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Abstract

The search for a general semantic characterization of sequential functions is motivated by the full
abstraction problem for sequential programming languages such as PCF. We present here some
new developments towards such a theory of sequentiality. We give a general definition of sequential
functions on Scott domains, characterized by means of a generalized form of topology, based on
sequential open sets. Our notion of sequential function coincides with the Kahn-Plotkin notion of
sequential function when restricted to distributive concrete domains, and considerably expands the
class of domains for which sequential functions may be defined.

We show that the sequential functions between two dI-domains, ordered stably, form a dI-domain.
The analogous property fails for Kahn-Plotkin sequential functions. Our category of dI-domains
and sequential functions is not cartesian closed, because application is not sequential. We attribute
this to certain operational assumptions underlying our notion of sequentiality.

We show that the Scott domains satisfying a certain “finite meet” property are closed under the
pointwise-ordered stable function space, so that we obtain a new stable model based on the point-
wise order. We discuss some issues arising in the search for a class of domains closed under the
pointwise-ordered sequential function space.

We discuss the relationship between our ideas and the full abstraction problem for PCF, and
indicate directions for further development.



1 Introduction

The full abstraction problem for sequential programming languages such as PCF [Plo77, BCL&5]
has motivated the search for a characterization of sequential functions. Despite the (relatively) long
history of the problem, there is currently no satisfactory definition of sequential functions between
domains, and no known natural (i.e., language-independent ) sequential extensional semantic model.
The first definitions of sequentiality, given by Milner [Mil77] and by Vuillemin [Vui73], were limited
to functions on products of flat domains. Sazonov’s definition of sequential function [Saz75] is
also of limited scope. Kahn and Plotkin [KP78] introduced concrete data structures and concrete
domains, and gave a definition of sequential function between concrete domains. However, the
sequential functions between two concrete domains do not form a concrete domain (under both
the pointwise and stable orders). Berry introduced dI-domains, stable functions and the stable
ordering [Ber78]; the stable functions between two dI-domains, ordered stably, form a dI-domain.
The stable functions do not provide the desired notion of sequential functions, since some stable
functions are not sequential. Berry and Curien [BC82, Cur86] defined sequential algorithms between
concrete domains, and obtained a sequential intensional model from which one may recover the
Kahn-Plotkin sequential functions by taking an extensional quotient. More recently, Bucciarelli
and Ehrhard [BE91] introduced a notion of strongly stable functions between qualitative domains
equipped with a coherence structure (QDC’s), and obtained a definition of sequential function
between QDC’s that generalizes the Kahn-Plotkin definition. The sequential functions between
two QDC’s, ordered stably, form a QDC. These notions of sequentiality are not applicable to Scott
domains in general, and none of them yields a solution to the PCF full abstraction problem. Like
other authors, for instance, Bucciarelli and Ehrhard [BE91], we feel that the problems concerning
the semantic characterization of sequentiality are interesting in their own right, independently of
the full abstraction problem.

We present here some progress towards a general theory of sequentiality, using a generalized
topological approach. We first expand on recent work by Zhang [Zha89] and Lamarche [Lam91],
and show that the stable functions are the continuous functions for a certain generalized topology,
based on stable open sets, and that an appropriate order on the stable open sets induces the stable
ordering on stable functions. We then define sequential functions as the continuous functions for
another generalized topology. The key idea involves the designation of sequential open sets of a
domain, intuitively intended to correspond to properties of elements of the domain that may be
computed sequentially. Our notion of sequentiality is a conservative extension of the Kahn-Plotkin
notion of sequentiality. We show that dI-domains are closed under the stably-ordered sequential
function space. The category of dI-domains and sequential functions has finite products, but fails
to be cartesian closed because application is not a sequential function. This reflects an operational
assumption that seems to be inherent also in the Kahn-Plotkin setting: an attempt to compute an
incremental piece of information about a proper value in a function space may diverge. The failure
of cartesian closure does not mean that the search for an extensional sequential semantic model is
doomed; closure under function space is sufficient to provide an applicative structure [Mit90], which
is certainly enough to form an extensional model, and may perhaps, with further refinements, lead
to a fully abstract model.

The desire to (eventually) achieve full abstraction suggests that we use the pointwise order
on a function space, because it corresponds to the operational pre-order on terms in the standard
operational semantics of PCF. As a step in this direction, we show that the Scott domains satisfying
a simple finite meet property are closed under the pointwise-ordered stable function space. Since
flat domains have the finite meet property, and the property is preserved by the relevant function



space construction, this will yield a pointwise-ordered stable extensional applicative structure. We
hope that this will pave the way towards a similar construction of a pointwise-ordered sequential
functions model. In the meantime, we expand on some aspects of the pointwise-ordered sequential
function space. We identify some relevant properties, and obtain closure in a restricted form of the
sequential function space, where the target domain is flat.

We intersperse the development of our ideas with some previous work by other authors, in order
to emphasize the close analogues provided by the generalized topological approach that we take.
We hope that this improves the presentation, and have taken care to supply relevant references to
previously known definitions and results.

1.1 Preliminaries

A Scott domain is a directed-complete, bounded-complete, w-algebraic poset with a least element.
A subset X of a poset D is directed iff it is non-empty and every pair of elements of X has an upper
bound in X. A subset X is bounded iff it has an upper bound in D. A poset D is directed-complete
iff all directed subsets of D have a least upper bound (lub), and bounded-complete iff all bounded
subsets have a least upper bound. An element d € D is isolated (or finite, or compact) iff for all
directed subsets X of D, if d is below the lub of X then d is below some member of X. A poset D
is algebraic iff every element is the lub of its isolated approximations, and w-algebraic if in addition
D has countably many isolated elements. We write Dg, for the set of isolated elements of D. We
will use the word “consistent” as a synonym for “bounded”, and we will write d f} d’ to indicate
that d and d’ are bounded. We use “meet” as a synonym for greatest lower bound, or glb, and
“join” as a synonym for lub, but mainly use them when taking the glb or lub of a pair or a finite
set. We usually use the symbol < for the order relation of a poset, and \/, A for the corresponding
lub and glb operations, but we may resort to other families of symbols in order to introduce several
orderings on the same set.

Every non-empty subset of a bounded-complete poset has a glb. The (binary) meet operation
A of a Scott domain is continuous: If X; and X, are directed sets then

(\/Xl)/\(\/XQ) = \/{$1 N X9 | 1 € X1 &y € XQ}

(A general definition of continuity will be given later.)

A dI-domain is a distributive Scott domain with property (I). A poset has property (1) iff every
isolated element dominates finitely many elements. A bounded-complete poset is distributive iff for
every element z and all consistent pairs of elements xy and x4, the following equation holds:

A (21 Vay)=(zAx)V(zAzg).

The isolated elements of a dI-domain are down-closed: If < y in a dI-domain and y is isolated
then z is isolated as well.

A subset X of a poset is down-directed iff every pair of elements of X has a lower bound in X.
A subset X of a poset is a chain iff every pair of elements of X is comparable. We say that y covers
x or that x is covered by y, and write @ —< v, iff + < y and the set {z | 2 < 2 & z < y} is empty.

We define an up-closure operation: For every element € D let up(z) ={z€ D |z < z}. Fora
subset w of D let up(u) ={z¢€ D|3dz € u.z < z}. We say that a set u is up-closed iff u = up(u).
A down-closure operation down is defined dually.



2 Topological Definitions

We employ a generalized topological approach to give some of our definitions. We recall here the
well known fact that the continuous functions and the pointwise ordering have topological charac-
terizations based on the Scott topology [Sco72, GHK*80]. Following on work by Zhang [Zha89]
and Lamarche [Lam91] we show that the stable functions and the stable ordering are obtained as
the continuous functions for a generalized topological framework. Lamarche [Lam91] has also given
a generalized topological characterization of linear functions.

