w′, w′′)β ∈ c ⇒ α(w,w′′)β ∈ c

•When h : W → X , [[comm]]h converts a trace
set over W to a trace set over X

[[comm]](f, Q)c =
{β | map(f × f)β ∈ c & map(Q)β}

INTUITION
•A trace (w0, w

′
0)(w1, w

′
1) . . . (wn, w′n) represents

a fair interactive computation.
• Each step (wi, w

′
i) represents a finite sequence

of atomic actions.
• [[comm]]hc behaves like c on the W-component

of state and has no effect on the “extra” component.

15

SPECIAL CASE

• Let h be an expansion from W to W × V

• Let T ∈ [[comm]]W be a trace set over W

• [[comm]]hT is the trace set T ′ over W × V
such that, for α ∈ ((W × V) × (W × V))∞,
α ∈ T ′ iff

map fstα ∈ T & ∀((w, v), (w′, v′)) ∈ α. v = v′

16

EXPRESSIONS

Expressions denote trace sets

[[exp[τ]]]W = ℘†(W+ × Vτ ∪ Wω)

[[exp[τ]]](f, Q)e = {(ρ′, v) | (mapfρ′, v) ∈ e}
∪ {ρ′ | mapfρ′ ∈ e ∩Wω}

VARIABLES

“Object-oriented” interpretation à la Reynolds:

variable = acceptor + expression

[[var[τ]]]W = (Vτ → [[comm]]W)× [[exp[τ]]]W

17

RECURSION

Requires a careful use of greatest fixed points

• Embed [[θ]]W in a complete lattice [θ]W
(like [[θ]]W but without closure and naturality)

•Generalize semantic definitions to [P]W .

• Introduce natural transformations

stutθ : [θ]
·→ [θ] closθ : [θ]

·→ [[θ]]

• Can then define [[rec ι.P]]Wu to be

closθW (νx.stutθW ([P]W (u | ι : x)))

EXAMPLE
•Divergence = infinite stuttering:

[[rec ι.ι]]Wu = (νc.{(w,w)α | α ∈ c})†
= {(w,w) | w ∈ W}ω

18

AGREEMENT THEOREM

Suppose π ` P : θ is valid.
Then for all W , all u, u′ ∈ [[π]]W ,
if u and u′ agree on free(P) then

[[P]]Wu = [[P]]Wu′

19

LAWS

• This semantics validates:

new[τ] ι in P ′ = P ′

new[τ] ι in (P‖P ′) = (new[τ] ι in P)‖P ′

new[τ] ι in (P ; P ′) = (new[τ] ι in P); P ′

when ι does not occur free in P ′.

•Also (still) validates:

(λι : θ.P)(Q) = P [Q/ι]
rec ι.P = P [rec ι.P/ι]

•Orthogonal combination of laws of shared-variable
programming with laws of λ-calculus.

20

LAWS

For all suitably typed P ,
new[τ1] ι1 in new[τ2] ι2 in P

= new[τ2] ι2 in new[τ1] ι1 in P

new[τ] ι1 in new[τ] ι2 in P (ι1, ι2) =
new[τ] ι1 in new[τ] ι2 in P (ι2, ι1).

Reason: naturality of [[P]] wrt the obvious isomorphism
between

(W × Vτ1)× Vτ2

and
(W × Vτ2)× Vτ1

21

EXAMPLE

Semantics validates some program equivalences
based on representation independence. . .
e.g.

new[bool] ι:=true
procedure flip; ι:=not ι;
procedure test ; return ι;
in
P (flip, test)

and
new[bool] ι:=false
procedure flip; ι:=not ι;
procedure test ; return (not ι);
in
P (flip, test)

are equivalent
(Reason: naturality wrt the obvious isomorphism)

22

PROBLEM

Semantics fails to validate

new[int] ι:=0 in P (ι:=ι + 1) = P (skip),

where P is a free identifier of type comm → comm.

REASON

• Equivalence relies on relational reasoning.

•Naturality does not enforce enough constraints
on procedure meanings.

SOLUTION
• Same problem arose in sequential setting.

•Develop a relationally parametric semantics. . .

cf. O’Hearn and Tennent

23

PARAMETRIC MODEL

• Category of relations R : W0 ↔ W1

•A morphism from R to S is a pair (h0, h1) of
morphisms in W such that

W1

W0
6

R
?

X1

X0
6

S
?

-
h0

-

h1

• Types denote parametric functors, e.g.

