CONCURRENT
SEPARATION LOGIC...
semantics and soundness

Stephen Brookes

Carnegie Mellon University

Tutorial
MEPS 2006

® Deno

Outline

rational semantics

® para
® Logic

lel programs with shared mutable state

® resource-sensitive partial correctness

® Soundness

100%
GUARANTEE

® ownership transfer RISK

® every provable formula is race-free

FREE

Semantics

® A process denotes a set of traces

® A trace is a sequence of actions

® Actions have effect on state

® State = store

heap

resources

A trace represents a
fair interactive computation

@ Store =y i:=y
® Heap [l=v [f:=v alloc(l, L) disp())
@ Resource try(r) acq(r) rel(r)

® Error abort

Traces

A trace is a finite or infinite sequence of actions

® Let A be the set of actions

® The set of traces is Tr = A* U AW

A will range over /\

o, B,Y,p will range over Tr

Semantic functions

le]] € Tr X Vit
[ET € Tr X Vind'
16]] € Tr X Vool
[cll € Tr

defined denotationally...

Semantics of expressions

[[e]] ; Tl' X Vint

[= {(i=v, v) | v € Vini}

[ei1+ez2]] =

p1p2, vi+12) |
(p1, V1) c el &(pz, Vz) - [[62]]}

Semantics of expressions

[[b]] C Tr X Vool

[true]] = {(0, true)}

[not 511 ={(p, =) | (p, 1) € [»1}

Semantics of commands

[c]l € Tr

[skip]l = {0}

[i:=ell = {p i:=v | (p,v) € [e]l}

[cisc2]] = {0(10(2 | X1 € [Ici]l, X2 e [[Cz]]}

concatenation

AR

[[b]]true [[Cl]] U [[b]]false [[C2]]

whilebdocll= {iteton
([[b]]true [[C]]) [[b]]false U ([[b]]true [[C]])w

AT

il

—

10

Semantics of commands
HEAP COMMANDS

[i:=[e] 1 ={p [[]=vi:=v | (p,]) € [le]] }

[lei]:=e2]| = {plpz [vi]:=v2 \
(p1,v1) € llerdl, (p2,v2) € [e21l}

[i:=cons(E)]l ={p alloc(L,L) i:=I |(p,L) € [E]}

[dispose(e)Tl ={p disp(l) |(p,) € el }

Semantics of commands

CONDITIONAL CRITICAL REGIONS

[[with » when b do c]] =
wait* enter U wait"

where

wait = acq(r) [|b)] rel(r) U {try(r)}

false

enter = acq(r) [[1?]]true Hcll rei(r)

12

Semantics of commands

LOCAL RESOURCE BLOCKS

[resource 7 in c]] =
{a\r| xelc]l}

obtained by from traces in which
erasing actions on r r is interference-free

A local channel cannot be
accessed outside the scope

13

Semantics of commands

PARALLEL COMPOSITION

[cill 2l = el I ezl

resource-sensitive,
race-detecting,
fair interleaving

X || o2
A1 A

parallel composition of traces,
with disjoint sets of resources

14

Parallel composition

>\1 B1 ‘ ‘ >\2 BZ mutual exclusion
A1 A2 for resources

=i (NB | BB || Ao & (A A = (ALA)
UGB B NB || B &(AA S (AL AD)

U

race causes error

Interference

concurrent write to
same variable or heap cell

>\1 N)\z iff

free(A\1) N writes(\,) # &
or

writes(A1) N free(\,) #

Mutual exclusion

process with A; can do A
in environment with A,

acq(r)

(A1, A2) = (A1U{r}, Ao) iff r & ATUA
rel(r)

(A1, A2) = (A \I’, A2) iff re A1
(A1, A2) A (A1, A2) otherwise

16

Examples

[x:=1llx:=2] = {x:=1 x:=2, x:=2 x:=1}
U {abort| v € Vin}

[[Wlth r do x ;= 1]] = try(r)oO acq(r) {x:=1}rel(r)

[[Wlth rdo x = 2]] = try(r)oO acq(r) {x:=2}rel(r)

[[resource r in
with rdo x :=1 Il with » do x := 2]]

= {x:=1 x:=2, x:=2 x:=1}

Actions and state

® So far we have kept state implicit
® state = store + heap + resources
® o=(s h, A

® But actions have effect
® when enabled

® cause state change

® may produce runtime error

18

Effects
(. hA)Z S H.A)

A
(s, h, A) = abort

a transition relation
specifying

when the action A is enabled
and its effect when executed

Effects

READ .
(s, h,A) = (s, h, A) if(iv)es

(s, h, A) = abort if i & dom(s)

WRITE

(s, h, A) l=:v> (Isli:v], h, A) if i € dom(s)

(s, h, A) l==v> abort if i & dom(s)

