

The essence of PARALLEL ALGOL

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

Slides based on paper
presented at LICS '96

ESSENTIALS

- PARALLEL ALGOL =

shared-variable parallel programs

+ call-by-name λ -calculus

- simply typed

$$\theta ::= \mathbf{exp}[\tau] \mid \mathbf{var}[\tau] \mid \mathbf{comm} \mid (\theta \rightarrow \theta') \mid \theta \times \theta' \quad \text{phrase types}$$
$$\tau ::= \mathbf{int} \mid \mathbf{bool} \quad \text{data types}$$

- recursion and conditional at each type

cf. Reynolds: *The essence of ALGOL*

RATIONALE

- Can write parallel programs that *cooperate* by reading and writing shared memory
- Procedures can *encapsulate* parallel idioms (e.g. mutual exclusion, readers–writers)
- Local variable declarations can be used to limit the scope of *interference*

INTUITION

Procedures and parallelism are *orthogonal*

- should combine smoothly
- semantics should be “modular”
- should obtain a *conservative* extension

MUTUAL EXCLUSION

```
procedure mutex( $n_1, c_1, n_2, c_2$ );  
new[bool] s in  
    s:=true;  
    (while true do  
        ( $n_1$ ; await s then s:=false;  
          $c_1$ ; s:=true)  
    || while true do  
        ( $n_2$ ; await s then s:=false;  
          $c_2$ ; s:=true)  
    )
```

- $\text{mutex} : \text{comm}^4 \rightarrow \text{comm}$
- Encapsulates common use of a *semaphore*
- Correctness relies on *locality* of *s*
- Independent of n_i and c_i

OUTLINE of SEMANTICS

- Traditional *global state* models fail to validate natural equivalences, e.g.

$$\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P = P \quad \text{if } \iota \notin \text{free}(P)$$

- Adapt *possible worlds* model of sequential ALGOL to the parallel setting...
- ... and simultaneously extend *transition trace* semantics of shared memory parallel programs to include procedures and recursion.
- Adapt a *relationally parametric* model of sequential ALGOL to the parallel setting...
- ... and introduce a form of parametric reasoning for shared-variable programs.

cf. Reynolds, Oles

cf. O'Hearn, Tennent

CATEGORY of WORLDS

- Objects are countable sets (of “allowed states”)
- Morphisms are “expansions”

$$h = (f, Q) : W \rightarrow X$$

where

- f is a *function* from X to W
- Q is an *equivalence relation* on X
- f puts each Q -class in bijection with W

INTUITION

- X is a set of “large” states extending the “small” states of W
- f extracts the “small” part of a state
- Q identifies states with the same extra parts

cf. Frank Oles’ Ph.D. thesis

DETAILS

A morphism $(f, Q) : W \rightarrow X$ satisfies:

- $f : X \rightarrow W$ is a (total, onto) function
- Q is a (total) equivalence relation on X
 - reflexive, symmetric, transitive
- Let $[x]_Q$ be the equivalence class of x
 - $[x]_Q = \{x' \in X \mid (x, x') \in Q\}$
- For each $x \in X$, $f : [x]_Q \rightarrow W$ is a bijection

IDENTITY

- For any W the *identity morphism on W* is

$$\text{id}_W = (id_W, W \times W)$$

where id_W is the identity function on W

- The equivalence relation of id_W has a single equivalence class: for all $w \in W$, $[w] = W$.

BIJECTIONS

More generally...

- A bijection $f : X \rightarrow W$ gives rise to a *morphism* from W to X given by

$$(f, X \times X)$$

COMPOSITION

- When $(f, Q) : W \rightarrow X$ and $(g, R) : X \rightarrow Y$ are morphisms, define the *composite* to be

$$(f \circ g, S) : W \rightarrow Y,$$

where

$$S = \{(y_1, y_2) \mid (gy_1, gy_2) \in Q\}.$$

- This is a morphism from W to Y , because:
 - $f \circ g : Y \rightarrow W$ is a function (total, onto)
 - S is a (total) equivalence relation on Y
 - For all $y \in Y$, $f \circ g : [y]_S \rightarrow W$ is a bijection

PROPERTIES

- Composition is associative
- When $(f, Q) : W \rightarrow X$ is a morphism,
 $\text{id}_W; (f, Q) = (f, Q) \quad (f, Q); \text{id}_X = (f, Q)$

ISOMORPHISMS

- A morphism $(f, Q) : W \rightarrow X$ is an *isomorphism* iff there is a morphism $(g, R) : X \rightarrow W$ such that $(f, Q); (g, R) = \text{id}_W$
- This happens iff f is a bijection from X to W and Q is $X \times X$
 - g will be f^{-1}
 - R will be $W \times W$

EXPANSIONS

- For each pair of objects W and V there is a canonical *expansion* morphism

$$- \times V : W \rightarrow W \times V$$

given by

$$- \times V = (\text{fst} : W \times V \rightarrow W, Q)$$

where

$$((w_0, v_0), (w_1, v_1)) \in Q \iff v_0 = v_1$$

so that Q is $(=_V) \circ \text{snd}$

- An expansion $- \times V_\tau$ models the introduction of a new variable of datatype τ .

