Communicating Parallel Processes

Stephen Brookes

Abstract

Tony Hoare’s 1978 paper introducing the programming language
Communicating Sequential Processes is now a classic. CSP treated
input and output as fundamental programming primitives, and in-
cluded a simple form of parallel composition based on synchronized
communication. This paper provides an excellent example of Tony’s
clarity of vision and intuition. The notion of processes is easy to
grasp intuitively, provides a natural abstraction of the way many par-
allel systems behave, and has an abundance of applications. Ideas from
CSP have influenced the design of more recent programming languages
such as occam and Ada. Investigations of the semantic foundations
of CSP and its successors and derivatives have flourished, bringing
forth a variety of mathematical models, each tailored to focus on a
particular kind of program behavior. In this paper we re-examine the
rationale for some of the original language design decisions, equipped
with the benefit of hindsight and the accumulation of two decades of
research into programming language semantics. We propose an “ide-
alized” version of CSP whose syntax generalizes the original language
along familiar lines but whose semantics is based on asynchronous
communication and fair parallel execution, in direct contrast with
the original language and its main successors. This language permits
nested and recursive uses of parallelism, so it is more appropriate for
us to refer to Communicating Parallel Processes. We outline a sim-
ple semantics for this language and compare its structure with the
most prominent models of the synchronous language. Our semantic
framework is equally well suited to modelling asynchronous processes,
shared-variable programs, and Kahn-style dataflow networks, so that
we achieve a unification of paradigms.

1 Introduction

In a now classic article, published in the CACM in 1978, Tony Hoare pro-
posed a parallel programming language known as CSP, short for Communi-
cating Sequential Processes [17]. This paper introduced a notion of process,
intended as a mathematical abstraction of the interactions between a com-
puting system and its environment. Building on the sequential control prim-
itives of Dijkstra’s language of guarded commands [12], CSP treated input
and output as fundamental programming primitives, and introduced a form
of synchronized parallel composition: a process reaching an input (respec-
tively, output) command waits until the corresponding process reaches an
output (respectively, input) command, whereupon they can communicate by
handshake, one process sending a data value and the other receiving it. The
paper provides an excellent example of Tony’s clarity of vision and intuition,
and included a wide-ranging collection of parallel programming problems
and their solution in CSP. Ideas from CSP have also influenced the design
of more recent parallel programming languages such as occam [21], Ada, and
Concurrent ML (CML) [33].

The original paper contains an informal sketch of a semantics for CSP,
couched in abstract terms but with plenty of operational intuition. The paper
discusses a number of important pragmatic issues and provides a rationale
for certain key language design decisions and a critique of several alterna-
tives. Subsequently Hoare and his students and colleagues, including Bill
Roscoe and myself, worked on formalizing the intuitive semantics of CSP.
Many variants of the original language have been introduced, and much of
the work has been concentrated on an abstract version of CSP (sometimes
known as TCSP, or Theoretical CSP [2]) which suppresses the imperative
aspects of the language, and various generalizations such as Timed CSP [32].
Somewhat confusingly the name CSP tends to be retained across many of
these successor or derivative languages, even though the bare syntax of each
differs greatly from that of the original language and (more importantly) the
semantic models differ radically.

In this paper we revisit the rationale for some of the original language
design decisions, equipped with the benefit of hindsight and the accumula-
tion of two decades of research into programming language semantics'. We

!Perhaps it is worth remarking that it is now 21 years since the publication of the
CACM paper on Communicating Sequential Processes, so that CSP may be said to have
“come of age”.

propose an idealized alternative version of CSP based on asynchronous com-
munication and fair parallel execution, in direct contrast with the original
language and its main successors [8]. Like many of CSP’s existing variants
we also permit nested parallel composition and we allow the use of parallel
composition inside the body of a recursive procedure, so that our language
deserves the title Communicating Parallel Processes.

We describe a simple semantic model for this language and we compare
its structure and features with those of the most prominent models of the
synchronous language. A virtue of our semantics is that it brings out the
underlying essential similarities between three erstwhile separate paradigms
of parallel programming: (asynchronous) communicating processes, shared-
variable parallelism, and Kahn-style dataflow networks. This kind of unifi-
cation of paradigms is an achievement that fits well within the spirit of Tony
Hoare’s research principles.

2 The design of CSP

As originally specified CSP augmented Dijkstra’s language of guarded com-
mands with primitives for input and output, and a form of parallel compo-
sition of named sequential processes.

In a parallel construct of the form [m::Py||-- - ||m,::P,] the processes P;
(¢ = 1,...,n) were built from sequential programming constructs together
with input and output; the process names 7; are assumed to be distinct,
and the processes must be disjoint, in that no variable subject to change
by one process is used by any other process. This means that synchronized
input-output is the only way for processes to influence each other. An input
command 7;7z in process P; represents a request for P; to send an update
value for the variable x; an output command m;le in P; represents a re-
quest for P; to receive the value of expression e. If P, and P; reach such a
“matching pair” of communications they may synchronize, with the effect of
assigning the value of e to x, so that this kind of handshake can be viewed
as a “distributed assignment”.

Input commands were also permitted in the guards g; of a guarded con-
ditional command

or a guarded loop
do (gl _>P1>D”'D<gn_>Pn) Od,

and in general a guard may be built from a purely boolean component (a
boolean expression b) and an input command?. A guard of form b A ;7 in
the body of process 7; is true in any state satisfying b when the process named
7 is at a “matching” output of form m;le. Such a guard fails if no matching
output is available. An input-guarded conditional must wait if necessary
until matching output appears. An input-guarded do-loop terminates when
all of the processes named as sources in its input guards have terminated.
The latter requirement, known as the distributed termination convention, has
proven rather controversial, awkward to model, difficult to implement, and
hard to reason about. Hoare’s misgivings about this feature were clearly
stated in the original paper. This seems to be one of the early language
design decisions that has not survived the test of time, and is not usually
regarded as part of the “essence” of CSP.