A generalized topological framework {2 assigns to each domain D a family QD of subsets of D,
called Q-open sets, ordered by an order <. QD is a proper topology if the order used is inclusion,
(0 and D are Q-open, and Q-open sets are closed under arbitrary unions and finite intersections —
this may be expressed by saying that QD is a sub-frame of the powerset lattice of D, ordered by
inclusion (see for instance [Vic89]). Our generalization arises by relaxing the sub-frame requirement,
and/or choosing an ordering on 2-open sets different from set inclusion, and relaxing the (derived)
requirement that the poset of 2-opens form a complete lattice.

We define the Q-continuous functions from D to F to be the functions f such that the inverse
image f71(q) of every ¢ € QF is in QD. We will order these functions by f <% g iff for every
q € QE, f~1(q) <" ¢g7'(q); the order < on the Q-continuous functions is said to be induced by the
order <% on the Q-opens. Different orders on Q-opens will naturally induce different orders on the
Q-continuous functions. The usual notion of continuous functions is the one induced by the Scott
topology, and we reserve the unqualified term of continuous functions for these Scott continuous
functions.

Given a generalized topological framework © on a class of domains, we obviously obtain a
category whose objects are the domains in the class and whose morphisms are the 2-continuous
functions: the identity function is always 2-continuous, and function composition preserves §2-
continuity. We will mainly be interested here in establishing that a given class of domains is closed
under function space.

Let the domain Two have elements { L, T}, ordered by L < T. If Q assigns to Two the Sierpinski
space structure, i.e., if Q(Two) = {0,{T},{L, T}}, ordered by § <® {T} <% {1, T}, then it is easy
to see that for any domain D, (2D, §Q) is isomorphic to the Q-continuous function space from D
to Two, ordered by <*. This is because f~1() = @ and f~'({L,T}) = D for any function f from
D to Two, so that p—~ (A € D .2 € p— T, L) and f — f~Y{T}) are the order-isomorphisms
between the two posets. This means that a necessary condition for a class of domains to be closed
under the Q-continuous function space is that it be closed under the generalized topology €, i.e.,
that (QD,<%) should belong to the class whenever D does. This condition is not sufficient, in
general.

We say that a family of subsets of D has the T0 separation property iff for every two distinct
points of D there exists a subset in the family that includes one but not both of the points.
More formally, O C P D has T0 separation iff for every z,y € D,z = yiff {p€ O |z €p} =

{peOlyep}

3 Continuous, Stable and Sequential Functions

In this section we define continuous, stable and sequential functions between Scott domains, induced
by differing notions of open sets: Scott opens, stable opens and sequential opens, respectively. Scott
opens and continuous functions are well known [Sco72, GHK'80], and may be considered classical
by now. Stable functions were introduced by Berry [Ber78], and our presentation here generalizes



Zhang’s presentation of stable functions between dI-domains [Zha89].

We take D and F to be generic Scott domains, unless stated otherwise. We present a number
of examples in the running text. In addition, an appendix presents all Scott opens, stable opens
and sequential opens of an example domain.

3.1 Scott Opens and Continuous Functions

Definition 3.1 A set p C D is Scott open iff it is up-closed and has the Scott property: for every
directed set X, if \/ X € p then z € p for some & € X. In an algebraic poset, p C D is Scott
open iff p = up(p N Dgy), that is, the Scott opens are up-closed sets determined by their isolated
elements. Write Sc D for the set of Scott opens of D. °

We state here some easy results about Scott opens: They define a topology, known as the Scott
topology. In other words, Scott opens are closed under arbitrary union and finite intersection. For
every & € Dgy, up(2) is Scott open. For every Scott open p, p = J{up(z) | € pN Dgyn}.

Proposition 3.2 The Scott opens of a domain D have TO separation.

Proof: For any two distinct points, there must, by algebraicity, exist an isolated approximation to
one which does not approximate the other. But if z is such an isolated approximation then
up(x) is a Scott open that contains one of the points, but not the other. .

Definition 3.3 A function f: D — F is Scott continuous, or just continuous, iff the inverse image
of every Scott open is Scott open, i.e., f71(¢) € Sc D for every ¢ € Sc E. It is well known that a
function f: D — F is continuous iff it is monotone and preserves directed lubs. .

Proposition 3.4 A function f : D — E is continuous iff f~1(up(y)) is Scott open for every
y € Fan. For every Scott open q of I,

FHe) = UL up(y) | y € 4.0 B}

Proof: If f is continuous then f~!(up(y)) is Scott open, since up(y) is Scott open. For the converse,
let ¢ be a Scott open of E. Then ¢ = U{up(y) | ¥y € ¢ N Fgn}, and we have

f(q) {e | fz) € q}

{o | f(z) e U{up(y) | v € ¢N Egin}}
{x |3y €qnEan. f(2) €up(y)}
U{{z | f(z) cup(y)} |y € ¢N Epn}
UL/ (up(y)) |y € ¢N Egn} .

But if f~(up(y))is Scott open for every y € Eg, then f~!(q) is Scott open, since Scott opens
are closed under arbitrary union, so that f is continuous. .

3.2 Stable Opens and Stable Functions

Stable functions were defined by Berry [Ber78]. Zhang [Zha89] gave a generalized topological
characterization of the stable functions on dI-domains, using what he called stable neighborhoods.
We use the term stable opens rather than stable neighborhoods, and present here a generalization
to Scott domains. Lamarche [Lam91] also gives a generalized topological characterization of stable
functions on dI-domains (and on L-domains).



Definition 3.5 A set p C D is stable iff it is closed under consistent meets, i.e., if 21,29 € p and
21 ¥2 then 1 Aay € p. If pis Scott open and stable then it is said to be stable open. Write St D
for the set of stable opens of D. °

It is easy to see that closure under (binary) consistent meets is equivalent to closure under
meets of finite consistent sets.

Proposition 3.6 For every @ € Dgy, up(z) is stable open. The stable opens of D have T0 sepa-
ration.

Proof: up(z) is Scott open, and closed under all meets. T0 separation follows by proof of propo-
sition 3.2 n

The requirement of closure under consistent meets may be weakened:

Proposition 3.7 For every p C D, p is stable open iff it is Scott open and it is closed under meets
of consistent isolated points.

Proof: If pis stable open then it is Scott open and it is closed under all consistent meets.

For the converse, take p to be Scott open, and let y1,%2 € p be a consistent pair of elements.
Since p is Scott open, there exists a pair of isolated elements x1,25 € p approximating y;
and ys, respectively. Since y; and yo are consistent, so are x1 and z3; and since p is closed
under meets of consistent isolated elements, 21 A 29 € p. It follows that y; A y2 € p, since
21 A xg < 41 Ay, and p is up-closed. .

Example 3.8 For an example of a non-stable Scott open, take the Scott open set
up{(T,L),(L, T)} C Two x Two,
which does not contain (L, L) =(T,L)A(L,T), a consistent meet. o

Definition 3.9 A function f: D — F is stable continuous, or just stable, iff the inverse image of
every stable open is stable open, i.e., f~!(q) € St D for every q € St E. °

There are several alternative formulations of stable functions:
Proposition 3.10 For every function f: D — L, the following are equivalent:

(1) f is stable.

(2) f is continuous and preserves consistent meets, i.e., if x1 { x2 then

f($1 A $2) = f($1) A f($2)

(3) f is continuous and for every stable set q of E, f~1(q) is a stable set of D.

(Recall: a stable set is not necessarily stable open or Scott open.)