THEOREM

Every morphism is an expansion composed with an isomorphism. (Oles)

CATEGORIES

- Let \mathbf{W} be the category of *worlds*, with morphisms representing expansions
- Let \mathbf{D} be the category of *domains*, with continuous functions as morphisms
 - A *domain* (D, \sqsubseteq) is a complete partial order with a least element \perp_D
 - A function $F : (D, \sqsubseteq) \rightarrow (D', \sqsubseteq')$ is *continuous* iff for all chains $\langle d_n \rangle_{n=0}^{\infty}$ in D , the sequence $\langle F(d_n) \rangle_{n=0}^{\infty}$ is also a chain, and

$$\bigsqcup_{n=0}^{\infty} F(d_n) = F\left(\bigsqcup_{n=0}^{\infty} d_n\right)$$

SEMANTICS

- Types denote *functors* from worlds to domains

$$\llbracket \theta \rrbracket : \mathbf{W} \rightarrow \mathbf{D}$$

- Phrases denote *natural transformations*,
i.e. when $\pi \vdash P : \theta$, $\llbracket P \rrbracket : \llbracket \pi \rrbracket \rightarrow \llbracket \theta \rrbracket$
- This means that when $h : W \rightarrow X$,

$$\begin{array}{ccc} \llbracket \pi \rrbracket W & \xrightarrow{\llbracket P \rrbracket W} & \llbracket \theta \rrbracket W \\ \llbracket \pi \rrbracket h \downarrow & & \downarrow \llbracket \theta \rrbracket h \\ \llbracket \pi \rrbracket X & \xrightarrow{\llbracket P \rrbracket X} & \llbracket \theta \rrbracket X \end{array}$$

commutes.

When h is an expansion, *naturality* enforces locality.

CARTESIAN CLOSURE

- The functor category \mathbf{D}^W is cartesian closed.
- Can use ccc structure to interpret arrow types.

Procedures of type $\theta \rightarrow \theta'$ denote, at world W , natural families of functions $p(-)$:

- When $h : W \rightarrow X$ and $h' : X \rightarrow Y$,

$$\begin{array}{ccc} \llbracket \theta \rrbracket X & \xrightarrow{p(h)} & \llbracket \theta' \rrbracket X \\ \llbracket \theta \rrbracket h' \downarrow & & \downarrow \llbracket \theta' \rrbracket h' \\ \llbracket \theta \rrbracket Y & \xrightarrow{p(h; h')} & \llbracket \theta' \rrbracket Y \end{array}$$

commutes.

INTUITION

Procedures can be called at expanded worlds, and naturality enforces locality constraints.

COMMANDS

- Commands denote sets of *traces*

$$\llbracket \mathbf{comm} \rrbracket W = \wp^\dagger((W \times W)^\infty)$$

- Trace sets are *closed*, e.g.

- $\alpha\beta \in c \ \& \ w \in W \Rightarrow \alpha(w, w)\beta \in c$
- $\alpha(w, w')(w', w'')\beta \in c \Rightarrow \alpha(w, w'')\beta \in c$

- When $h : W \rightarrow X$, $\llbracket \mathbf{comm} \rrbracket h$ converts a trace set over W to a trace set over X

$$\begin{aligned} \llbracket \mathbf{comm} \rrbracket(f, Q)c = \\ \{\beta \mid \text{map}(f \times f)\beta \in c \ \& \ \text{map}(Q)\beta\} \end{aligned}$$

INTUITION

- A trace $(w_0, w'_0)(w_1, w'_1) \dots (w_n, w'_n)$ represents a fair interactive computation.
- Each step (w_i, w'_i) represents a finite sequence of atomic actions.
- $\llbracket \mathbf{comm} \rrbracket h c$ behaves like c on the W -component of state and has no effect on the “extra” component.