The form of parallelism provided in CSP is in marked contrast to the kind
of shared memory parallelism characteristic of Dijkstra’s language of cooper-
ating sequential processes [11], although the choice of a similar name (together
with explicit acknowledgement by Hoare) emphasizes the common intellec-
tual roots of these two paradigms. Hoare was also aware of the then recent
paper of Kahn, outlining an extremely simple denotational model of deter-
ministic asynchronous communicating processes [22]. In Kahn’s semantics a
deterministic process computes a continuous function from input streams to
output streams, so that the Kahn paradigm seems inherently “functional”
in contrast to the imperative CSP style of process. Given the very different
intuitive process models inherent in these three paradigms it is not surprising
that over the years the semantic foundations of these paradigms have grown
apart, obscuring their common features and underlying similarities. We will
return to this point later.

As already mentioned, Hoare’s paper included an extensive discussion
section which outlined some of the decisions made in his language design
and suggested the possible advantages or disadvantages of various alternative
choices. We will now revisit some of the main issues, interspersing points
from Hoare’s critique with our own commentary. The reader should of course
remember that our comments are being made with the benefit of hindsight.

2Some versions of CSP also permit output guards in such contexts, but this is a matter
of some contention and is not important for our purposes.

4

2.1 Communication vs. assignment

Hoare’s use of a special syntax for communication emphasizes his apparent
view that communication and assignment are independent and orthogonal
concepts: assignment was “familiar and well understood”, input and output
“not nearly so well understood” [17]. A CSP-style notation for input and
output is now widespread, with similar syntax occurring for instance in occam
and Ada as well as a host of other programming languages.

The separation of communication from assignment has also shaped the
development of semantic foundations for CSP. Since the original language was
imperative, state change is an important aspect of program behavior, and we
normally use the term state to refer to the current values of a process’s local
variables; but a process’s behavior will also depend on what communication
possibilities it offers, and on what matching communications are presented
by its environment. Hoare-style semantics typically contains a separate com-
ponent representing information about enwvironmental interactions, such as
communication traces and refusal sets, as we will see in more detail shortly.
Our point here is that these semantic models treat (internal) “state” and (ex-
ternal) “environment” as separate components, rather than regarding local
variables and communication potential together as comprising the “overall
state” of a process. We will see later that it can be advantageous, from the
semantic point of view, to blend communication channels into the “state”
and regard input and output as (special kinds of) imperative operations that
cause a state change, thus blurring the distinction between assignment and
communication.

2.2 Nested parallelism

Hoare realized that the sequential restriction on the processes of a parallel
composition was rather severe. Limiting the P; to the sequential subset of the
language means that one cannot “nest” parallel constructs, so that one needs
a whole family of n-ary forms of parallel composition and cannot make do
with an associative binary parallel composition operator. This is especially
annoying to semanticists, who generally prefer dealing with a single binary
construct to coping with an entire family of closely related constructs which
cannot be derived from the binary case.

As another consequence of the sequentiality restriction the number of
processes in a program is statically determined by the program’s syntactic

structure. This may prove advantageous when trying to schedule execution
of a particular program, but prevents the language’s use to describe dynamic
or recursively evolving networks.

Hoare also realized that explicit naming of the processes in a parallel
composition creates pragmatic difficulties, for instance with library programs.
Any program intended to be used as part of a library must name explicitly
all processes with which it might ever need to communicate, but obviously
these process names are not typically available.

Even if one were to permit nested uses of parallel composition the process-
naming convention would cause difficulties with scoping and associativity.
Consider for example the program

[m1:[o1: Py || 09 Pro] || o Pa).

How might P, communicate with the process named 7?7 Should P, be per-
mitted to refer to process names o; and oy directly, or perhaps to employ
compound names 7;.0q7 and .07 The latter seems more logical, since we
can interpret a compound name like 7.0 to mean “the sub-process named o
of the process named 7”. But even if we adopt the use of compound names
it is difficult to formulate a general associativity law: the process names get
in the way. The kind of name calculus inherent in such an approach seems
clumsy and unappealing, and the awkwardness becomes more painful still
when we generalize to n processes.

Considerations like these suggest a de-coupling of the naming mechanism
from the parallel construct, as proposed in Plotkin’s operational semantics
for CSP [31]. A more flexible mechanism, based on named channels, was
adopted subsequently, notably in occam and TCSP. These and other deriva-
tives of CSP have typically included binary parallel operators and a separate
scoping construct; the hiding operator in TCSP serves to localize certain
communications between processes, and plays a role analogous to a local
declaration in limiting the visibility of actions and names construed to be
local.

2.3 Channel names vs. process names

Aware of the “library problem” outlined above, Hoare cited port naming (or
named channels) as an attractive and more general alternative to process
naming. The rigid use of process names in the manner of the original paper

is tantamount to assuming a single port or channel connecting each pair of
processes. Most subsequent work in the CSP framework assumes channel-
based communication: an output command hle represents an attempt to
output the value of e on channel h; and input command h?z represents
an attempt to receive a new value for variable x off channel h; when two
processes reach a matching pair of communications (on a particular channel)
they can synchronize and perform a handshake.