(4) f is continuous and, for every d € D and e < f(d), the set {d' € D |d' <d& e < f(d')}

1s down-directed.

Proof: First note that if f is stable then it is continuous, by proposition 3.4. We therefore assume
that f is a continuous function, and show the remaining equivalences.
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(1)=(2) Assume that fis stable, and let 27 and 23 be a consistent pair of elements. By monotonic-
ity, f(z1Az2) < f(a1)Af(x2). Let ¢ be a stable open that contains f(z1)A f(z3). By stability,
f71(q) is stable open, and since x1,75 € f~!(q), it must be the case that x1 A 25 € f1(q),
i.€., f(z1 A x2) € q. Since there exists no stable open that separates the two points, it follows

that f(z1 Axa) = f(z1) A f(22).

(2)=(3) Assume that f preserves consistent meets, and let ¢ be a stable set of E and 21,25 € f71(q)
be a consistent pair of elements. Then f(z1), f(z2) € ¢ is a consistent pair, so that f(z1) A
f(z2) € q by stability of ¢. Since f preserves consistent meets, f(z1 A 22) = f(z1) A f(22).
Hence 1 A z2 € f71(q), and f~1(q) is a stable set.

(3)=(1) If f is continuous and f~!(q) is stable whenever ¢ is stable, then, for every stable open
q of E, which by definition is Scott open and stable, f~!(q) is both Scott open and stable,
hence stable open, and f is stable.

(3)=-(4) Assume that the inverse image map of f preserves Scott opens and stable sets, and let
e< f(dyand p={d <d|e< f(d)} = f~*(up(e)) N down(d). p is non-empty, since it has d
as a (greatest) member. Since up(e) is a stable set, so is f~'(up(e)); therefore, if 1,29 € p
then 1 A 24 € p, and p is down-directed.

(4)=(2) Assume that {d’ < d|e < f(d")} is down-directed for every e < f(d), and let 2,29 €
/71(q) have an upper bound x. Take d = z and e = f(x1)A f(22) in the above characterization
of f. There must therefore exist some lower bound 2’ of 1 and x5 such that f(a1)A f(a2) <

f(@') < f(@1 A z), and we have f(21) A f(22) = fla1 A wa). .

These alternative definitions of stable functions show that it is possible to decouple (Scott)
continuity of a function and (a “pure” notion of) stability.

Alternative definition (4) specializes in dI-domains to the usual “minimum point” definition of
stable functions: f is stable iff it is continuous and for every e < f(d) the set {d' < d|e < f(d)}
has a least point. Note that in a dl-domain every down-directed set of isolated elements must
have a least element. This is not true in more general settings, and, in fact, the minimum point
definition and alternative definition (2), also referred to as defining conditionally multiplicative
functions [Ber78], may diverge outside the scope of dI-domains. We resolve this mismatch by
adopting the conditionally multiplicative variant as the correct notion of stability, and generalizing
the minimum point definition so that the mismatch is removed. This approach is needed so that
certain PCF-definable functions fit the definition of stability, even though they do not always
possess “minimum points”. We illustrate this situation in example 5.24, later in the development.

3.3 Relativization, Lobes, Covers and Indices

In order to obtain a notion of isolatedness or finite information relative to a given point in a
domain, we now introduce an operation of “relativizing” a domain to an arbitrary element: The
relativization of a domain D to an element @ € D is the domain upp(2), consisting of the up-closure
of  in D, ordered by the restriction to up(z) of D’s order. We usually drop the subscript, and
write up(z).

Proposition 3.11 For a Scott domain D and x € D, up(x) is a Scott domain, and

up(2)in = {2V y |y € Dan & 2 fr y].
If D is a dI-domain then up(z) is a dI-domain.
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Proof: Details omitted. "

Proposition 3.12 For a domain D and x € D, if p is Scott open (respectively, stable open) then
r = pnNup(x) is a Scott open (respectively, stable open) of up(x).

Proof: Let p be a Scott open, and » = pNup(z). r is certainly up-closed. To see that r has the
Scott property, note that if 2’ € r then there exists an isolated z € p with z < 2/, and hence
a1 z,sothat 2V z € r. But 2 Vz <2/, and 2 V z is isolated in up(2), by 3.11.

If p is stable open then r is Scott open, by the above, and, in addition, it is closed under
consistent meets, since both p and up(z) are. .

Proposition 3.13 If r is a Scott open of up(x) then there exists a Scott open p such that r =
pNup(z).

Proof: If r is a Scott open of up(z) then let p = up{z € Dgn | 2t # & 2V & € r}. pis certainly
Scott open. The inclusion pNup(z) C r is evident from the definition. For the reverse inclu-
sion, choose y' € r. There must exist y € r Nup(a)ay such that y < y'. By proposition 3.11,
y = x V z for some z € Dg,. But now, by definition, z € p, so that y’ € p. .

We look now at the structure of stable opens. Every stable open may be decomposed into a
disjoint union of lobes, as follows.

Definition 3.14 Define a lobe to be a Scott open that is down-directed. Thus, every lobe is stable
open.

For every stable open p, there is an equivalence relation on p that identifies two points of p iff
they have a lower bound in p. We call the equivalence classes of this relation the lobes of p, and
denote by lobes(p) the set of lobes of p.

It is easy to see that every such equivalence class of a stable open p is a down-directed Scott
open, so that the use of the term “lobe” is justified. .

As indicated above, in a dI-domain every down-directed set of isolated elements has a least
element, so that every lobe has a least element. Stable opens of a dl-domain are therefore up-
closures of pairwise inconsistent sets of isolated elements, coinciding with the notion of stable
neighborhoods of dI-domains defined by Zhang. This is not necessarily the case in more general
domains. Example 5.24 exhibits a lobe that has no least point.

Definition 3.15 A cover of € D is a stable open r of up(z) such that # < y for every y € r and
A(z,r) =0, where

Alz,r)={z ]z <z& 3 €lobes(r) .Yy er' .z<y}.

Write [(2) for the set of covers of x.

An equivalent definition of a cover is obtained by noting that a stable open r of up(z) is a cover
of x iff for every lobe 7’ of r, either v’ has a least element y and y covers z, or r’ has no least
element and x = A 7',

For z € D and aset s C D, let I(x,s) be the set of indices of s at z, defined to be covers r of «
such that s Nup(z) C r, that is,

l(z,s) ={rel(z)|snup(z)r}.



Note that we use relativization here: A cover r is taken to be stable open relative to z, since it is
defined by elements that are isolated with respect to to z, but not necessarily isolated in D.
We have trivially

o A(z,0) =0, for every x.

o A(z,r)=U{A(z,r") | 1’ € lobes(r)}, for every z and stable open r of up(z).
o 0 el(z,0), for every z.

o I(z,s) =I(z,s Nup(z)), for every z and s.

An arbitrary set s may be seen as presenting a choice between several alternative states of
information, its elements. If s is stable, it may be seen as presenting a choice between its lobes.
The existence of an index r € I(z,s) indicates that the choice implicit in s may be decomposed,
with the index r serving as a first step from z towards making the decision implicit in s. If the
current state of information is represented as the point z, a cover of x represents an atomic increase
in information content. The requirement that A(z,r) be empty for a r to be a cover of  conveys
the intuition that there are no elements “between” x and r, hence the atomicity of the increase
in the information content. This generalizes the covering relation between elements of a domain —
note that @ —< y iff up(y) is a cover of z.

A cover r of z provides a way of locally decomposing the domain at z into a flat domain, with
x as the least element and the lobes of » as the proper elements. Covers may be used to reason
about the progress of computation, and they can be seen as generalizations of the notion of cell
in a concrete data structure, or as an abstract notion of “argument position” for a function on a
domain.

