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Outline

Denotational semantics

parallel programs with shared mutable state

Logic

resource-sensitive partial correctness

Soundness

ownership transfer

every provable formula is race-free

RISK
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100%
GUARANTEE
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Semantics
A process denotes a set of traces

A trace is a sequence of actions

Actions have effect on state

State = store + heap + resources

A trace represents a
fair interactive computation
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Actions

i ranges over program variables, r over resource names,

v over integers, l over heap cells, L over lists of integers

Idle

Store

Heap

Resource

Error abort

δ
i=v i:=v

[l]=v [l]:=v alloc(l, L) disp(l)

try(r) acq(r) rel(r)
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Traces

λ will range over Λ

α,β,γ,ρ will range over Tr

A trace is a finite or infinite sequence of actions

Let Λ be the set of actions

The set of traces is Tr = Λ* ∪ Λω
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Semantic functions

[[e]] ⊆ Tr × Vint

[[b]] ⊆ Tr × Vbool

[[E]] ⊆ Tr × Vint*

[[c]] ⊆ Tr
defined denotationally...
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Semantics of expressions

[[i]] = {(i=v, v) | v∈ Vint}

[[e1+e2]] = 

(ρ1, v1) ∈ [[e1]] & (ρ2, v2) ∈ [[e2]]}
{(ρ1ρ2, v1+v2) |

[[e]] ⊆ Tr × Vint
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Semantics of expressions

[[true]] = {(δ, true)}
[[not b]] = {(ρ, ¬t) | (ρ, t) ∈ [[b]]}

[[b]] ⊆ Tr × Vbool
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Semantics of commands

[[i:=e]] = {ρ i:=v | (ρ,v) ∈ [[e]]}

[[c1;c2]] = { α1α2 | α1 ∈ [[c1]], α2 ∈ [[c2]] }

[[skip]] = {δ}

[[c]] ⊆ Tr 

concatenation
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Semantics of commands

[[if b then c1 else c2]] = 
[[b]]true[[c1]] ∪ [[b]]false[[c2]] 

[[while b do c]] = 

( [[b]]true[[c]] ) * [[b]]false ∪  ( [[b]]true[[c]] ) ω

[[b]]true =def {ρ | (ρ, true) ∈ [[b]]}
[[b]]false =def {ρ | (ρ, false) ∈ [[b]]}

where

iteration
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Semantics of commands

[[   [e1]:=e2 ]] =  
(ρ1,v1) ∈ [[e1]], (ρ2,v2) ∈ [[e2]]}

{ρ1ρ2 [v1]:=v2 |

(ρ,l) ∈ [[e]] }[[ i:=[e] ]] ={ρ [l]=v i:=v  |

[[i:=cons(E)]] = {ρ alloc(l,L) i:=l |(ρ,L) ∈ [[E]]}

{ρ disp(l)  |(ρ,l) ∈ [[e]] }[[dispose(e)]] = 

HEAP COMMANDS
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Semantics of commands

wait* enter   ∪  waitω  
[[with r when b do c]] = 

wait  = acq(r) [[b]]    rel(r)  ∪ {try(r)}
false

enter  = acq(r) [[b]]    [[c]] rel(r)true

CONDITIONAL CRITICAL REGIONS

where
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Semantics of commands

A local channel cannot be
accessed outside the scope

obtained by 
erasing actions on r

from traces in which 
r is interference-free

[[resource r in c]] = 
{ α\r | α∈[[c]]r  } 

LOCAL RESOURCE BLOCKS
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Semantics of commands

[[c1 || c2]] =  [[c1]]  ||  [[c2]]
resource-sensitive,

race-detecting,
fair interleaving

∅ ∅

α1 || α2
A2A1

parallel composition of traces,
with disjoint sets of resources

PARALLEL COMPOSITION
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Parallel composition
λ1β1 || λ2β2

A2A1

{ λ1β | β ∈ β1 || λ2β2  
A’1A2

(A1,A2) ➙ (A1,A2)}‘
λ1

&
λ2

{ λ2β | β ∈ λ1β1 || β2 
A’2A1

(A2,A1) ➙ (A2,A1)}‘&∪

∪ { abort | λ1  λ2 }⋈

=def

mutual exclusion 
for resources

race causes error
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Interference

iff or  λ1  λ2⋈
free(λ1) ∩ writes(λ2) ≠ ∅
writes(λ1) ∩ free(λ2) ≠ ∅

Mutual exclusion

iff  r ∉ A1∪A2 (A1, A2)     (A1∪{r}, A2)               ➙
acq(r)