Although the move to named channels rather than named processes is a
very natural generalization it raises further pragmatic and semantic issues.
The most fundamental questions concern the nature and usage of a channel.
Intuitively, we regard a channel as an abstraction of a communication path
between processes. Consequently a channel is naturally to be regarded as
shared between the processes which use it. CSP insists that processes do not
share variables, but it would obviously not be sensible to insist that processes
do not share channels. (There is also the question of whether to allow more
than two processes to share a single channel.) In any case we will see that
there are good semantic reasons to blur the distinction between variables
and channels, and it will turn out to be straightforward to give an account
of a language permitting both variables and channels to be shared among
processes.

2.4 Synchrony vs. asynchrony

CSP assumed a synchronous implementation of communication, so that an
input or output command in one process is delayed until the other process
is ready with corresponding output or input, such delay being “invisible” to
the delayed process. All traditional models of CSP reflect this assumption,
and abstract away from any delay implied by this mechanism, so that one
typically deals with “events” whose occurrence is assumed to be instanta-
neous.

As Hoare commented, it would have been equally reasonable to adopt
and assume an asynchronous notion of communication in which a process
attempting output should always proceed and a process wanting input should
only wait if a matching output is not yet available. Indeed this is the form of
communication assumed in Kahn’s dataflow semantics, and Kahn even used
a CSP-like notation for input and output.

An obvious way to implement asynchronous communicating processes
is to employ buffers to hold data waiting to be consumed. Hoare argued

against adopting asynchrony as the underlying mechanism, partly because he
regarded it as “less realistic to implement”, and partly because buffering can
“readily be specified” using the synchronous primitives. With characteristic
honesty he also admitted that the second of these reasons is uncompelling,
since one could equally well argue that a synchronization can be specified
readily with a pair of asynchronous operations. In retrospect the argument
against implementability of asynchronous communication is also weak, and
an argument at least as forceful could have been made that instantaneous
synchronized handshakes are hard to implement. Perhaps it is best to agree
that both synchrony and asynchrony are implementable, with manageable
cost and overhead. Modern communication-based parallel languages such as
Concurrent ML (CML) include asynchronous primitives as basic constructs
and implement their synchronous cousins on top of them [33].

Given these philosophical and pragmatic considerations one might be led
to believe that the decision to assume synchrony or asynchrony has little di-
rect pay-off. Programmers wishing to work in the “other” setting can always
do so with a little extra effort, either inserting buffer processes to simulate
asynchrony in the synchronous language, or using request-acknowledge pro-
tocols to enforce synchronization on top of an asynchronous implementation.
Yet the decision turns out to have deep ramifications, especially for semantic
foundations. A major case in point concerns fairness.

2.5 Fairness

It has long been recognized that fairness is important when reasoning about
parallel programs, since the assumption that parallel processes are executed
without unreasonable delay is vital in establishing many liveness properties
of networks [29]. A fairness assumption allows us to abstract away from
imponderable details of process scheduling, to prove program properties that
can safely be asserted to hold in any “reasonable” implementation.

Around the time of Hoare’s paper fairness seemed to be semantically
awkward, because of the apparent difficulty of reconciling fairness with pow-
erdomains, which were currently being used by Hennessy and Plotkin for
modelling non-determinism and concurrency [16]. Park’s 1979 paper on the
semantics of fair parallelism (albeit for shared-variable programs) was not
yet in print. In the prevailing climate of 1978 fairness may have seemed to
be more trouble to model than it was worth. For example, the history tree
semantics of CSP [15], couched in terms of powerdomains, did not attempt

8

to model fair execution.

Moreover the concept of fairness is not so simple to formalize. The infor-
mal description of fairness given above, which seems to be consistent with
Hoare’s intended usage, is not precise enough. Many alternative formal-
izations of fairness notions have since been proposed?®. For our purposes it
suffices to focus on strong and weak fairness. A scheduler is said to be strongly
fairif it guarantees that every process that becomes “enabled” infinitely often
will eventually be scheduled; a scheduler is weakly fair if every process that
becomes persistently enabled will eventually be scheduled. In other words,
weak fairness means that continuously enabled processes get scheduled, and
strong fairness means that continually enabled processes get scheduled.

The following example is adapted from Hoare’s original paper, presented
here in a slightly more modern notation. We also include the key points made
in Hoare’s analysis of the example, although we will draw rather different
conclusions. Hoare made no explicit distinction between weak and strong
forms of fairness.

Assume that a represents an integer-carrying channel, and that go and
n are, respectively, a boolean variable and an integer variable. Consider the
program

al0 || n:=0; go:=true;
do
(go A a?r — go:=false)
O (go —n:=n+1)
od

The first process wants to output on channel a. The second process initializes
its variables and enters a guarded loop, using go as a flag to cause termination,
which can only occur if the first guard gets selected.

Hoare says that it would be unfair to keep executing the second alter-
native of the do-loop, since this would keep ignoring the potential for syn-
chronized communication between the two processes, which could have been
performed on an infinite number of occasions. Since synchronization is only
enabled when both processes are ready, such communication is only inter-
mittently possible during such an execution, continually enabled but not
continuously enabled, infinitely often but not forever. An execution which
keeps choosing the second guard and incrementing n is thus not strongly

3 A panoramic survey of a plethora of fairness definitions is provided in Nissim Francez’s
book [14]. Tt is doubtful if most of these truly constitute reasonable abstractions.

fair, which is presumably what Hoare meant by “unfair”. (After all, such
an execution is weakly fair.) If we assume that the scheduler is strongly
fair the above program is guaranteed to terminate, but the final value of n
may be any non-negative integer; if we assume a weakly fair scheduler the
additional possibility of non-termination arises. In both cases the program
exhibits unbounded non-determinism, since the value of n is unbounded. At
the time of Hoare’s paper the treatment of unbounded non-determinism in
the powerdomain setting seemed technically challenging.