SPECIAL CASE

- Let h be an expansion from W to $W \times V$
- Let $T \in \llbracket \text{comm} \rrbracket W$ be a trace set over W
- $\llbracket \text{comm} \rrbracket hT$ is the trace set T' over $W \times V$ such that, for $\alpha \in ((W \times V) \times (W \times V))^{\infty}$, $\alpha \in T'$ iff
 $\text{map fst } \alpha \in T \ \& \ \forall ((w, v), (w', v')) \in \alpha. \ v = v'$

EXPRESSIONS

Expressions denote trace sets

$$\llbracket \mathbf{exp}[\tau] \rrbracket W = \wp^\dagger(W^+ \times V_\tau \cup W^\omega)$$

$$\begin{aligned} \llbracket \mathbf{exp}[\tau] \rrbracket (f, Q) e = & \{(\rho', v) \mid (\mathbf{map} f \rho', v) \in e\} \\ & \cup \{\rho' \mid \mathbf{map} f \rho' \in e \cap W^\omega\} \end{aligned}$$

VARIABLES

“Object-oriented” interpretation *à la* Reynolds:

variable = acceptor + expression

$$\llbracket \mathbf{var}[\tau] \rrbracket W = (V_\tau \rightarrow \llbracket \mathbf{comm} \rrbracket W) \times \llbracket \mathbf{exp}[\tau] \rrbracket W$$

RECURSION

Requires a careful use of *greatest fixed points*

- Embed $\llbracket \theta \rrbracket W$ in a complete lattice $[\theta]W$
(like $\llbracket \theta \rrbracket W$ but without closure and naturality)
- Generalize semantic definitions to $[P]W$.
- Introduce natural transformations

$$\text{stut}_\theta : [\theta] \xrightarrow{\cdot} [\theta] \quad \text{clos}_\theta : [\theta] \xrightarrow{\cdot} \llbracket \theta \rrbracket$$

- Can then define $\llbracket \mathbf{rec} \ \iota.P \rrbracket W u$ to be

$$\text{clos}_\theta W(\nu x. \text{stut}_\theta W([P]W(u \mid \iota : x)))$$

EXAMPLE

- Divergence = infinite stuttering:

$$\begin{aligned} \llbracket \mathbf{rec} \ \iota. \iota \rrbracket W u &= (\nu c. \{(w, w)\alpha \mid \alpha \in c\})^\dagger \\ &= \{(w, w) \mid w \in W\}^\omega \end{aligned}$$

AGREEMENT THEOREM

Suppose $\pi \vdash P : \theta$ is valid.

Then for all W , all $u, u' \in \llbracket \pi \rrbracket W$,
if u and u' agree on $\text{free}(P)$ then

$$\llbracket P \rrbracket W u = \llbracket P \rrbracket W u'$$

LAWS

- This semantics validates:

$$\mathbf{new}[\tau] \iota \mathbf{in} P' = P'$$

$$\mathbf{new}[\tau] \iota \mathbf{in} (P \| P') = (\mathbf{new}[\tau] \iota \mathbf{in} P) \| P'$$

$$\mathbf{new}[\tau] \iota \mathbf{in} (P; P') = (\mathbf{new}[\tau] \iota \mathbf{in} P); P'$$

when ι does not occur free in P' .

- Also (still) validates:

$$(\lambda \iota : \theta. P)(Q) = P[Q/\iota]$$

$$\mathbf{rec} \iota. P = P[\mathbf{rec} \iota. P/\iota]$$

- Orthogonal combination of laws of shared-variable programming with laws of λ -calculus.

LAWS

For all suitably typed P ,

$$\begin{aligned} \mathbf{new}[\tau_1] \ \iota_1 \ \mathbf{in} \ \mathbf{new}[\tau_2] \ \iota_2 \ \mathbf{in} \ P \\ = \mathbf{new}[\tau_2] \ \iota_2 \ \mathbf{in} \ \mathbf{new}[\tau_1] \ \iota_1 \ \mathbf{in} \ P \end{aligned}$$

$$\begin{aligned} \mathbf{new}[\tau] \ \iota_1 \ \mathbf{in} \ \mathbf{new}[\tau] \ \iota_2 \ \mathbf{in} \ P(\iota_1, \iota_2) = \\ \mathbf{new}[\tau] \ \iota_1 \ \mathbf{in} \ \mathbf{new}[\tau] \ \iota_2 \ \mathbf{in} \ P(\iota_2, \iota_1). \end{aligned}$$