(A1, A2)     (A1\r, A2)               ➙
rel(r)

iff  r ∈ A1 

(A1, A2)     (A1, A2)               ➙
λ otherwise 

concurrent write to 
same variable or heap cell

process with A1 can do λ 
in environment with A2
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Examples

[[with r do x := 1]] = try(r)∞ acq(r) { x:=1} rel(r)  

[[resource r in
with r do x := 1 || with r do x := 2]] 

=  {x:=1 x:=2, x:=2 x:=1}     

 [[x := 1 ||  x := 2]] =     {x:=1 x:=2, x:=2 x:=1}     
∪ {abort | v ∈ Vint}

[[with r do x := 2]] = try(r)∞ acq(r) { x:=2} rel(r)  
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Actions and state

So far we have kept state implicit

state = store + heap + resources

σ = (s, h, A)

But actions have effect

when enabled

cause state change

may produce runtime error

18



Effects

a transition relation

when the action λ is enabled
and its effect when executed

specifying

(s, h, A) ⇒ (s’, h’, A’)λ

(s, h, A) ⇒ abortλ
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Effects

(s, h, A) ⇒ (s, h, A) if (i,v) ∈ s
i=v

(s, h, A) ⇒ abort
i=v

if i ∉ dom(s)

(s, h, A) ⇒ ([s|i:v], h, A)
i:=v

if i ∈ dom(s)

(s, h, A) ⇒ abort if i ∉ dom(s)
i:=v

READ

WRITE
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Effects

(s, h, A) ⇒ (s, h, A) if (l,v) ∈ h
[l]=v

(s, h, A) ⇒ abort
[l]=v

if l ∉ dom(h)

(s, h, A) ⇒ (s, [h|l:v], A)
[l]:=v

if l ∈ dom(h)

(s, h, A) ⇒ abort
[l]:=v

if l ∉ dom(h)

LOOKUP

UPDATE
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Effects

(s, h, A) ⇒ (s, h’, A)
if     {l,l+1,...,l+n} ∩ dom(h) = ∅

alloc(l,[v0,...,vn])

and    h’ = [h | l:v0, ..., l+n:vn] 

(s, h, A) ⇒ abort
disp(l)

if l ∉ dom(h)

(s, h, A) ⇒disp(l)

if l ∈ dom(h)(s, h\ l, A)

ALLOCATE

DISPOSE
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(s, h, A) ⇒ (s, h, A\r)
rel(r)

if r ∈ A

Effects

(s, h, A) ⇒ (s, h,  A∪{r}) if r ∉ A
acq(r)

(s, h, A) ⇒ (s, h, A)
try(r)

always

RESOURCE ACTIONS
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Effects

(s, h, A) ⇒ abort
abort

abort ⇒ abortλ

(s, h, A) ⇒ (s, h, A)
δ

IDLE

ERROR

24



Respect for resources
THEOREM

If  α∈[[c]]  

(s, h, ∅) ⇒ (s’, h’, A’)
α

then  dom(s) = dom(s’)
and    A’= ∅  

and

We usually omit ∅ 

and write (s,h)⇒(s’,h’)
α
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Race-free programs

c is race-free from (s, h)
iff

(s, h) ⇒ abort
α

¬ ∃α∈[[c]].

DEFINITION

every execution of c 
from (s, h) 
is error-free
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Examples
PUT :: with r when full=0 do (z:=x; full:=1)
GET :: with r when full=1 do (y:=z; full:=0)

(PUT; dispose x) || GET

PUT || (GET; dispose y)

PUTM || GETN (M,N > 0)

are race-free from (s,h) if 

{x,y,z} ⊆ dom(s) & s(x)∈dom(h) & s(full)=0

(s,h) ⊨ full=0 ∧ x ↦_
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Summary

Trace semantics, defined denotationally, 
supports compositional reasoning

Treats a potential race as catastrophe

Suitable for race-free partial correctness,      
total correctness, safety and liveness

Will provide foundation for
concurrent separation logic...
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Concurrent separation logic

A more formal treatment of the logic 
underlying Peter O’Hearn’s work

Syntax and semantics

Proof of soundness

Key notions:

ownership transfer
rely/guarantee
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Syntax
Resource-sensitive partial correctness formulas

subject to well-formedness constraints...