Effects

LOOKUP

[[]=Vv
(s,h, A) = (s, h, A) if (lv) € h

1=V

(s, h, A) = abort if I & dom(h)

UPDATE

[[]:=v

(s, h, A) = (s, [hll:v], A) if | € dom(h)

[[]:=v
(s, h, A) = abort if | & dom(h)

Effects

ALLOCATE

alloc(L,[vo,...,vu])

(s, h, A) = (s, h', A)

if {LI+1,..,1+n} N dom(h) = &
and h'=[hll:wvy, ..., [+n:v,]

DISPOSE

disp(l)
(s, h, A) = (s, W\, A) if I € dom(h)

disp(l)

(s, h, A) = abort if & dom(h)

Effects

RESOURCE ACTIONS

acq(r)

(s, h,A) = (s, h, AU{r}) ifreA

rel(r)

(s, h, A) = (s, h, A\r) if re A

try(r)

(s, h, A) = (s, h, A) always

Effects

IDLE

O
(s, h, A) = (s, h, A)

ERROR

abort

(s, h, A) = abort

abort 5 abort

Respect for resources

HEOREM
If aellc]]
and

(. D)= (3. h.A)
then dom(s) = dom(s)
and A=

We usually omit &

and write (s,h)%(s’,h’)

Race-free programs
DEFINITION

C is race-free from (s, h)
iff

L Joel[c]l.(s. k) = abort

every execution of €

from (s, 1)

is error-free

 Examples

.-.-_-.'-_ -
-I-'_.- s

__ =01 with -when full=0do o111 71){
-":"*’ GET with r when full=1 do(Z.fUO :

(PUT; dispose x) || GET
PUT || (GET; dispose)

PUTM || GETN (M,N > 0)
are race-free from (s,h) if
{x y, } C dom() & 5()Edom(h) & s(ful/)

Summary

® Trace semantics, defined denotationally,
supports compositional reasoning

® Treats a potential race as catastrophe

® Suitable for race-free partial correctness,
total correctness, safety and liveness

Will provide foundation for
concurrent separation logic...

28

Concurrent separation logic

® A more formal treatment of the logic
underlying Peter O’"Hearn’s work

® Syntax and semantics

® Proof of soundness

Key notions:

rely/guarantee
ownership transfer

29

Syntax

Resource-sensitive partial correctness formulas

I' = {pic{q}

where
I is a resource context

resource

_ protection list -
—— [nvariant

subject to well-formedness constraints...

30

Notation
For T =

® dom(r) ={r — 7 resource names

1 k

® OWﬂGd(F) =)(1 U...U Xk protected variables

®» fl‘ee(r) = free(R) U...U free(R) variables mentioned

| . In resource invariants

separate conjunction

> an(r) = Ie1 X ... X Rk of resource invariants

31

Well-formed formulas

~ {plciq}

is well-formed iff -
pre- and post-conditions

don’t mention protected variables

® Ri is precise & free(p,q)NXi = D for all |

® ri #1j, XinX; = D, free(R)an = D fori # |

protected variables are partitioned
among the resources

32

Precision

DEFINI

1ON

R is precise if;

for all s, h

there is at most one h’C h
such that (s,h’) = R

FACTS

emp, e e’

if p1 and p2

SO are
p1 X

are precise

are precise,

P2

(bAp1)V(=bApP2)

33

Inference rules

® Syntax-directed rules

® for each program construct

® Structural rules

® rule of consequence, auxiliary variables

® Static side conditions

® impose well-formedness constraints

34

Parallel

Hplcfa} THploia)

I'Hp, *p,ic,llciqg, *a,}

provided
free(ps,qi)Nwrites(cy)=L
free(pz,qz2)Nwrites(c1)=LD

free(cy)Nwrites(cz) € owned(I')
free(co)Nwrites(cy) € owned(T)

Region

[+{(pkR)Ablcfq*R}

: [,r(X):R={p} with r do c{q}

provided
free(p,q)NX = &

- R precise

Resource

[r(X):RF1piciq}
;TFI—{p* R} resource r in c{q*R}

Validity
| {p}c{q} is valid

Every finite interactive computation of c,
in an environment that respects I,
from a state satisfying p X inv(I)
is error-free, respects I, and
ends in a state satisfying g inv(I)

—————r— ——

... heeds to be formalized!

39

Separation Principle

At all stages of execution:

® For each available resource,
the invariant holds, separately

® The heap is partitioned among
processes and available resources

® ownership transfers when resource is
acquired or released

Formalized using
local states, local transitions...

40

Local states

A state is local for T if it provides sufficient
resources for its protected variables...