In a dI-domain every lobe has a least element, so that r is a cover of z iff r = up(u) where u is
a set with pairwise inconsistent elements, and each element of u covers =z.

To see better the relevance of covers to decomposition of domains, we look at covers in a product
of domains.

Proposition 3.16 A cover of (z1,22) € D1 x Dy is either of the form ry X up(zy) for some cover
r1 of x1, or up(x1) X o for some cover ry of xo. Conversely, every cover r1 of x1 defines a cover
r1 X up(z3) of (#1,23), and symmetrically for every cover vy of 3.

Proof: Details omitted. "

Example 3.17 In each of the two Hasse diagrams shown we present a domain and a stable open
of the domain, consisting of the shaded points. These stable opens do not have an index at bottom,
since they are not contained in any cover of bottom.

N XX
NN
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Take Bool to be the flat domain of booleans, with L < tt,ff. Another example of a stable
open with no index at bottom is the stable open set

up{(tt,ff, L), (L,tt,£f),(£f, L, tt)} C Bool x Bool X Bool.
Note that (L, L, 1) has three covers in Bool x Bool X Bool,

up{(tt, L, L), (ff,L,L1)},
up{(L,tt, L), (L, £, L)},
up{(L,L,tt),(L,L ff)},

corresponding to the three components of the product. .

3.4 Sequential Opens

Definition 3.18 A set p C D is sequential at @ € D iff either & € p, or @ ¢ p and for every finite
s Cp, l(z,s) # 0. If pis sequential at every @ € Dg, then it is said to be sequential. A sequential
open is a stable open that is sequential'. Write Sq D for the set of sequential opens of D. .

Definition 3.19 A set s is critical iff it is finite, non-empty, and has no index at its meet, i.e.,

l(As,s) = 0. .

We can give an alternative, direct, characterization of sequential opens in terms of closure under
critical meets. The sets described in example 3.17 are critical. Also note that if a finite set s has a
least element, i.e., As € s, and, in particular, if s is a singleton, then |(As,s) = 0 and s is critical.

Proposition 3.20 If x < y then |(z,up(y)) # 0.

Proof: Let ¢ be a maximal chain in A(z,up(y)) N up(2)fn (maximal with respect to inclusion),
and take r = up(c U {y}). It follows that A(z,r) = @, or else the maximality of ¢ would be
contradicted, using algebraicity of up(z). Moreover, r is easily seen to be a stable open of
up(z), so that r € I(z,up(y)). .

Corollary 3.21 Ifl(z,s) =0 then = A(sNup(z)).

Proof: sNup(z) must be non-empty, orelse ) € I(z,s). Clearly 2 < A(sNup(z)). If 2 < A(sNup(z))
then there exists an index for up(A(s N up(z))) at x, which is also an index for s at z,
contradicting the assumption that I(z,s) = 0. Hence 2 = A(sNup(2)). .

Proposition 3.22 A set p is sequential at every isolated point iff it is closed under isolated critical
meets, that is, if s C p is a critical set with As isolated then As € p.
A set p is sequential open iff it is stable open and closed under isolated critical meets.

We remark that in restricted classes of domains, such as concrete domains, dI-domains, and FM-domains (to
be introduced later), we will be able to give an equivalent and slightly weaker definition of sequential opens — a
sequential open is a Scott open that is sequential — and we will be able to prove that every sequential open is in fact
stable open.



Proof: For p sequential at every isolated point and s C p a critical set with isolated meet, if As ¢ p
then p would fail to be sequential at As, since I(As,s) = (. Hence As € p, and p is closed
under isolated critical meets.

For p closed under isolated critical meets and z isolated, if there exists a finite set s C p such
that I(z,s) = 0 then 2 = A(sNup(z)) and I(z,s Nup(z)) = 0; hence s Nup(z) is a critical set
with isolated meet, and z € p, so that p is sequential at z. If no such set s exists then p is
sequential at  whether or not x € p. .

Proposition 3.23 For every x € Dgy, up(z) is sequential open. The sequential opens of D have
T0 separation.

Proof: up(z) is stable open, and closed under all meets. T0 separation follows by proof of propo-
sition 3.2 n

The stable open sets presented in example 3.17 are not sequential, since they do not have an
index at bottom, and, equivalently, they are not closed under isolated critical meets.

3.5 Sequential Functions

Definition 3.24 A function f: D — FE is sequential continuous, or just sequential, iff the inverse
image of every sequential open is sequential open, i.e., f71(¢) € Sq D for every q € Sq E. °

Sequential functions are continuous:

Proposition 3.25 A sequential function f: D — F is continuous.
Proof: Immediate corollary of proposition 3.4. .

A reasonable requirement of any proposed definition of sequential functions is that the sequential
functions be stable. It is known, for instance, that the functions in the fully abstract model of PCF
are stable [Ber78, theorem 4.5.4]. Our definition passes this test.

Proposition 3.26 A sequential function f: D — FE is stable.

Proof: Continuity has been established above. We show that f preserves consistent meets. Let
x1 and z9 be a consistent pair of elements of D, and let ¢ be a sequential open that contains
f(x1) A f(z2). By sequentiality of f, f~1(q) is sequential open, hence stable open, and since
f(z1), f(a2) € q, 21,22 € f71(q), so that ay A 29 € f71(q), and f(z1 A 23) € ¢. But if the
collections of sequential opens containing f(x1 A 22) and f(21) A f(z3) coincide, then, by T0
separation, these two elements must be equal. It follows that f preserves consistent meets,
and is thus a stable function. .

Example 3.27 Let sor : Bool? — Bool be the doubly-strict-or function, defined as the least
continuous function such that

sor(tt,tt) = tt

sor(tt,ff) = tt
sor(ff,tt) = tt
sor(ff,ff) = ff.
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This function is sequential (and stable). The inverse image of the sequential open set {tt} is the
set p = {(tt,tt),(tt,£f),(££,tt)}. It is easy to check that p is a sequential open. For instance, at
(L, L) there are two covers that contain p: up {(tt, L), (ff, L)} and up{(L,tt),(L,££)}. These
two indices at (L, L) correspond to the fact that this function is strict in both arguments.

The left-strict-or function lor is also sequential, and has a single index up {(tt, L), (ff, L)} for
lor= ! ({tt}) at (L, L).

Let por : Bool? — Bool be the parallel-or function, defined to be the least continuous function
such that

por(tt, L) =tt
por( L,tt) =tt
por(ff,ff) = ff.

Parallel-or is neither stable nor sequential, since the inverse image of {tt} is neither stable
open, nor sequential open. The fact that there is no index for por=!({tt}) at (L, L) indicates that
por is not strict in either of its arguments.

Let gf : Bool® — Bool be (a variation on) Gustave’s function (due to Berry), i.e., the least
continuous function such that

gf(tt,ff, 1) = tt

gf( L tt,ff) = tt
gf(ff, L ,tt) = tt
gf(££,££,£f) = £f

This function is stable but not sequential. Even though the set
gf ' ({tt}) = up {(vt,£f, 1), (£, L, tt), (L, tt, ££)}

is stable open, it is not sequential open, since it has no index at (L, L, L), corresponding to the
fact that gf is not strict in any of its arguments. o

3.6 Products

As we have pointed out, the generalized topological approach taken in defining the sequential
functions ensures that for any class C of Scott domains, we obtain a category of C-domains and
sequential functions. We show now that, if the class C is closed under poset product (i.e., cartesian
product with componentwise ordering), then the category obtained is cartesian. In fact, all we need
to show is that the projection functions are sequential, so that a categorical product may be given
by the poset product, together with the projections. If the projection functions are sequential then
they are certainly stable, so that a category obtained from such a class C of domains and stable
functions will also be cartesian. Most of the classes of domains under consideration here are closed
under poset product, including Scott domains, dI-domains and concrete domains.