Hoare raised the question: Should a programming language definition
specify that an implementation must be (strongly) fair? In answer, citing
unbounded non-determinism as the main reason, he was “fairly* sure that the
answer is NO”. It is certainly arguable that strong fairness is not a realistic
abstraction: a scheduler can only achieve strong fairness by maintaining
book-keeping information, perhaps using a priority queue, concerning the
set of currently enabled processes; it is not reasonable to assume that this
extensive and expensive work is going on in the background whenever we run
a parallel program. I would therefore agree with Hoare’s dismissal of strong
fairness, given that Hoare seems to have used “fairness’ to refer to the strong
notion. However these criticisms and defects are not also relevant for weak
fairness.

Weak fairness is a much more reasonable abstraction from realistic sched-
ulers: any scheduler based on a simple strategy such as round-robin will be
weakly fair. If we assume only that processes are scheduled in a weakly fair
manner we will be able to prove program correctness properties that hold
in any reasonable implementation. The problems caused by modelling un-
bounded non-determinism can be handled appropriately with proper choice
of semantic model, as shown initially by Park in 1979 and in later work of
other researchers. There is, therefore, a strong case to be made for building
a semantic framework for CSP based on weakly fair parallel composition.

It is also worth noting that Hoare went on to suggest that “an efficient
implementation should try to be reasonably fair” and should ensure that
“an output command is not delayed unreasonably often after it first becomes
executable”. Perhaps, looking back, this can be read as an implicit nod in
the direction of weak fairness, if we assume that Hoare intended “reasonably
fair” to mean “weakly fair”.

4The pun was presumably intended.

10

3 The models of CSP

Following the initial CSP paper, with its appealingly simple notion of pro-
cess but only informal discussion of semantic issues, a veritable industry grew
up, largely based at the Programming Research Group under Tony Hoare’s
supervision, with the aim of developing semantic foundations for commu-
nicating processes. We will now summarize some of the semantic design
issues that arose in those investigations, and which led to the formulation
of TCSP, a simple traces model [19], the failures semantics [2], and later to
the more refined failures+divergences semantics [3, 20]. Many of the foun-
dational details were developed in the D.Phil. theses of Bill Roscoe and
myself [35, 1]. Alternative models have also been developed, notably [27].
We supply only a truncated and grossly over-simplified picture; the reader is
referred to Roscoe’s book for a more systematic account [36].

In providing a formal semantics it is desirable to work with a streamlined
or stripped-down programming language with a minimum of constructs, so
that fewer semantic clauses need be specified. Correspondingly these seman-
tic investigations began with an abstract channel-based version of CSP, so
that parallel composition could be treated as a binary associative operator
rather than requiring n-ary parallel operators for all n > 0. (Actually TCSP
included special notation for a “synchronous” parallel operator, an “asyn-
chronous” or interleaving parallel operator, as well as a general “mixed” al-
phabetized form.) Input, output, and local actions such as assignment were
regarded as events. Instead of local variable (and local channel) declarations
a la Algol a similar purpose was served by the hiding operator. For example
in the TCSP process

[(a?z;blx) || al0]\a

channel a is hidden, causing communication on this channel to occur “au-
tonomously”; this process is equivalent to x:=0;b!0.

Hoare’s paper stressed the conceptual distinction between the well known
assignment operation, which changes the “internal state” of a machine, and
the (“less well understood”) communication primitives, which affect the “ex-
ternal environment” of a machine. Correspondingly, traditional semantic
models of CSP have been set up to reflect this distinction, and keep “state”
(the values of local variables) separate from “environment” (communication
on external channels). Our discussion is hampered by the fact that many of
these models ignore imperative features and that TCSP is usually presented

11

as a process algebra over an “alphabet” of abstract events. In our presen-
tation we will put the state back in, so as to facilitate comparison with the
original language.

3.1 Communication traces

An early semantic model for CSP [19] was based on communication traces,
which describe the sequences of communications a process can perform in
a finite amount of time if placed in an environment that offers a sequence
of matching actions. Such traces represent partial histories of interaction
up to some finite stage of execution, so that the trace set of a process is
naturally non-empty and prefix-closed. This model has the virtue of extreme
mathematical simplicity, but is too abstract for many purposes, because it
abstracts away from deadlock. For example the processes

P = if (true — a?z)0(true — b7x) fi

and
Q = if (a?z — skip)O(b?z — skip) fi

have identical trace sets, but (P||a!0)\a can deadlock and (Q||a!0)\a cannot.

3.2 Failures

The desire to interpret deadlock properly led to the failures semantics of
TCSP, in which a process denotes a set of failures, closed under certain
natural conditions [2]. A failure has the form (s, o, X,s’), where s and s
are states describing the values of the variables used by the process, « is
a communication trace as above and X is a refusal, a set of events that
the process can fail to accept. A process P exhibits such a failure if it is
possible for P to reach deadlock in state s’, when executed from state s in
an environment that permits the sequence a and then wants to perform any
event from X. Such a deadlock is caused by the process “refusing” the set
X, which prevents further communication because the environment’s next
step must correspond to a member of X.

The failures model distinguishes between the above processes P and @)
appropriately: P can (initially) refuse communication on a, but ¢ cannot.
Technically this difference manifests itself in the existence of failures such
as (s,¢,{a? al},s) for P but not for (). Failure semantics can be defined

12

denotationally, yielding a compositional model of TCSP tailored to reason-
ing about communication traces and deadlock. However, there is a further
behavioral phenomenon not properly handled using failures: divergence.