Γ ⊢ {p}c{q}
where

Γ  is a resource context 
r

1
(X

1
):R

1
, ... r

k
(X

k
):R

k
 
resource 
invariant

protection list
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Notation

dom(Γ) = {r
1
, ..., r

k
}

owned(Γ) = X
1
 ∪...∪

   
X

k

free(Γ) = free(R
1
) ∪...∪

   
free(R

k
)

inv(Γ) = R
1
✶...✶R

k

 r
1
(X

1
):R

1
, ... r

k
(X

k
):R

k
 Γ =For

resource names

protected variables

variables mentioned 
in resource invariants

separate conjunction 
of resource invariants
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Well-formed formulas

is well-formed iff
pre- and post-conditions 

don’t mention protected variables

protected variables are partitioned 
among the resources

r
1
(X

1
):R

1
, ... r

k
(X

k
):R

k
 ⊢ {p}c{q}

Ri is precise & free(p,q)∩Xi = ∅ for all i

ri ≠rj, Xi∩Xj = ∅, free(Ri)∩Xj  = ∅ for i ≠ j
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Precision

R is precise iff for all s, h
there is at most one h’⊆ h

such that (s,h’) ⊨ R 

DEFINITION

are precisee ↦ e’emp, 

if  p1 and p2 are precise,
so are 

 p1✶p2  
   (b∧p1)∨(¬b∧p2)

FACTS
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Inference rules

Syntax-directed rules

for each program construct

Structural rules

rule of consequence, auxiliary variables

Static side conditions

impose well-formedness constraints
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Parallel

provided

Γ⊢{p1}c1{q1} Γ⊢{p2}c2{q2}
Γ⊢{p1✶p2}c1||c2{q1✶q2}

free(c1)∩writes(c2) ⊆ owned(Γ)
free(p2,q2)∩writes(c1)=∅
free(p1,q1)∩writes(c2)=∅

free(c2)∩writes(c1) ⊆ owned(Γ)
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Region

Γ⊢ {(p✶R ) ∧ b }c {q ✶R }

Γ,r(X):R ⊢ {p} with r do c {q }

provided

free(p,q)∩X = ∅
R precise
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Resource

Γ,r(X):R  ⊢ {p }c {q }

Γ ⊢ {p✶R} resource r in c {q ✶R}
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Frame

Γ  ⊢ {p }c {q }
Γ ⊢ {p✶I} c {q ✶I}

provided
free(I) ∩ writes(c) = ∅
free(I) ∩ owned(Γ) = ∅
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Validity
Γ ⊢ {p}c{q}

... needs to be formalized!

is valid

iff

Every finite interactive computation of c,
   in an environment that respects Γ,
      from a state satisfying p✶inv(Γ)
is error-free, respects Γ, and
   ends in a state satisfying q✶inv(Γ)
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Separation Principle

For each available resource,             
the invariant holds, separately

The heap is partitioned among 
processes and available resources

ownership transfers when resource is 
acquired or released

At all stages of execution:

Formalized using 
local states, local transitions...
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Local states

(s, h, A)

dom(s) ∩ owned(Γ) = owned(Γ↾A)

A state is local for Γ if it provides sufficient 
resources for its protected variables... 

is local for Γ
iff

the piece of global state visible to a 
process with resources A 

that respects Γ 
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Local transitions
Interactive computation                     
in an environment that respects Γ 

ownership transfer

protection rules

preservation of invariants

the local view 
of a global computation

as seen by a process
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global and local views
A global state (s,h,A)

local states
(s\owned(Γ\A1), h1, A1),

...
(s\owned(Γ\An), hn, An)

in which processes own 
 (h1,A1), ..., (hn,An)

A = A1 ∪ ... ∪ An

h = h1 ∪ ... ∪ hn ∪ h’
(s,h’) ⊨ inv(Γ\A)and resource invariants 

hold separately, in h’
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Local transitions

(s, h, A) →(s, h, A) if (i,v) ∈ s
i=v
Γ

(s, h, A) → abort
i=v

if i ∉ dom(s)Γ

READ

(s, h, A) → ([s|i:v], h, A)
i:=v

if i ∈ dom(s) - free(Γ \ A)
Γ

(s, h, A) → abort
i:=v

if i ∉ dom(s)
Γ

or i ∈ free(Γ \ A)