Proposition 3.28 For Scott domains Dy and D,

SC(D1 X DQ) = {pl X P2 |p1 ESCDl & P2 ESCDQ}
St (D1 X DQ) D) {pl X P2 |p1 €St D1 & P2 €St DQ}
Sq(D1 x D2) 2 {p1 X p2 | p1 €SqD1 & py €5qD5}

11



Proof: Covers in a product of domains are characterized in proposition 3.16.

p1 X pg is easily seen to be a Scott open of Dy X Dj if both p; and py are. If both are
closed under consistent meets then so is p; X pa. If (21,22) ¢ p1 X pg then z; ¢ p;, for i =1
and/or i = 2. Let s be a finite subset of p; X pg, and assume without loss of generality that
s Cup(x1,x2), and that 21 ¢ p;. Then 71 X up(z3) € [((z1,22),s) for every rq € I(z1,71(s)).
Therefore p; X po is sequential open if both p; and p, are.

If p is a Scott open of Dy X Dy then m(p) = {; | (21,22) € p} is easily seen to be Scott
open, for ¢+ = 1,2. This cannot be carried over to stable opens and sequential opens, since
the projection loses too much information. .

For the Scott topology we simply obtain the product topology, but this is not the case in the
stable or sequential cases. To see that not every stable or sequential open of a product may be
decomposed into a product of stable or sequential opens of the components, consider

p=up{((tt,L),tt),((L,tt),ff)}.

While p is stable and sequential, m1(p) = up {(tt, L),(L,tt)} is neither stable nor sequential.
Proposition 3.29 The projection functions w; : Dy x Dy — D;, ¢ = 1,2, are sequential.

Proof: Let ¢ be a sequential open of D;. Then 717 1(¢q) = ¢ x Dy = ¢ x up(L). But ¢ x up(L) is
sequential open, by proposition 3.28, so that 7 is sequential. .

3.7 Relationship to Kahn-Plotkin Sequential Functions

Our definition generalizes the Kahn-Plotkin definition of sequential functions on distributive con-
crete domains. We present here a sketch of the proof. For full definitions, notation and an
exposition of concrete domains, concrete data structures and Kahn-Plotkin sequential functions
see [KP78, Cur86, BG90].

We blur the distinction between concrete domains and concrete data structures, so that we
may regard each element of a concrete domain as a state of a concrete data structure. We only
consider distributive concrete domains; this is convenient, since distributive concrete domains are
dI-domains. Among the implications, every lobe of a distributive concrete domain has a least
element.

Not surprisingly, there is a close correspondence between covers and accessible cells, and between
sequential opens and (finite sets of) cells. Moreover, indices in distributive concrete domains are
very well behaved, in that they may be conveniently combined, to obtain indices for arbitrary sets
or at arbitrary points.

Proposition 3.30 In a distributive concrete domain D,

(1) For every non-empty cover r of x there exists a unique cell ¢ accessible from x and filled
in all elements of r.

For every cell ¢ accessible from x, the set of states above x that fill ¢ is a cover of x. This is
also the case if ¢ is filled with only a subset of its permissible values.

(2) For every Scott open p and x ¢ p, every finite subset s of p has an index at x iff p itself
has an index at x.
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(3) For every sequential open p the set C of cells that are filled in all elements of p is finite
and, if p# 0 and p # up(L), C' is non-empty.

For every finite set of cells C, the set of states that fill all cells in C is sequential open. This
1s also the case if we restrict the values filling each of the cells to a subset of the permissible
values.

(4) A Scott open p is sequential at every isolated point iff it is sequential at every point.

(5) A finite set s is critical iff there is no cell accessible from its meet that is filled in all
elements of the set.

Proof:

(1)

(4)
(5)

In a dI-domain, a cover of z is of the form up(u) for some set u of pairwise inconsistent
elements that cover z. But if y covers z in a distributive concrete domain then y increments
x by filling exactly one cell ¢, accessible from x, and if elements of u are pairwise inconsistent
then they must all fill the same cell c.

Without loss of generality, assume that p C up(z). If p is Scott open then p = up(u) for some
set u of isolated elements. For u’ C u let G(u') be the set of cells filled in each element of
u'. If every finite s C p has an index at & then G(u') is non-empty for every finite v’ C u,
and G(u') is finite, because isolated elements may only have finitely many cells filled. But
G(uy Uuh) = G(u)) N G(uh), so that the family T' = {G(v') | «’ Cqp v} is a directed family,
under reverse set inclusion, of finite non-empty sets. Hence the limit G(u) = (I is non-
empty, that is, there exists a cell ¢ filled in all elements of p. An index for p is obtained by
choosing a cell ¢’ that precedes ¢ and is accessible from z, and taking the set of all states

above z that have ¢ filled.

(' is finite since p is defined by its isolated elements, each of which has finitely many filled
cells. If p is non-empty and L ¢ p then p has an index at L (by sequentiality and (2)), which
implies that C' is non-empty.

Conversely, if C' is a finite set of cells then the set p of states that fill all cells in C' is Scott
open (since C'is finite), and if ¢ p then pNup(x), if non-empty, has an index at z, obtained
from some cell ¢’ accessible in x that precedes some ¢ € €' that is not filled in z.

Follows from finiteness of enablings.

Follows from (1). .

Proposition 3.31 For distributive concrete domains D and F, a function f: D — E is sequential

iff it

1s sequential in the Kahn-Plotkin sense.

Proof: The function f is KP-sequential iff it is continuous and for every state z of D, either no

cell is accessible from x, or, for every cell ¢’ accessible from f(z) there exists a cell ¢ accessible
from x, such that if y O 2 and ¢ is filled in f(y) then ¢ is filled in y. Such a cell ¢, if it exists,
is called an index of sequentiality of f at x for ¢’.

If f is a sequential function, z is a state from which at least one cell is accessible, and ¢’ is
accessible from f(x), then the inverse image by f of the sequential open ¢ of all states filling
' is sequential open, hence there exists some cover r of x such that f=1(¢) Nup(z) C r. If r
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is non-empty then it determines a cell ¢ accessible from z that is filled in all elements of r,
thus ¢ is an index of sequentiality. If r is empty, any accessible cell ¢ may be chosen.

If f is KP-sequential and ¢ is a sequential open of E, let z be any state not in f~!(q), i.e., such
that f(z)is not in ¢. Since ¢ is sequential open, there must be some cover r’ of f(z) such that
gNup(f(x)) C ', and if v’ is non-empty there must be some cell ¢’ accessible from f(x) that is
filled in all states of r'. By KP-sequentiality of f, if there is some cell accessible from z, then
there must exist an index of sequentiality ¢ accessible from z, and it is easy to verify that the
cover 1 of x containing all supersets of x that fill ¢ satisfies f~1(¢) Nup(z) C r. If v’ is empty
or if no cells are accessible from z (and thus x has no super-states) then f~!(¢) Nup(z) = 0,
and r may be chosen to be the empty set. .

4 Function Spaces

We turn now to the question of closure of a class of domains under function space constructions.
Of course, the function space must be equipped with an ordering. We present first the well known
pointwise ordering. Since application fails to be stable and sequential under the pointwise order,
we turn next to the stable ordering and restate some of the known results about stable functions
under the pointwise ordering. We also show that the stable ordering is induced by an appropriate
order on stable opens, following [Zha89]. We then show that dI-domains are closed under the
stably-ordered sequential function space, but application still fails to be sequential, so that we
obtain an applicative structure, but not a cartesian closed category.