3.3 Failures + divergences

A process is said to diverge if it can perform an infinite sequence of “internal”
actions. Such a potential may be regarded as bad, because it could prevent
the process from responding (either by accepting or refusing a communication
offered by the environment) in a finite amount of time. In any case it is
natural to ask what failures should be taken to represent the behavior of a
diverging program such as

[do true — a?z od || do true — a!0 od]\a

Obviously no visible communication ever occurs here, but equally well the
process’s environment will never discover in a finite time whether a matching
communication might become available, so no refusals will occur either. Sim-
ply put, there is no way to represent this kind of behavior inside the failures
framework.

A slightly more complicated example raises a further issue with diver-
gence. What if a program may either diverge or do something visible by
communicating? Consider for instance the following program:

[do (a?z — skip) O (in?y — outly) od || do (true — al0) od]\a

This program has executions in which it diverges, forever assigning 0 to
x; it also has the potential to keep behaving like a 1-place buffer between
channels in and out. The question is: to what extent should the potential
for divergence influence our view of this program?

An analogous issue arises when modelling non-deterministic sequential
programs, for instance in Dijkstra’s language of guarded commands. There
are three obvious alternatives in the sequential setting:

e ignore non-termination
e insist on termination

e model non-termination and termination separately

13

In fact three distinct powerdomains have become associated with these three
alternatives: respectively, the Hoare powerdomain — so called because of
its connection with partial correctness and hence with Hoare logic®; the
Smyth powerdomain [39], reflecting total correctness; and the Plotkin pow-
erdomain [30], providing a more general account that deals properly with
non-termination as a legitimate form of behavior.

For CSP semantics concerns other than termination per se are vital; we
want to be able to reason about communication sequences and deadlock. It
is obviously inappropriate to ignore non-termination completely; indeed if we
did this we would run into technical difficulties with the failures approach,
since a divergent process would have an empty set of failures. The choice
made in the early development of CSP models was to argue that even poten-
tial divergence is “catastrophic”, since processes really ought to be designed
so as to respond in a finite amount of time to their surrounding environment.
We will see later that the third alternative is equally tenable.

The first model to provide a proper account of divergence, modulo the
catastrophic assumption, is now known as failures-divergences semantics [3].
A process is modelled by a set of failures as above, together with a set of
divergence traces; a divergence trace (s,«) for process P means that, when
P is run from start state s in an environment that allows the sequence of
communications «, it is possible for P to begin to diverge. In line with the
desire to treat divergence as a disaster, the model imposed certain closure
conditions on the failures and divergences of a process, so that all potentially
divergent processes are “equally bad” and become indistinguishable. Note,
for instance, that the two programs discussed above, one simply diverging
and the other only potentially diverging, are ascribed identical meanings in
this model.

Despite the historical adoption of the Smyth-style approach to divergence
and the persistence of this philosophy in the CSP school of research it is
natural to ask what might have been done differently if we had instead taken
a Plotkin-style view of divergence. Indeed Roscoe’s book does discuss a more
refined treatment of divergence, based on joint work with Albert Meyer and
Lalita Jategaonkar, and closely related to work of Valmari [41]. We will
see shortly that a simpler approach also works, provided we make a few
alterations in the surrounding semantic fabric.

5As far as I know the attribution of this powerdomain to Hoare is by acclamation; the
“Hoare powerdomain” did not appear first in a paper of Hoare.

14

3.4 Assessment

All of the early models of CSP shared a common philosophy: aiming for
mathematical simplicity, focussing on a specific combination of program
properties, and dealing in terms of “partial” computations. The most so-
phisticated of these, the failures-divergences model, viewed divergence as
catastrophic. The success of this semantic framework is quite striking. CSP
has been applied in a huge variety of settings, ranging from standard chest-
nuts (such as Dining Philosophers) to systolic arrays [20] and security proto-
cols [23]. Yet it is worth examining what developments might have occurred
if we had begun by adopting a different set of philosophical principles. We
should also note that as a consequence of the way the traditional framework
evolved it is a rather difficult to incorporate some of the features missing in
the original CSP.

In particular none of the now traditional semantic models of CSP has
embraced fairness (either weak or strong) as a foundational assumption. As
Roscoe describes, in order to cope with fairness in the failures-divergences
framework one must incorporate infinite communication sequences as well as
finite. This seemingly natural step is actually far from straightforward [36].
The problems that arise, and the book-keeping intricacies with which it is
necessary to dress up the semantic details, are set out in Sue Older’s Ph.D.
thesis [26]. The conclusion is that the synchronous nature of communication
in CSP makes it extremely difficult to deal tractably with fairness, since
“enabledness” of a process depends on the ability of other processes to agree
to a matching communication and this forces us to push around (in the
semantic clauses) information about the sets of potential communications at
all stages of an execution.

4 Idealized CSP

We will now introduce an “idealized” version of CSP based on asynchronous
communication and (weakly) fair parallel composition [8]. The language can
also be viewed as generalizing Reynolds’ Idealized Algol by adding input and
output primitives and the ability to spawn parallel processes. Our generaliza-
tion of Hoare’s language allows nested and recursive uses of parallelism, and
we use named channels, as in occam, rather than process names, since this
yields a more flexible communication mechanism. The inclusion of nested

15

parallelism makes the language more uniform and causes no extra difficulties
from a semantic point of view.

The combination of procedures and parallelism was already suggested
in the original paper on CSP: Hoare commented on the similarity between
his notation for an array of processes and Algol-like procedures. We permit
recursive procedures, and even the use of parallel composition inside a pro-
cedure body, so that it becomes straightforward to specify dynamic process
creation. Procedures can also be used to encapsulate common communica-
tion protocols, such as the alternating-bit protocol. Local variable declara-
tions and local channel declarations provide a way to delimit the scope of
interference between parallel agents.