– if R : W0 ↔ W1, [[θ]]R : [[θ]]W0 ↔ [[θ]]W1

– (d0, d1) ∈ [[θ]]R ⇒ ([[θ]]h0d0, [[θ]]h1d1) ∈ [[θ]]S

• Phrases denote parametric natural transformations

(u0, u1) ∈ [[π]]R ⇒ ([[P]]W0u0, [[P]]W1u1) ∈ [[θ]]R

• The parametric functor category is cartesian closed.

24

COMMANDS

When R : W0 ↔ W1 define:

(c0, c1) ∈ [[comm]]R ⇐⇒

∀(ρ0, ρ1) ∈ map(R).
[∀α0 ∈ c0. map fst α0 = ρ0 ⇒
∃α1 ∈ c1. map fst α1 = ρ1 &

(map snd α0, map snd α1) ∈ map(R)]
&

[∀α1 ∈ c1. map fst α1 = ρ1 ⇒
∃α0 ∈ c0. map fst α0 = ρ0 &

(map snd α0, map snd α1) ∈ map(R)].

This is parametric!

INTUITION
When related commands are started and

interrupted in related states their responses
are related.

25

LAWS
•As before,

new[τ] ι in P ′ = P ′

new[τ] ι in (P‖P ′) = (new[τ] ι in P)‖P ′

new[τ] ι in (P ; P ′) = (new[τ] ι in P); P ′

when ι does not occur free in P ′.

•As before,
(λι : θ.P)Q = [Q/ι]P
rec ι.P = [rec ι.P/ι]P

• In addition,

new[int] ι in (ι:=1; P (ι)) = P (1)
new[int] ι in (ι:=0; P (ι:=ι + 1)) = P (skip),

relying crucially on parametricity.

26

EXAMPLE

new[int] x in
(x:=0; P (x:=x + 1; x:=x + 1);
if even(x) then diverge else skip)

and
new[int] x in

(x:=0; P (x:=x + 2);
if even(x) then diverge else skip)

are equivalent in sequential ALGOL

but not equivalent in PARALLEL ALGOL.

The relation

(w, (w′, z)) ∈ R ⇐⇒ w = w′ & even(z)

works for sequential model but not for parallel.

27

CONCLUSIONS

• Can combine parallelism and procedures smoothly:

– faithful to the essence of ALGOL

– allows formalization of parallel idioms
– retains laws of component languages

• Semantics by “modular” combination:

– traces + possible worlds
– traces + relational parametricity

•Advantages:

– full abstraction at ground types
– supports common reasoning principles:

◦ representation independence
◦ global invariants
◦ assumption–commitment

• Limitations:

– does not build in irreversibility of state change

28

SEMANTICS of skip

Finite stuttering:

[[skip]]Wu = {(w,w) | w ∈ W}†
= {(w,w) | w ∈ W}+

ASSIGNMENT

Non-atomic; source expression evaluated first:
[[I :=E]]Wu =

{(map∆Wρ)β | (ρ, v) ∈ [[E]]Wu

& β ∈ fst([[I]]Wu)v}†
∪ {map∆Wρ | ρ ∈ [[E]]Wu ∩Wω}†.

29

PARALLEL COMPOSITION

[[P1‖P2]]Wu = {α | ∃α1 ∈ [[P1]]Wu, α2 ∈ [[P2]]Wu.

(α1, α2, α) ∈ fairmergeW×W}†

where
fairmergeA = both∗A · oneA ∪ bothω

A
bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}

LOCAL VARIABLES

[[new[τ] ι in P]]Wu = {map(fst × fst)α |
map(snd × snd)α interference-free &
α ∈ [[P]](W × Vτ)([[π]](−× Vτ)u | ι : (a, e))}

•No external changes to local variable

• (a, e) ∈ [[var[τ]]](W × Vτ) is a “fresh variable”
corresponding to the Vτ component of the state

30

AWAIT

[[await B then P]]Wu =

{(w,w′) ∈ [[P]]Wu | (w,tt) ∈ [[B]]Wu}†
∪ {(w,w) | (w,ff) ∈ [[B]]Wu}ω
∪ {map∆Wρ | ρ ∈ [[B]]Wu ∩Wω}†.

• P is atomic, enabled only when B true.
• Busy wait when B false.

λ-CALCULUS

[[ι]]Wu = uι

[[λι : θ.P]]Wuha = [[P]]W ′([[π]]hu | ι : a)

[[P (Q)]]Wu = [[P]]Wu(idW)([[Q]]Wu),

• This is the standard interpretation, based on the
ccc structure of the functor category.

31