4.1 The Pointwise Order

It is well known that the continuous function space D —°* E between two Scott domains D and F,
equipped with the pointwise ordering, is itself a Scott domain. Function application may be shown
to be a continuous function in this setting, so that the category of Scott domains and continuous
functions is cartesian closed.

Definition 4.1 The pointwise ordering is induced on the continuous functions by the inclusion
ordering on Scott opens. For continuous functions f,g : D — F, we define f <P ¢ iff f~1(q) C
g7 1(q) for every Scott open ¢ of E. It is well known that this induced order coincides with the
direct definition of the pointwise order, i.e., f <P ¢ iff f(x) < g(z) for every & € D. o

Proposition 4.2 For continuous functions f,g: D — E, f <P g iff f~ up(y)) C g~ (up(y)) for
every y € Fgn.

Proof: If f <P g then the desired result is an immediate specialization of the definition. Conversely,
assume that f~!(up(y)) C ¢~ (up(y)) for every y € Egy, and let ¢ be a Scott open of E. Use
proposition 3.4 to obtain:

FHa) = UL (up(w)) | y € 40 B}
{97 (up(y)) |y € N Egn}
97 a).

01n
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Another well known fact is that directed lubs and bounded lubs in the pointwise ordering on
continuous functions on Scott domains are taken pointwise; we write \/¥ F' for the pointwise lub of
a family F of functions, defined by

(V" P)a) =V {f@) | f € F}.
We prove this for the directed case:

Proposition 4.3 For every (pointwise) directed family F' of continuous functions from D to F,
the pointwise lub \/P F is continuous and is the lub of F in the continuous function space D —°' E,
and, for every Scott open q of F,

N B )= )| ferFy.

Proof: Since F'is (pointwise) directed, {f(x) | f € F'} is directed for every z. Let g be a Scott
open of . By the Scott property of Scott opens we obtain:

(VP E) " Hq) = {z]| (VP F)(z) € q}
= {z|V{f(e)| feF}teq}
= {a|3feF. f(x)eq}
= Ul{e | fle)eq} | feF}
= U{f "ol fery.

Since Scott opens are closed under arbitrary unions, (\/* F)~1(¢) is a Scott open of D, so
that \/® F'is continuous. It is easy to check that every upper bound of I’ dominates \/’ F'. =

We show now that sequential functions and stable functions are also closed under pointwise
lubs of directed families.

Proposition 4.4 The union |JP of a (set inclusion) directed family P of stable opens is stable
open.
The union |J P of a (set inclusion) directed family P of sequential opens is sequential open.

Proof: If P is a (set inclusion) directed family of stable opens then, for every consistent pair
x1,x9 € | P there exists p € P such that z1,2z9 € p, by directedness of P. Since p is stable
open, x1 A zg € p, so that 21 A zg € [J P, and we have closure of |J P under consistent meets.
Since Scott opens are closed under arbitrary unions, it follows that |J P is Scott open, and
we may conclude that |J P is stable open.

Let P be a (set inclusion) directed family of sequential opens, and let & ¢ [JP. For every
finite s C |J P there exists p € P such that s C p, by directedness of P and finiteness of s.
Since p is sequential at « and « ¢ p, s must have an index at z. Therefore |J P is sequential
at every z. |J P is stable open by the first part of the proposition, and we may conclude that
|J P is sequential open. .

Proposition 4.5 The pointwise lub \/* F' of a (pointwise) directed family F' of sequential functions
from D to F is a sequential function.

The pointwise lub \/° F' of a (pointwise) directed family I' of stable functions from D to F is a
stable function.
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Proof: Let I be a directed set of sequential functions, and let ¢ be a sequential open. By propo-
sition 4.3,

N B o= a) | ferFy.

But {f~1(q) | f € F}is a directed family of sequential opens, so that (\/* F')~1(q) is sequential
open, by proposition 4.4. Hence \/P F'is a sequential function, and it is clear that \/P F'is the
least sequential upper bound of F.

The same reasoning applies in the stable case. .

4.2 Stable Functions under the Stable Order

If we want to consider stable functions as our morphisms, and obtain a cartesian closed structure,
the pointwise ordering is not adequate, since function application is not stable when functions are
ordered pointwise. For instance, application does not preserve the meet of the pair

(Az.2),T),((Ax . T),L) € (Two — Two) X Two,

although the pair has ((Az . T), T) as an upper bound in the pointwise order.

Berry [Ber78] introduced the stable ordering on stable functions, and has shown that function
application is stable when functions are ordered stably, that dI-domains are closed under the
stably-ordered stable function space, and that the category of dI-domains and stable functions
is cartesian closed. Zhang [Zha89] has shown that the stable ordering on functions between dI-
domains is induced by a minimal-elements-inclusion ordering among stable neighborhoods; in our
formulation this ordering is given by a lobe inclusion ordering among stable opens. We present
here a generalization of Zhang’s result to Scott domains.

Definition 4.6 Define the lobe inclusion order on stable opens pi,py € StD by p; <° py iff
lobes(py) C lobes(pz). Define the stable order on stable functions f,¢g : D — FE by f <® ¢ iff for
every ¢ € St E, f71(q) <® g7 !(q). We write (D —5* E,<®) for the stably-ordered stable function

space. .

Our definition coincides with the conventional direct definitions of the stable ordering.
Proposition 4.7 For any stable functions f,qg : D — E, the following are equivalent:
(1) f<*g.
(2) [ <P g and f(x) = gla) A f(y) whenever o < y.
(3) f<Pgand f(x) Ag(y) = g(x) A f(y) whenever z 1 y.
(4) f <P g and, for every d € D and e < f(d),

{d <dle< fd)y={d <d]e<g(d)}.

Proof: First, note that if f <® g then f <P g. This follows from proposition 4.2, since for every

Y € Efin, 7 (up(y)) <> g7 (up(y)), so that f~'(up(y)) C g~ (up(y)). We therefore assume
without loss of generality that f <P g¢.
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(1)=(2) If f <* g and @ < y, let ¢ be a stable open that contains g(z)A f(y). Then g(2), f(y) € ¢,
and 2 € g7(q), y € f71(q). Let v’ be the lobe of f~1(¢) that contains y. Since f~'(q) <°
97 (q), 7' is also a lobe of g71(¢), and since = < y, it must be the case that € /. Therefore
f(z) € q, for every stable open ¢ that contains ¢g(z) A f(y), and by monotonicity every
stable open ¢ that contains f(z) also contains g(z) A f(y). By TO0 separation conclude that

@) =g(z) A f(y).

(2)=-(1) Assume (2), and let ¢ be a stable open of E. Since f <P g, f~!(q) < g7'(¢). By stability
of fand g, both f~!(q) and g71(g) are stable opens. Clearly, every lobe of f~1(¢) is contained
in some lobe of g=1(¢q).

Let r € lobes f~!(¢) and 7’ € lobes g=!(¢) such that r C ¢/, and let € 7, z € r’. By definition
of lobes, @ A z € ', so that g(z A z) € q. But since f(x) € ¢, we have that g(a A z) and
f(a) are consistent elements of ¢ (bounded by g¢(z)), so that g(a A z) A f(z) € q. By (2),
flaNz)=g(zAz)A f(z),so that 2 Az € r, and z € r. It follows that r = ¢/, and therefore

lobes(f~1(q)) C lobes(g=1(q)).

(2)=(3) Assume (2), and let z {} y. If 2z is an upper bound of 2 and y we have

9(y) A f(z)

[
5=
==
R

>
>/—\
\\
S
~
R
>
=
S
=
R
R

fly) ngle).
(3)=-(2) Assume (3), i.e., if @ f} y then f(z)Ag(y) = g(a) A f(y). But if # < y this specializes to
f(z) = g(x) A f(y), since f(z) < f(y) < g(y).