WRITE
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Local transitions

(s, h, A) → (s, h, A) if (l,v) ∈ h
[l]=v

(s, h, A) → abort
[l]=v

if l ∉ dom(h)

(s, h, A) → (s, [h|l:v], A)
[l]:=v

if l ∈ dom(h)

(s, h, A) → abort
[l]:=v

if l ∉ dom(h)

LOOKUP

UPDATE

Γ

Γ

Γ
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Local transitions

(s, h, A) → (s, h’, A)
if     {l,l+1,...,l+n} ∩ dom(h) = ∅

alloc(l,[v0,...,vn])

and    h’ = [h | l:v0, ..., l+n:vn] 

(s, h, A) → abort
disp(l)

if l ∉ dom(h)

(s, h, A) →disp(l)

if l ∈ dom(h)(s, h\ l, A)

ALLOCATE

DISPOSE

Γ

Γ

Γ
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Local transitions

(s, h, A) → (s∪s’, h∪h’,  A∪{r})
acq(r)

Γ,r(X):R

dom(s’)=X, h⊥h’, (s∪s’, h’) ⊨ Rif r ∉ A,    

non-deterministic!
ACQUIRE

variables protected by r
+ heap satisfying the invariant

process assumes that 
environment preserves invariants

and claims ownership of
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Local transitions

(s, h, A) → abort
rel(r)

  if r ∈ A, ∀ h’⊆ h. (s, h’) ⊨ ¬R
Γ,r(X):R

(s, h, A) → (s\X, h-h’, A-{r})Γ,r(X):R

rel(r)

if r ∈ A,  h’⊆ h,   (s, h’) ⊨R

R precise... so at most one h’RELEASE

and cedes ownership of
variables protected by r

+ heap satisfying invariant

process guarantees to preserve invariants
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Local transitions

(s, h, A) → abort
abort

Γ

abort → abort
λ
Γ

(s, h, A) → (s, h, A)
δ
Γ

IDLE

ERROR
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Local computation

 σ              σ’  
λ1...λn

Γ

 σ              σ’  
λ1

Γ
... λn

Γ

means

 σ              abort  
λ1...λn

Γ

 σ             abort  λ1

Γ
... λn

Γ

means
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Example

Γ:: buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ z↦-)

([x:v0],[v0:v],∅) ([x:v0,full:0,z:v1],[v0:v],{buf})

([x:v0,full:1,z:v0],[v0:v],{buf})

([x:v0],[ ],∅)

acq(buf)

Γ
β

Γ

Γ
rel(buf)

β :   full=0 x=v0 z:=v0 full:=1
where

A local computation of PUT using Γ 
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Example

Γ:: buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ z↦-)

Γ

([y:v2],[ ],∅) ([y:v2,full:1,z:v0],[v0:v],{buf})

([y:v0,full:0,z:v0],[v0:v],{buf})

([y:v0],[v0:v],∅)

acq(buf)

Γ
γ

Γ

rel(buf)

γ :   full=1 z=v0 y:=v0 full:=0

A local computation of GET using Γ

where
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Example

([x:v0],[v0:v],∅)

Γ’::  buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ emp)

([x:v0,full:0,z:v1],[v0:v],{buf})

([x:v0,full:1,z:v0],[v0:v],{buf})

([x:v0],[v0:v],∅)

acq(buf)

Γ’
β

Γ’

Γ’

rel(buf)

β :   full=0 x=v0 z:=v0 full:=1

A local computation of PUT using Γ’

where
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GET

([y:v2],[ ],∅)

Γ’:: buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ emp)

([y:v2,full:1,z:v0],[ ],{buf})

([y:v0,full:0,z:v0],[ ],{buf})

([y:v0],[ ],∅)

acq(buf)

Γ’
γ

Γ’

Γ’
rel(buf)

γ :   full=1 z=v0 y:=v0 full:=0

A local computation of GET using Γ’

where
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Local computations
Execution in an environment that 
respects protection rules                    
and maintains invariants

Abort if process breaks protection rules 
or fails to guarantee invariant 

A formalization of 
dynamic ownership transfer
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Validity

∀σ’.