A raw syntax for our language is pretty standard, and is described as
follows. (We omit the details concerning proper usage of types, which can
easily be handled in a conventional manner.) For simplicity we will let x, y, . ..
range over (integer-valued) identifiers and h range over (integer-carrying)
channel names; d ranges over declarations, which for simplicity we write as a
sequence of identifiers and channel names. We also let e range over integer-
valued expressions and b range over boolean-valued expressions, whose syntax
is not further specified here. An abstract grammar for processes P, guarded
commands gc, and guards ¢ is given by:

P == skip | @:=e | P;; P, | h?x | hle |
if gcfi | do gcod
Pi||P, | local d in P

ge == (9= P) | geyOgc,

g == b | bARIx

We use an Algol-like notation for procedures. For example, the following
procedures encapsulate a common way to build one-place and unbounded

buffers in CSP:

procedure buff1(in, out) =
local z in do (in?z — outlz) od,;

procedure buff(in, out) =
local mid in buff1(in, mid) || buff1(mid, out);

In any call to buff, locality of the channel mid guarantees that the actual
parameters of the call are distinct from mid. The correct behavior of this

16

procedure depends crucially on the inability of the two calls to buff! to in-
teract except via the local channel.

For another example here is one way (cf. [22]) to program the Sieve of
Eratosthenes in our language:

procedure filter(p, in, out) =

local z in do (in?z — if x mod p # 0 then out!x) od
procedure sieve(p,c) =

(c!p; local h in filter(p, h,c) || sieve(p + 1,h));

If ¢ is an integer-carrying channel the call sieve(2, ¢) results in the outputting
of the prime numbers in ascending order on this channel. Note that each re-
cursive call to sieve introduces new parallel processes sharing a local channel,
and each call to filter makes use of a local variable to hold the integer cur-
rently being tested for divisibility.

Combining procedures and communicating processes raises significant se-
mantic problems. Indeed, the early semantic models for CSP did not incor-
porate procedures, and most existing semantic models for procedures seem
unsuitable for a process language like CSP. Nevertheless, despite the funda-
mental differences in the underlying model of computation, the ideas behind
our earlier work on shared-variable parallelism [4, 7] can be adapted to the
setting of communicating processes. In [4] we used “transition traces” to
build a simple fully abstract model for a shared-variable parallel language.
In [7] we showed how to incorporate a procedure mechanism based on the
simply typed call-by-name A-calculus, obtaining an idealized language called
Parallel Algol. Our semantics for Parallel Algol combined transition traces
with “possible worlds”[28, 34] in a “modular” style, bringing out the or-
thogonality of procedures and shared-variable concurrency. With suitable
generalization and adjustment, we can obtain a semantics for Idealized CSP
by similar means.

The advantage of this approach is that transition traces, which were orig-
inally tailored for the shared-variable paradigm, and possible worlds, which
appear best suited for modelling imperative programming, can be adapted to
deal with communication-based programs. As shown in [9] transition trace
semantics also provides a model for non-deterministic Kahn-style dataflow
networks. Thus transition traces can serve as a unifying common semantic
basis for three parallel paradigms.

To facilitate comparison between our semantics and traditional models of
CSP we now summarize briefly some of the key ideas.

17

4.1 Transition traces

A “transition trace” is a finite or infinite sequence of pairs of states,

(505 80) (51, 87) « - (Sns Shy) - - -

representing a generalized computation of a command during which the state
is changed as indicated: steps from s; to s, being caused by the command,
changes from s/ to s, being made by the command’s environment. This kind
of structure is very natural for modelling shared-variable parallelism, since
interference is captured precisely by state changes “across step boundaries”.
Transition traces have been used to give denotational semantics to a simple
shared-variable language, originally by Park [29], and by the author in [4] to
achieve full abstraction, by imposing certain closure conditions on trace sets.
In particular, a trace set T is said to be closed under stuttering if every trace
obtained from a trace in 7' by inserting steps of the form (s, s) also belongs
to T'; and T is closed under mumbling if every trace obtained from a trace
in T' by replacing adjacent steps of the form (s, s')(s’,s”) by (s, s”) is also in
T. In Park’s traces each step represents a single atomic action, while in [4]
a step represents a finite sequence of atomic actions.

4.2 Blending communication with state

Channel names (or process names, or some similar kind of communication
label) play a prominent role in traditional accounts of the semantics of com-
municating processes. Yet from an abstract point of view the reliance on
channel names seems awkward. By analogy, the traditional reliance on a
location-based model of machine state causes semantic problems that moti-
vated the search for more abstract models in which location names become
implicit [24, 28, 25]. The decision to treat local state and channels as sepa-
rate aspects of a process’s behavior, state being affected by assignment and
environment being affected by communication, is the main reason for the
prominence of channel names. Nevertheless it is possible to treat channels
as just another kind of “variable”.

A channel potentially carries a sequence of data values. Over the course
of an entire computation an individual channel may participate in an infinite
sequence of communications, but at each stage only finitely many actions
have occurred so far. It follows that we can regard a channel as a variable
holding a finite sequence (actually, a queue) of data, representing those items

18

that have been output to the channel but not yet consumed by an input
operation. We can then treat input and output as operations which modify
the queue associated to a channel name; of course an input operation must
wait if the channel is currently empty. We can thus blend channels into
the state, so that a state describes the current contents of both variables
and channels. This paves the way for an adaptation of the transition traces
approach to the setting of communicating processes. A trace of the form
indicated above now represents a possible computation of a process assuming
certain patterns of communication with its environment (modelled as “state
changes between steps”).

When a process wants to perform input but the intended channel is empty,
it seems reasonable to model this situation as a form of busy waiting, since
such a process will keep waiting for an output to the channel by another
process; while waiting, the process never changes the state, and the waiting
continues provided the channel stays empty. In trace-theoretic terms this
amounts to a form of infinite stuttering.