(s, h, A)
is local for T

| f
dom(s) N owned(') = owned(l''A)

the piece of global state visible to a
process with resources A
that respects I

41

Local transitions

® Interactive computation
In an environment that respects I

® ownership transfer

3
®

orotection rules

oreservation of invariants

the local view
of a global computation
as seen by a process

42

global and local views

- A global state (s,h,A)
- in which processes own A— AU . UA.

(h1/A1)/ XXy (hn,An) h — h1 U U h U h’
| and resource invariants (s,h’) in.\;ir\A)n
. hold separately, in h’ ’

local states
(s\owned(lN\ A1), hi, A1),

(s\owned(MN\A), hn, An)

43

Local transitions

READ

(s, h, A) lzﬁv(s, h,A) if(iv)Es

WRITE

(s, h, A) l%‘/ ([sli:v], h, A)
if i € dom(s) - free(T'\A)

(s, h, A) ™ abort
if i &€ dom(s) or i € free("'\A)

Local transitions

LOOKUP

[[]=Vv
(s,h, A) 77 (s, h,A) if(Lv) € h

[[]=v
(s, h,A) T

abort if € dom(h)

UPDATE

[[]:=v

(s, h,A) = (s, [hIl:v], A) if | € dom(h)

Vv

[[]:=
(s, h,A) T

abort if [& dom(h)

Local transitions
ALLOCATE

alloc(l,[vo,...,vn])

(s, h,A) T (s h' A)

if {LI+1,..,1+n} N dom(h) = &
and h' =[hl vy, ..., [+n:v,]

DISPOSE

dzsp(l)

(s, h, A) T2 (s, I\, A) if | € dom(h)

disp(l)

(s, h, A) T2 abort ifl & dom(h)

Local transitions

non-deterministic!

ACQUIRE

aCC](r)

(s, h, A) e (SUS , RUR , AU{r})
if r &€ A, dom($)=X, h.Lh , (sUs , i)

= R

process assumes that
environment preserves invariants

and claims ownership of
variables protected by r
+ heap satisfying the invariant

Local transitions

RELEASE R precise... so at mo§t one h’

rel(r)

(s, h, A) oz (S\X, h-h , A-{r})
ifreA, h"S h, (s,h)FR

rel(r)
(s, h, A) e abort
ifre A, Vh'S h.(s, h) =R

process guarantees to preserve invariants

and cedes ownership of
variables protected by r
+ heap satisfying invariant

48

Local transitions

IDLE

O
(s, h, A) T7 (s, h, A)

ERROR

abort

(s, h, A) T2 abort

A
abort > abort

Local computation

>\1...>\n , >\1--->\n b t
: 0) r 0) O r abor
means means
N A n
g = 30 o'ﬁ» -~A>abort

50

(Ix:vol, [vo:

]@)

M ([x:vo,tull:0,z:v1], [vo:vl, {buf})

B

([X:VO]/ [],@)

LA

—— ([x:vo,full:1,z:vo], [vo:v], {buf})

Al

e \

8

) S — B . - —— - = - T —

51

acq(buf)
—>

([y:va,tull:1,z:vo], [Vo] {bUf})

—— (ly:vo,full:0,z:vol, [vo:v], {buf}) I

SRR e -

e

52

([x:vo], [Vo:v], D)

_— =
-2
= e
= e
e —
= i
g e
e —

e

e —

acq(buf)

—>
r

—>
I_/

rel(buf)

([x:vo,full:0,z:v1],[vo:v],{buf})
([x:vo,full:1,z:vol, [vo:v],{buf})

—— ([x:vol, [vo:v], D)

——
—m— - - - - -~

53

T, ——

([y:va,full:1,z:vo], [

|,{buf})

(y:vo,full:0,z:vol,[1,{buf})
([YZVO], []/Q)

-

NN AN A A A A

54

Local computations

® Execution in an environment that
respects protection rules
and maintains invariants

® Abort if process breaks protection rules
or fails to guarantee invariant

A formalization of
dynamic ownership transfer

55

Validity

DEFINITION

I' = {plciq} isvalid
iff

Yae[c].Vo: dom(g)afree(c,N-owned(I).

X . :
oFp &0 0 impliesad’ Fq

o’ + abort

A formal definition
matching the intuition given earlier

56

\ |
T‘lﬁ'ﬁ\ O N A A AR A,

i

e

% (fuII: A emp)

A A AN i

57

—

~ THxPUTemp)

e
=

—E» ([x:vo,full:1,z:vol, [vo:v],{buf})

B (Ix:vol, [1,D)