(2)=(4) Assume (2), so that, for every d' < d, f(d') = g(d')A f(d). Now, if e < f(d) then e < f(d’)
iff e < g(d').

(4)=(2) Assume (4), and let @ < y. Clearly, f(z) < g(z) A f(y). Let d = y and e = g(z) A f(y).
But by (4), since # < d and e < g(x), it must be the case that e < f(z). It follows that
f@) = g(z) A f(y)- .

Alternative (4) specializes in dl-domains to: f <® g iff f <P ¢ and, for every d € D and
e < f(d)v

min{d <d|e< f(d)} =min{d <d|e<g(d)},
which is the usual direct definition of the stable ordering using the “minimum point” approach.

Proposition 4.8 The stably ordered function space (D —5* E, <) between two dI-domains D and
FE is a dI-domain. Directed lubs and bounded lubs are taken pointwise.

The category dI-st of dI-domains and stable functions is cartesian closed. An exponentiation
of dI-domains D and E is given by the stably-ordered stable function space (D —5* E,<%), together
with function application.

Proof: Refer to [Ber78, theorem 4.4.2]. .
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4.3 Sequential Functions under the Stable Order

We now impose the stable ordering on sequential functions, and show that dI-domains are closed
under the stably-ordered sequential function space. This will follow as an easy corollary of the
down-closure, under the stable ordering, of sequential functions in the stable function space. This
result generalizes the down-closure of Kahn-Plotkin sequential functions in the stable function
space (see [BC82, proposition 3.4.4] and [Cur86, proposition 2.4.7]). We write (D —°4 F, <®) for
the stably-ordered sequential function space between domains D and F.

Proposition 4.9 The sequential opens of every domain are a down-closed subset of the stably-
ordered stable opens. That is, if p is stable open, p' is sequential open, and p <° p', then p is
sequential open.

Proof: If p <® p/ then p C p/. Let © € Dgy,. If 2 € p then p is sequential at z. If 2 ¢ p’ then p is
easily seen to be sequential at x, since p’ is. If & € p’\ p then pNup(z) = 0, since every lobe
of pis a lobe of p’, and it follows that p is sequential at z. Hence p is sequential open. .

Corollary 4.10 The sequential functions between domains D and E are down-closed in the stably-
ordered stable function space (D —* E <8). That is, if f,g : D — FE are stable functions with
[ <% g and g sequential then f is also sequential.

Proof: For every sequential open ¢ of E, f~1(q) <% g71(¢q). Since g is sequential, g7!(q) is a
sequential open, and by down-closure of the sequential opens in the stably-ordered stable
opens, f~1(q) is sequential open as well, so that f is a sequential function. .

Proposition 4.11 For all domains D and E, the isolated elements of the stably-ordered sequential
function space (D —31 E,<%) are the isolated elements of the stably-ordered stable function space
(D =5t E,<%) that are also sequential.

Proof: Let f be a sequential function. If f is isolated in (D —** F, <%) then it is clearly isolated
in (D —% F,<%), by definition of isolated elements. If f is not isolated in (D —5' F, <)
then it is not in the directed set F’ of its isolated stable approximations in (D —5* E, <), but
fis the lub of F', f = \/P F, by algebraicity of (D —%' E, <%) and proposition 4.5. Since f is
sequential all elements of F are sequential, so that f = \/® F'is the lub of Fin (D —%1 E <%),
again relying on proposition 4.5. But f ¢ F', so that f is not isolated in (D —%1 F, <), u

Proposition 4.12 dl-domains are closed under the stably-ordered sequential function space.

Proof: Let D and F be dI-domains.

(D =1 F <%) is directed-complete as a corollary of proposition 4.5. Of course, every family
of sequential functions that is directed under the stable ordering is also directed under the
pointwise ordering.

If Fis a family of sequential functions with a sequential function f as an upper bound in
the stable order, then \/P F' is known to be a stable function, and it is the lub of F in
(D =5t E, <), so that \/P F' <% f. Therefore, by down-closure, \/® F' must be a sequential
function, and (D —%¢ £, <°) is bounded-complete.

Distributivity of (D —%4 E, <%) is inherited directly from (D —5t £, <%), since the meets and
joins of sequential functions coincide in the two spaces. Similarly, w-algebraicity and property
(I) for (D —%1 E, <%) are inherited from (D —%' E, <%), by proposition 4.11. .
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4.4 Application is not Sequential

Consider now the category dlI-sq of dl-domains and sequential functions. We know that this
category is cartesian, and we know that dI-domains are closed under the stably-ordered sequential
function space, which is a natural candidate for an exponentiation object in the category. Is dI-sq
cartesian closed?

Since dI-sq is a sub-category of dI-st, and some simple additional requirements hold, it fol-
lows by a lemma of Berry and Curien concerning cartesian closure of continuous functions cate-
gories [BC82, lemma 3.1.2] that dI-sq must employ the stable order if it is to be cartesian closed.
More precisely, if dI-sq is a ccc then its exponentiation is given by the stably-ordered sequen-
tial function space, together with function application. Here is a proof of one of the technical
requirements of their lemma:

Proposition 4.13 For any sequential functions f,qg : D — FE such that f <® ¢, the function
h:Two x D — F, defined by h(L,z) = f(x) and h(T,z) = g(x), for all x € D, is sequential.

Proof: For g a sequential open of £,

({L} x f7H@) U ({T} x g7 (q))
= ({L.Trx ) VT x g7 (9)-

h=(q)

Note that f~'(q) C g='(q), since f~'(q) <* g7'(q).

h=Y(q) is Scott open, since it is the union of two Scott opens. To establish sequentiality,
choose an isolated (a,2) ¢ h™1(q), and a finite subset s C h™!(q). Let so = {2 | ((,2) € s};
clearly, so C g71(q). Without loss of generality we assume s C up(a,z), so that s, C up(z).

If # ¢ g7'(q), there exists r € I(z,s32), since g~1(q) is sequential at , so that up(a) x r €
(e, ), s).

If 2 € g7'(q) then a = L and = ¢ f~'(q) (since (a,2) ¢ h™'(q)). We show that the cover
up(T,z) of (L,z) contains s: if (L,y) € s then < y and y € f~1(g). But this would
contradict f~!(g) <® ¢7'(q), since = € (g7 (¢) Ndown(y))\ (f~'(g) N down(y)), that is, the
lobes of g71(¢) and f~!(q) that contain y are not equal. Therefore all elements of s must
have T as their first component, and are thus contained in the cover up(T,z). .

All that is left to verify is that function application is a sequential function. This is not the
case, however. Function application fails to be sequential under the stable ordering, so that, by
Berry and Curien’s above-mentioned lemma, dI-sq is not cartesian closed. As a counter example
to the sequentiality of application consider the following.

Example 4.14 Let gf;, gf;.gf; : Bool? — Bool be the least continuous functions defined so that
they each map (£f,£f,£f) to £f, and in addition

gf (tt,ff, 1) =tt
gfy( L, tt,ff) = tt
gfs(££, L .tt) = tt.

They are easily seen to be sequential. Let their pairwise lubs be gf, , = gf, VP gf,, gf, 3 =
gf, VP gfs, and gfy 5 = gfy VP gf;; these lubs are sequential as well. The lub gf = gf, VP gf, VP gf5
is of course stable but not sequential, as shown before.
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In fact, the set {gf,,gf,,gf5} is an example of a pairwise consistent set of sequential functions
that does not possess a sequential lub (under both the pointwise and stable orderings; the stable
ordering among these functions coincides with the pointwise ordering). This serves to illustrate
that concrete domains — which are coherent, i.e., such that every pairwise consistent set has a lub
— are not closed under the stably-ordered sequential function space [BC82]. The reason we insist
on (ff,ff,ff) being mapped to £f is so that the constant true function is removed as a potential
lub.