As usual, sequential composition is modelled by concatenation of traces.
Assignment, conditional and while-loops may be handled in the standard way
too, as in our earlier treatment of shared-variable parallelism. Recursion and
while-loops are interpreted via greatest fized-points [40] in order to deal ap-
propriately with both finite and infinite traces. Assuming a fair scheduler,
the behavior of a parallel system of processes can be built by fairly inter-
leaving traces of the individual processes. The fairmerge relation on traces
can be defined in a straightforward manner, again by means of greatest fixed
points [29, 4].

Local channel declarations can be handled rather simply using an ex-
tension of the idea used in our shared-variable semantics. The traces of
local h in P are obtained by projecting away the h-component from (the
states in) traces of P in which the initial contents of h is the empty se-
quence and the contents of h are never changed across step boundaries. This
“interference-freedom” constraint on local variables reflects the scoping rules:
only P has access to the local channel.

Transition traces provide a semantic framework for compositional rea-
soning about safety and liveness properties of parallel processes, assuming
(weakly) fair execution. This semantics validates a collection of useful laws of
program equivalence, including several which rely on and reflect the fairness
assumption; these are especially helpful in proving liveness properties [9, 10].

Traditional CSP also enjoys a large battery of laws of equivalence, which

19

have been used to great effect in the development of model checking tools [13].
Naturally the move to asynchrony means that we need to work with laws
tailored to asynchronous communication. For instance, we obtain the equiv-
alence

local & in (RI0; P) = P

if h does not occur free in P. Note also that
local h in (h7z; P) = while true do skip,

having only infinite stuttering traces, because of the unrequited request for
input. Notice how these laws reflect our assumptions that an attempt to
input from an empty channel is blocked, but output is asynchronous. By
analogy the TCSP law

(e = P)\e = P\e

models the assumption that a hidden event can occur “autonomously”; in
the asynchronous world this would be reasonable for an output event (as in
the first law above) but not for an input.

In our semantics divergence is not interpreted as catastrophic. We see
no good reason to insist that a process which may diverge is “as bad” as
any other process at all. The rationale typically given for assuming that any
possibility of divergence is a disaster is tantamount to insisting that processes
should be designed to terminate, and this seems excessive in the concurrent
setting. Consider for example the program

do (true — skip) od || buff1(in, out).

Assuming fair parallel composition there is no reason to distinguish this from
buff1(in, out). The transition traces of both of these processes are identical,
so that our model equates them. It would be unreasonable to interpret the
first process differently simply because one of its component processes can
diverge®.

5 Conclusions

CSP has proven to be a highly influential contribution to the literature. Its
effects have been felt in language design, as witnessed by the rendezvous

6This example is also closely related to the “potentially divergent” example discussed
earlier, which was presented in TCSP-style notation.

20

mechanism of Ada, the occam language, and the input-output and synchro-
nizing primitives of Concurrent ML. An enormous body of research has grown
up dealing with variants and derivatives of CSP, concerning logics for rea-
soning about programs, the construction of special-purpose semantic models,
and specification and verification of program properties by automated tech-
niques [13, 38].

In this paper we have re-examined some of the language design alterna-
tives that were not adopted in the original paper. We have shown that it is
possible to build a simple and flexible semantic framework based on asyn-
chronous communication and fair parallelism, simultaneously suitable for
interpreting programs from the shared-variable paradigm and the communi-
cating process paradigm. Despite being based “only” on a form of traces, our
semantics provides a proper account of deadlock and divergence. In certain
respects our framework has advantages: it provides a much more natural
account of fairness than seems possible in the synchronous setting, and we
achieve a unification of parallel paradigms belied by the very disparate col-
lection of semantic models that have evolved historically. This kind of unifi-
cation and its reaffirmation of the common roots of these paradigms, along
with the simplicity and generality of our framework, are surely resonant of
the research principles and philosophy that characterize Tony Hoare’s work.

As shown in [7] our semantics may be recast into a relationally para-
metric setting [25]. This permits an elegant generalization of the principle
of representation independence, familiar from the use of abstract datatypes
and modules in sequential programming. This provides another link to an
important early paper of Hoare, on proving the correctness of data represen-
tations [18].

The traditional CSP models were developed within the established bounds
of Scott-Strachey denotational semantics: all program constructs were taken
to denote continuous functions on a semantic domain, and the meaning of a
recursive definition was interpreted as a least fixed-point. Relying implicitly
on the finitistic nature of the failures model (and on “constructivity” prop-
erties of program constructs) Hoare’s book [20] showed how to reason in a
straightforward manner about the correctness of recursive process designs,
taking advantage of the fact that (in the failures semantics) any guarded re-
cursive definition has a unique solution. We cannot adopt such an approach
in our idealized setting, since our decision to build in fairness means that our
model is no longer finitistic, and guarded equations may have more than one
solution. Indeed our approach uses greatest fixed-points to interpret recur-

21

sion, in order to give a proper account of infinite behaviors. Despite these
complications one can develop a straightforward style of reasoning about fair
recursive processes, as outlined in [10].

In summary, Idealized CSP and its semantic framework provides a satis-

fying alternative to synchronous CSP. It remains to be seen to what extent
it is possible to emulate the successes of the original CSP school, for instance
by developing automated tools for model checking asynchronous processes,
or by incorporating time. Perhaps this will be a suitable topic for discussion
when CSP turns 40.

References

1]

2]

Brookes, S., A model for communicating sequential processes, D. Phil.
thesis, Oxford University (1983).