Reason: naturality of $\llbracket P \rrbracket$ wrt the obvious isomorphism between

$$(W \times V_{\tau_1}) \times V_{\tau_2}$$

and

$$(W \times V_{\tau_2}) \times V_{\tau_1}$$

EXAMPLE

Semantics validates some program equivalences based on *representation independence*...

e.g.

```
new[bool]  $\iota := \text{true}$ 
procedure  $flip$ ;  $\iota := \text{not } \iota$ ;
procedure  $test$ ; return  $\iota$ ;
in
 $P(flip, test)$ 
```

and

```
new[bool]  $\iota := \text{false}$ 
procedure  $flip$ ;  $\iota := \text{not } \iota$ ;
procedure  $test$ ; return  $(\text{not } \iota)$ ;
in
 $P(flip, test)$ 
```

are equivalent

(Reason: naturality wrt the obvious isomorphism)

PROBLEM

Semantics fails to validate

new[int] $\iota := 0$ **in** $P(\iota := \iota + 1) = P(\mathbf{skip})$,

where P is a free identifier of type **comm** \rightarrow **comm**.

REASON

- Equivalence relies on *relational reasoning*.
- Naturality does not enforce enough constraints on procedure meanings.

SOLUTION

- Same problem arose in sequential setting.
- Develop a relationally parametric semantics...

cf. O'Hearn and Tennent

PARAMETRIC MODEL

- Category of relations $R : W_0 \leftrightarrow W_1$
- A morphism from R to S is a pair (h_0, h_1) of morphisms in \mathbf{W} such that

$$\begin{array}{ccc} W_0 & \xrightarrow{h_0} & X_0 \\ R \downarrow & & \downarrow S \\ W_1 & \xrightarrow{h_1} & X_1 \end{array}$$

- Types denote *parametric* functors, e.g.
 - if $R : W_0 \leftrightarrow W_1$, $\llbracket \theta \rrbracket R : \llbracket \theta \rrbracket W_0 \leftrightarrow \llbracket \theta \rrbracket W_1$
 - $(d_0, d_1) \in \llbracket \theta \rrbracket R \Rightarrow (\llbracket \theta \rrbracket h_0 d_0, \llbracket \theta \rrbracket h_1 d_1) \in \llbracket \theta \rrbracket S$
- Phrases denote *parametric* natural transformations
$$(u_0, u_1) \in \llbracket \pi \rrbracket R \Rightarrow (\llbracket P \rrbracket W_0 u_0, \llbracket P \rrbracket W_1 u_1) \in \llbracket \theta \rrbracket R$$
- The *parametric functor* category is cartesian closed.

COMMANDS

When $R : W_0 \leftrightarrow W_1$ define:

$$(c_0, c_1) \in \llbracket \mathbf{comm} \rrbracket R \iff$$

$$\forall (\rho_0, \rho_1) \in \text{map}(R).$$

$$[\forall \alpha_0 \in c_0. \text{map fst } \alpha_0 = \rho_0 \Rightarrow$$

$$\exists \alpha_1 \in c_1. \text{map fst } \alpha_1 = \rho_1 \ \&$$

$$(\text{map snd } \alpha_0, \text{map snd } \alpha_1) \in \text{map}(R)]$$

&

$$[\forall \alpha_1 \in c_1. \text{map fst } \alpha_1 = \rho_1 \Rightarrow$$

$$\exists \alpha_0 \in c_0. \text{map fst } \alpha_0 = \rho_0 \ \&$$

$$(\text{map snd } \alpha_0, \text{map snd } \alpha_1) \in \text{map}(R)].$$

This is parametric!

INTUITION

When related commands are started and interrupted in related states their responses are related.

LAWS

- As before,

$$\mathbf{new}[\tau] \iota \mathbf{in} P' = P'$$

$$\mathbf{new}[\tau] \iota \mathbf{in} (P \| P') = (\mathbf{new}[\tau] \iota \mathbf{in} P) \| P'$$

$$\mathbf{new}[\tau] \iota \mathbf{in} (P; P') = (\mathbf{new}[\tau] \iota \mathbf{in} P); P'$$

when ι does not occur free in P' .

- As before,

$$(\lambda \iota : \theta.P)Q = [Q/\iota]P$$

$$\mathbf{rec} \iota.P = [\mathbf{rec} \iota.P/\iota]P$$

- In addition,

$$\mathbf{new[int]} \iota \mathbf{in} (\iota := 1; P(\iota)) = P(1)$$

$$\mathbf{new[int]} \iota \mathbf{in} (\iota := 0; P(\iota := \iota + 1)) = P(\mathbf{skip}),$$

relying crucially on parametricity.