Γ ⊢ {p}c{q} is valid

∀α∈[[c]].∀σ: dom(σ)⊇free(c,Γ)-owned(Γ).

σ ⊨ p & σ → σ’  implies σ’ ⊨ q 
α
Γ

 
σ’ ≠ abort 

iff

A formal definition 
matching the intuition given earlier

DEFINITION
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Examples
Γ:: buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ z↦-)

valid

Γ⊢{x↦-}PUT{emp}
Γ⊢{emp}GET{y↦-}

Γ’::  buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ emp)

Γ’⊢{x↦-}PUT{x↦-}
    Γ’⊢{emp}GET{emp}

valid

57



Γ⊢{x↦-}PUT{emp} 

([x:v0],[v0:v],∅) ([x:v0,full:0,z:v1],[v0:v],{buf})

([x:v0,full:1,z:v0],[v0:v],{buf})

([x:v0],[ ],∅)

acq(buf)

Γ
β

Γ

Γ

rel(buf)

Γ:: buf(z,full): (full=0 ∧ emp) ∨ (full=1 ∧ z↦-)

emp

x↦-

58



Soundness Theorem
Concurrent separation logic is sound

every provable formula is valid

Proof:
Each inference rule
preserves validity
when its side conditions hold
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Proof sketch

We consider the rules for Parallel, 
Region, Local Resource, Frame

Other rules are similar

Γ⊢{p’}c{q’} 

Γ⊢{p}c{q} p’⇒p q⇒q’

Rule of Consequence

Proof: trivial
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Parallel rule
Γ ⊢ {p1}c1{q1}
Γ ⊢ {p2}c2{q2}

free(p1,q1) ∩ writes(c2) = ∅

valid
valid

free(p2,q2) ∩ writes(c1) = ∅
free(c1) ∩ writes(c2) ⊆ owned(Γ) 
free(c2) ∩ writes(c1) ⊆ owned(Γ) 

Γ ⊢ {p1 ∗ p2}c1||c2{q1 ∗ q2}
valid

PARALLEL DECOMPOSITION Lemma

❸

❷

❶
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Parallel Decomposition Lemma
Suppose

free(α1) ∩ writes(α2) ⊆ owned(Γ) 
free(α2) ∩ writes(α1) ⊆ owned(Γ) 

  α ∈ α1||α2

            
h= h1∪h2, h1⊥h2 ,

 (s,h) → abort α
Γ

(s\writes(α2), h1)      →   α1

Γ abort

→α2

Γ   (s\writes(α1), h2)     abort
or

If

then
α1

Γ

    (s,h) → (s’,h’)
α
Γ

 (s\writes(α2), h1)→ (s1’,h1’)

 (s\writes(α1), h2) → (s2’,h2’)
α2

Γ
then

h’ = h1’ ∪ h2’, h1’ ⊥ h2’
s1’ = s’\writes(α2)
s2’ = s’\writes(α1)

If

❸
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Soundness of Par
Suppose (s,h) ⊨ p1✶p2,  (s,h) →σ’ 

Choose h1⊥ h2 so that h= h1∪h2, (s,h1) ⊨ p1, (s,h2) ⊨ p2

Then (s\writes(α2),h1) ⊨ p1, (s\writes(α1),h2) ⊨ p2                          

By Decomposition Lemma,                 

Hence 

So         

Γ
α

σ’ ⊨ q1 ✶q2

α1

Γ(s\writes(α2),h1) → (s’\writes(α2), h1’) ⊨ q1

α2

Γ(s\writes(α1),h2) → (s’\writes(α1), h2’) ⊨ q2

(s’,h1’) ⊨ q1 and (s’,h2’) ⊨ q2 

h’ = h1’∪h2’ h1’ ⊥ h2’σ’ = (s’, h’)

as required

❶,❸,
by❷

❷by
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Region rule
Γ ⊢ {(p∗R)∧b}c{q∗R} valid

R precise 

Γ,r(X):R ⊢ {p}with r when b do c{q}
valid

free(p,q)∩X = ∅

REGION LEMMA
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Soundness of region rule

Let (s,h) ⊨ p,

If                                                       

there are (s0,h0), (s0’,h0’), h’⊥h0’ such that

β∈ [[b]]true, γ∈ [[c]]

(s,h) acq(r) βγ rel(r)