Brookes, S.D. and Hoare, C.A.R., and Roscoe, A.W., A theory of com-
municating sequential processes, JACM 31(3):560-599 (1984).

Brookes, S. and Roscoe, A.W., An improved failures model for CSP,
Proc. Seminar on Concurrency, Springer-Verlag LNCS 197, 1985.

Brookes, S., Full abstraction for a shared-variable parallel language,
Proc. 8th IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society Press (1993), 98-109.

Brookes, S., Fair communicating processes, in A. W. Roscoe (ed.), A
Classical Mind: Essays in Honour of C. A. R. Hoare, Prentice-
Hall International (1994), 59-74.

Brookes, S., and Older, S., Full abstraction for strongly fair communi-
cating processes, Proc. 11th Conference on Mathematical Foundations
of Programming Semantics (MFPS’95), ENTCS vol. 1, Elsevier Science
B. V. (1995).

Brookes, S., The essence of Parallel Algol, Proc. 11th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1996),
164—-173.

22

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Brookes, S., Idealized CSP: Combining Procedures with Communicating
Processes, Proc. 13th Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS’97), ENTCS vol. 6, Elsevier Science B.V.
(1997).

Brookes, S., On the Kahn Principle and Fair Networks, 14th Conference
on Mathematical Foundations of Programming Semantics (MFPS’98),
submitted to TCS (1998).

Brookes, S., Reasoning about Recursive Processes: Erpansion is not al-
ways fair, ENTCS, Elsevier Science B.V., to appear (1999).

Dijsktra, E. W., Cooperating sequential processes, in: Programming
Languages, in F. Genuys (ed.), Academic Press (1968), 43—-112.

Dijkstra, E. W., Guarded Commands, Nondeterminacy, and Formal
Derivation of Programs, Comm. ACM 18(8):453-457 (1975).

Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2
Manual, 1997.

Francez, N., Fairness, Springer-Verlag (1986).

Francez, N., Hoare, C.A.R., Lehmann, D., and de Roever, W. P., Se-
mantics of Nondeterminism, Concurrency, and Communication, JCSS
19, 290-308 (1979).

Hennessy, M. and Plotkin, G.D., Full abstraction for a simple parallel
programming language, Proc. 8th MFCS, Springer-Verlag LNCS vol. 74,
pages 108-120 (1979).

Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM,
21(8):666-677 (1978).

Hoare, C.A.R., Proof of correctness of data representations, Acta Infor-
matica 1:271-281 (1972).

Hoare, C.A.R., A model for communicating sequential processes, in: On
the construction of programs, McKeag and McNaughton (eds.),
Cambridge University Press (1980).

23

[20]

[21]
[22]

[23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

[31]

[32]

Hoare, C.A.R., Communicating Sequential Processes, Prentice-
Hall (1985).

Inmos Ltd., occam? reference manual, Prentice-Hall (1988).

Kahn, G., The semantics of a simple language for parallel programming,
Proc. IFIP’74, North-Holland, pages 471-475 (1974).

Lowe, G., Breaking and fizing the Needham-Schroeder public-key protocol
using FDR, Proc. TACAS’97, Springer-Verlag LNCS 1055 (1996).

Halpern, J. Y., Meyer, A. R., and Trakhtenbrot, B. A., The semantics
of local storage, or What makes the free list free?, ACM Symposium on
Principles of Programming Languages, 1983, pages 245-257.

O’Hearn, P. and Tennent, R., Parametricity and local variables, J. ACM
42(3), 658-709, May 1995.

Older, S., A Denotational Framework for Fair Communicating Pro-
cesses, Ph.D. thesis, Carnegie Mellon University, (1997).

Olderog, E-R., and Hoare, C.A.R., Specification-oriented semantics for
communicating processes, Acta Informatica 23, 9-66, 1986.

Oles, F.J., A Category-Theoretic Approach to the Semantics of Program-
ming Languages, Ph.D. thesis, Syracuse University, 1982.

Park, D., On the semantics of fair parallelism. In D. Bjorner, editor, Ab-
stract Software Specifications, Springer-Verlag LNCS vol. 86 (1979),
504-526.

Plotkin, G.D., A power domain construction, SIAM J. Comput. 5 (3),
Sept. 1976.

Plotkin, G. D., An operational semantics for CSP, In D. Bjgrner, edi-
tor, Formal Description of Programming Concepts II, Proc. IFIP
Working Conference, North-Holland (1983), 199-225.

Reed, G.M. and Roscoe, A.-W., A timed model for communicating se-
quential processes, Theoretical Computer Science 58: 249-261 (1988).

24

33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

Reppy, J., Concurrent ML: Design, Application and Semantics, in:
Functional Programming, Concurrency, Simulation and Auto-
mated Reasoning, P. Lauer (ed.), Springer-Verlag LNCS 693, 165-198
(1993).

Reynolds, J. C., The essence of Algol. In van Vliet and de Bakker,
editors, Algorithmic Languages, North-Holland, Amsterdam (1981),
345-372.

Roscoe, A.W., A mathematical theory of communicating processes, D.
Phil. thesis, Oxford University (1982).

Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-
Hall (1998).

Roscoe, A.W. and Hoare, C.A.R., The laws of occam programming, The-
oretical Computer Science, 60:177-229 (1988).

Roscoe, A.-W., Model checking CSP, in A classical mind: essays in
honour of C.A.R. Hoare, Prentice-Hall (1994).

Smyth, M.B., Power domains, JCSS 16(1):23-36, Feb. 1978.

Tarski, A., A lattice-theoretical fixpoint theorem and its applications,
Pacific Journal of Mathematics, 5 (1955).

Valmari, A., The weakest deadlock-preserving congruence, Information
Processing Letters 53, 341-346, 1995.

25