Soundness Theorem

® Concurrent separation logic is sound

® every provable formula is valid

Proof:
Each inference rule
preserves validity

when its side conditions hold

59

Proof sketch

® We consider the rules for Parallel,
Region, Local Resource, Frame

® Other rules are similar

Ctch A Sketcli scran

= Rule of Consequence

p'=p 'Hpiciql q=q'
[={p'}ciq’}

60

Parallel rule

I = {pl}Cl{OH} valid - 0
I = {p2}c2{gz} valid |
free(p1,q1) N writes(c2) = &]

free(pz,g2) N writes(c1) = &
- free(c1) N writes(c2) € owned(I') |
free(cz) N writes(c1) € owned(I') ©

PARALLEL DECOMPOSITION Lemma

T+ {p1 * p2cillc2{qr * q2}
- valid

61

=g

(s,h) 7 abort (s,h) gr’ (s”,h")

then (s\writes(x2), h1) O(F]i (s1”,h1’)

| (s\writes(0), h1> » abort | a(s\writes(Oh), ho) 2 (s2',hy)
or

1 (s\writes(c1), hy) ﬁrﬁ abort

hi’ U hy, hi’ L hy
s’ \writes(o?)
s"\writes(o1)

"

0l AN st L

62

Soundness of Par

® Suppose (s,h) E p1 Xy, (s,
® Choose hiL hy so that h=

® Then (s\writes(ow),h1) 1,

N) %'O"

n1Uh, (s,h1) E p1, (s,h2) E p2
(s\writes(ai),h2) F p2 by@

® By Decomposition Lemma,ﬂ,@,
o' =(s’,h") h =hiyuhy hi/Lhy

(s\writes(o.),h1)

R R

(s\writes(a),ho)

(s"\writes(aw), hi") E q

(s"\writes(o), ho") E qp

® Hence (s",h1") = g1 and (s’,h2’) F g2 by @
® So 0'Fq1 Xy as required

63

Region rule

I' = {(p*R)Ab}c{g*R} valid
free(p,q)NX = &
R precise

REGION LEMMA

F r(X) R = {p}with r when b do c{q}
valid

Soundness of region rule

[with r when b do c] = acq(r) [blwue [[cll rel(r) ...

® Let (s,h) = p, B [bllwe, YE Icl

rel(r)
B If (5,h) b, o

there are (so,ho), (so’,ho’), h’ Lho’ such that

(s, h) = (sUsog, hUhg) F (p*R)Ab
I',r_B();(():R (S US() : h Uh()) = q* R precision

Is cruciall

rrr<e>|<(>r.)R’ (s, h) =0 = q
= as required

65

Resource rule

I,r(X):R = {p}c{q}

valid

RESOURCE LEMMA

I' = {p*R}resource r in c{g*R}
: valid

Soundness of resource rule

[resource r in c]] = {B\r | P [cl: !}

B\r

® Let (s,h) Fp xR, B € [cl, -
® Choose hiLh, such that
(s,h1) = P, (s,ho) =R, h=hiUh>

® Then there must

B /
(s,h1) FmACE

be hy’

1)

h,’” such that

o’ = (5, hi'U hy)

s,hi)=q (s,h) =R

® Hence 0’ = gk R as required

Frame rule

'~ {p}c{q} valid

free(
free(

) N writes(c) = &
) N owned(I') = O

FRAME LEMMA

T = {pxl}ic{gxI} valid

e

Soundness of Frame rule

@ Let o€ [cl, (s,h)=p*xl, (s,h)—= 0

® Choose hiLh> so that h=h{Uh> and
(s,h1) £ p, (s,h2) = |

P Since 'H{p}c{qg} is valid, there are s’, hy’
such that (s,h1)>(s",h1) = q

® By Frame Lemma hi’Lh, o’=(s’,hi’Uhy’)
® Since free(p)Nwrites(x)=4, (s’,h,) F 1

® Hence 0’ = g1 as required

And so on...

® For each inference rule,
a similar proof case

Summary:
 every provable formula is valid

71

Validity, revisited

® We defined validity in terms of
local states and local computation

® Need to connect with global notions
® independent of the logic
® related to standard operational semantics

® show that provable programs are
guaranteed to be race-free

72

Global/local lemma
Suppose h h1Uh2, hiLhy, (s,hz) E inv(l')

I _r T e NS i e

If (s,h) abort
then (s\owned(I),h;) 7* abort

If s.h) 5 (5" h)
and - (s\owned(I), h1) abort
then there are h1’J_h2 such that

- (s\owned()h1) (s"\owned(lN,h")
h’=h1"Uhy’ (s, hz)einv(l)

Corollary

it I' = {p}ciqg} isvalid,

Vaelcl. provable
Vo: dom(o) 2 free(c). Vo' implies
race-free

o= pXinv(l) & g=0
implies
o’ = gXinv(l

75

Precision i1s crucial

Region rule is unsound
with imprecise invariants

valid

—{(emp V x»_) X true} skip {emp * true}

r:true —Hemp Vv x~_} with r do skip {emp}

(Example due to John Reynolds)

76