Γ,r(X):R
σ’ 

(s,h) 
acq(r) 

Γ,r(X):R
(s∪s0, h∪h0)

rel(r) 

βγ

= σ’ Γ,r(X):R

⊨ (p✶R)∧b

  ⊨ q✶R(s’∪s0’, h’∪h0’)

(s’, h’)

Γ,r(X):R

  ⊨ q

[[with r when b do c]] = acq(r) [[b]]true [[c]] rel(r) ...

as required

precision
is crucial!
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Resource rule
Γ,r(X):R ⊢ {p}c{q}

valid

Γ ⊢ {p∗R}resource r in c{q∗R}
valid

RESOURCE LEMMA
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Soundness of resource rule

Let (s,h) ⊨ p✶R,              ,

Choose h1⊥h2 such that

Then there must be h1’⊥h2’ such that

Hence σ’ ⊨ q✶R as required

 β ∈ [[c]]r 

σ’ = (s’, h1’∪ h2’) 

(s,h1) ⊨ p,   (s,h2) ⊨ R

Γ(s,h) 
β\r
σ’ 

(s,h1) 
β

Γ,r(X):R
(s’,h1’)

(s’,h1’) ⊨ q    (s’,h2’) ⊨ R

[[resource r in c]] = {β\r | β∈ [[c]]r }

,  h=h1∪h2
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Frame rule

Γ ⊢ {p}c{q} valid

Γ ⊢ {p✶I}c{q✶I} valid

free(I) ∩ writes(c) = ∅
free(I) ∩ owned(Γ) = ∅

FRAME LEMMA
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Frame Lemma
Suppose

h= h1∪h2, h1⊥h2 

h’ = h1’ ∪ h2 

 (s,h) → abort α
Γ

(s, h1)      →   α
Γ abort

If

then α
Γ

    (s,h) → (s’,h’)
α
Γ

 (s, h1)→ (s1’,h1’)

then
s1’ = s’

If

h1’ ⊥ h2 
 h’ = h1’∪h2 
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Soundness of Frame rule
Let

Choose h1⊥h2  so that h=h1∪h2 and

Since Γ⊢{p}c{q} is valid, there are s’, h1’ 
such that

By Frame Lemma 

Since free(p)∩writes(α)=∅,  (s’,h2) ⊨ I

Hence σ’ ⊨ q✶I as required

α ∈ [[c]], (s,h)  α
Γ σ’ (s,h) ⊨ p✶I, 

(s,h1) ⊨ p, (s,h2) ⊨ I 

(s,h1) α 
Γ (s’,h1’) ⊨ q

h1’⊥h2 σ’=(s’,h1’∪h2’)
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And so on...

For each inference rule,                     
a similar proof case

Summary: 
every provable formula is valid
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Validity, revisited

We defined validity in terms of     
local states and local computation

Need to connect with global notions

independent of the logic

related to standard operational semantics

show that provable programs are 
guaranteed to be race-free
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Global/local lemma

If (s,h) ⇒ abort
α

then (s\owned(Γ),h1) → abort
α
Γ

If (s,h) ⇒ (s’,h’) α

and ¬ (s\owned(Γ),h1) → abort
α
Γ

then there are h1’⊥h2’ such that   

h’=h1’∪h2’, (s’,h2’)⊨inv(Γ) 
(s\owned(Γ),h1) → (s’\owned(Γ),h1’) α

Γ

Suppose h=h1∪h2,  h1⊥h2, (s,h2) ⊨ inv(Γ)
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Corollary
If Γ ⊢ {p}c{q} is valid,

∀α∈[[c]].

   ∀σ: dom(σ) ⊇ free(c). ∀σ’.

σ ⊨ p✶inv(Γ) & σ ⇒ σ’  

σ’ ⊨ q✶inv(Γ)

α

implies

provable 
implies 

race-free
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Conclusions

Concurrent separation logic is sound

Has been used to prove

parallel mergesort

storage allocator

concurrent tree disposal

Ownership transfer is a powerful metaphor

When you gather all

your resources together, 

goals are accomplished
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Precision is crucial
Region rule is unsound 

with imprecise invariants

(Example due to John Reynolds)

valid

⊢{(emp ∨ x↦_)✶true} skip {emp✶true}
r:true ⊢{emp ∨ x↦_} with r do skip {emp}

invalid
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