EXAMPLE

new[int] x in
 $(x:=0; P(x:=x + 1; x:=x + 1);$
if $even(x)$ then diverge else skip)

and

new[int] x in
 $(x:=0; P(x:=x + 2);$
if $even(x)$ then diverge else skip)

are equivalent in sequential ALGOL
but not equivalent in PARALLEL ALGOL.

The relation

$$(w, (w', z)) \in R \iff w = w' \ \& \ even(z)$$

works for sequential model but not for parallel.

CONCLUSIONS

- Can combine parallelism and procedures smoothly:
 - faithful to the essence of ALGOL
 - allows formalization of parallel idioms
 - retains laws of component languages
- Semantics by “modular” combination:
 - traces + possible worlds
 - traces + relational parametricity
- Advantages:
 - full abstraction at ground types
 - supports common reasoning principles:
 - representation independence
 - global invariants
 - assumption–commitment
- Limitations:
 - does not build in irreversibility of state change

SEMANTICS of skip

Finite stuttering:

$$\begin{aligned}\llbracket \mathbf{skip} \rrbracket W u &= \{(w, w) \mid w \in W\}^\dagger \\ &= \{(w, w) \mid w \in W\}^+\end{aligned}$$

ASSIGNMENT

Non-atomic; source expression evaluated first:

$$\begin{aligned}\llbracket I := E \rrbracket W u &= \\ &\quad \{(\text{map} \Delta_W \rho) \beta \mid (\rho, v) \in \llbracket E \rrbracket W u \\ &\quad \quad \& \beta \in \text{fst}(\llbracket I \rrbracket W u) v\}^\dagger \\ &\cup \{\text{map} \Delta_W \rho \mid \rho \in \llbracket E \rrbracket W u \cap W^\omega\}^\dagger.\end{aligned}$$

PARALLEL COMPOSITION

$$\llbracket P_1 \parallel P_2 \rrbracket W u = \{ \alpha \mid \exists \alpha_1 \in \llbracket P_1 \rrbracket W u, \alpha_2 \in \llbracket P_2 \rrbracket W u. \\ (\alpha_1, \alpha_2, \alpha) \in \text{fairmerge}_{W \times W} \}^\dagger$$

where

$$\begin{aligned} \text{fairmerge}_A &= \text{both}_A^* \cdot \text{one}_A \cup \text{both}_A^\omega \\ \text{both}_A &= \{(\alpha, \beta, \alpha\beta), (\alpha, \beta, \beta\alpha) \mid \alpha, \beta \in A^+ \} \\ \text{one}_A &= \{(\alpha, \epsilon, \alpha), (\epsilon, \alpha, \alpha) \mid \alpha \in A^\infty \} \end{aligned}$$

LOCAL VARIABLES

$$\llbracket \mathbf{new}[\tau] \iota \mathbf{in} \, P \rrbracket W u = \{ \text{map}(\text{fst} \times \text{fst})\alpha \mid \\ \text{map}(\text{snd} \times \text{snd})\alpha \text{ interference-free \&} \\ \alpha \in \llbracket P \rrbracket (W \times V_\tau) (\llbracket \pi \rrbracket (- \times V_\tau) u \mid \iota : (a, e)) \}$$

- No external changes to local variable
- $(a, e) \in \llbracket \mathbf{var}[\tau] \rrbracket (W \times V_\tau)$ is a “fresh variable” corresponding to the V_τ component of the state

AWAIT

$$\begin{aligned} \llbracket \text{await } B \text{ then } P \rrbracket W u = & \\ & \{(w, w') \in \llbracket P \rrbracket W u \mid (w, \text{tt}) \in \llbracket B \rrbracket W u\}^\dagger \\ & \cup \{(w, w) \mid (w, \text{ff}) \in \llbracket B \rrbracket W u\}^\omega \\ & \cup \{\text{map} \Delta_W \rho \mid \rho \in \llbracket B \rrbracket W u \cap W^\omega\}^\dagger. \end{aligned}$$

- P is atomic, enabled only when B true.
- Busy wait when B false.

λ -CALCULUS

$$\llbracket \iota \rrbracket W u = u \iota$$

$$\llbracket \lambda \iota : \theta. P \rrbracket W u h a = \llbracket P \rrbracket W' (\llbracket \pi \rrbracket h u \mid \iota : a)$$

$$\llbracket P(Q) \rrbracket W u = \llbracket P \rrbracket W u (\text{id}_W) (\llbracket Q \rrbracket W u),$$

- This is the standard interpretation, based on the ccc structure of the functor category.