Now return to application. Let app : (Bool® — Bool) X Bool® — Bool be the application
function, and consider p = app~({tt}) at @ = (gf;, L, L, L). By the decomposition of covers for
products, every cover r of  must be in one of the following forms:

71 X up(L) X up(L) X up(L)

up(gfy) X 72 X up(L) X up(L)
up(gfy) X up(L) X ro X up(L)
= up(gf;) Xup(L) xup(L) X rg,

S 0N w3

where ry is some cover of gf,, or r9 is some cover of L in Bool. In the first case, the element
(gfy,tt, £, L) of pNup() is not in 7. In each of the other cases it is also possible to find elements
of pNup(z) that are not contained in r, since for each argument position there is a function above
gf; that is non-strict in that argument. Hence I(z,p) is empty, p is not sequential open, and app is
not a sequential function. °

Intuitively, application is not sequential in this case, since when we know only that the function
is at least gf; but have no information about its arguments there is no way to determine which
of the function being applied or its three arguments needs to be evaluated further. This lack
of sequentiality of application would seem to be inherent in the nature of application, under the
assumption that an attempt to increase the information known about the function to be applied
may diverge, even when we know that the function itself is not everywhere diverging. We say more
about the failure of application to be sequential in the concluding discussion.

5 Function Spaces: The Pointwise Order Revisited

Even though the category dI-sq is not cartesian closed, we have shown closure of dl-domains
under the stably-ordered sequential function space. We continue to investigate closure of classes
of domains under function spaces, and leave aside for the time being the question of application’s
stability or sequentiality. As we will argue in the conclusion, a sequential applicative structure, i.e.,
a class of domains closed under the sequential function space, may provide an adequate first-order
notion of sequentiality, as a basis for a notion of higher-order sequentiality that will address better
the sequentiality of application.

However, the stable ordering is not adequate; the pointwise ordering is needed for a fully abstract
model because of the nature of the operational preorder on terms. Approaches to overcoming this
problem have included bi-domains and bi-CDSs [Ber78, BCL85, Cur86], using both the stable and
pointwise orderings in the construction. But recall that the stable order was used in order to make
application a stable function and thereby achieve a cartesian closed category. If we decide to look
instead for an applicative structure, we no longer require that application be stable (although of
course application must still make sense as a set-theoretic operation). We therefore advocate the
direct use of the pointwise order, and we would like to find a class of domains closed under the
pointwise-ordered stable (or sequential) function space. We may employ a bi-ordered construction
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at some later point of our investigation, but it seems sensible at first to deal with the pointwise
order separately.

All function spaces in this section are ordered pointwise. We write D —5¢ E for the pointwise-
ordered stable function space between domains D and F, and D —®1 E for the corresponding
pointwise-ordered sequential function space.

5.1 FM-domains

It is now time to introduce the long-awaited FM-domains.

Definition 5.1 We say that a Scott domain has the finite meet property, (FM) for short, iff the
meet of each pair of isolated elements is isolated?. We refer to Scott domains with property (FM)
as FM-domains. o

Since isolated elements are down-closed in a dI-domain, it follows that dI-domains are FM-
domains. The converse is not generally true, and it is easy to see that FM-domains are a proper
intermediate notion, between Scott domains and dI-domains. As an important special case, flat
domains have property (FM). It is also straightforward to check that FM-domains are closed under
poset product.

We carry out the rest of the development using FM-domains, unless stated otherwise.

Property (FM) will be essential for finding a class of domains closed under the pointwise-ordered
stable function space, but first we show how it enables us to simplify some of the definitions.

We can give another simplification of the definition of stable opens, similar to proposition 3.7.

Proposition 5.2 For every p C D, p is stable open iff it is Scott open and it is closed under
1solated consistent meets, i.e., for every consistent pair x1,x9 € p with x1 A x4 isolated, x1 Azy € p.

Proof: If pis stable open then it is Scott open and it is closed under all consistent meets.

For the converse, take p to be Scott open, and let y1,%2 € p be a consistent pair of elements.
Since p is Scott open, there exists a pair of isolated elements x1,25 € p approximating y;
and ys, respectively. 21 and z, are necessarily consistent. Moreover, 1 A x5 is isolated, by
property (FM), so that 21 A 22 € p, and y1 A y2 € p, by up-closure. .

As promised, we show now that the definition of sequential opens may be simplified in FM-
domains.

Proposition 5.3 For every Scott open p,
(1) If s is critical, s C up(t), and As = At for some finite t, then t is critical.

(2) If s C p is a finite set with As isolated then there exists a finite t C p N Dgy such that
As = At and s C up(t).

(3) If s C p is a critical set with Ns isolated then there exists a critical t C p N Dgy with
s Cup(t) and Ns = At.

Proof: (3) follows from (1) and (2).

2We really should talk of an “isclated meet” property to be consistent with our usage here. The term “arithmetic”
is used in [GHK™80] for a poset having this property.
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(1) If r is an index of ¢ at At then it is an index of s at As = At, a contradiction.

(2) Since p is Scott open, there exists some t' C p N Dg, such that s C up(t'). Clearly
At < As. One may assume without loss of generality that t' is finite. Now let ¢t =
{zV(As)|z et & a1 As}, and it is easy to see that ¢ is as desired. .

Proposition 5.4 The following are equivalent in an FM-domain:
(1) p is sequential open.
(2) p is Scott open and is sequential at every isolated point.
(3) p is Scott open and is closed under isolated critical meets.
(4) p is Scott open and is closed under critical meets of isolated elements.

Proof: For every Scott open p, (2) and (3) are equivalent, by proposition 3.22.

To show that (1) and (3) are equivalent we only need to show that if p is Scott open and is
closed under isolated critical meets then it is closed under isolated consistent meets, using
proposition 5.2. But if 2; and 25 are a consistent pair of elements with an isolated meet then
{x1,29} is a critical set with an isolated meet, so that closure under isolated critical meets
implies closure under isolated consistent meets.

By property (FM), every critical set of isolated elements has an isolated meet, so that (3)
implies (4). To see that (4) implies (3), let s C p be a critical set with As isolated. Then, by
proposition 5.3, there exists a critical set ¢ C pN Dg, with As = Af. Now, if p is closed under
critical meets of isolated elements then At € p, so that As € p. Therefore p is closed under
isolated critical meets. .

We show now that property (FM) is preserved by the continuous function space, so that FM-
domains and continuous functions are a sub-ccc of the cce of Scott domains and continuous func-
tions. In order to prove this, we give explicit representations for the isolated elements of the
continuous function space.

It is well known that the meet in the continuous function space is taken pointwise:

Proposition 5.5 The pointwise meet fi AP fo of two continuous functions fi, fo : D — F, defined
for every x by

(fr AP o)) = filz) A fa(2)
is continuous, and it is the meet of fi and fy in D —* F.

Proof: Let X be a directed set. The pointwise meet f; AP f; is clearly monotone, so that

VAU A f)(@) |2 € X} < (A AP L)V X).

For the reverse, use continuity of the meet in £ and continuity of f; and fs:

(in? 2)VX) = ANVX)A L(VX)
(V{fi(z) [z e X} A (V{falz) |2 € X})
VAifilz) A fa(me) [ 21,20 € X}

< VA{A@)A faola) |2 € X}
= V(P fo)(z) |2 € X}
Hence, the pointwise meet is continuous. .
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Definition 5.6 The threshold function [x,y] : D — FE (also called a one-step function) is defined
for @ € Dgn and y € Eg, by

z <z
[x,y]<z>:{i .-

The use of the notation [z,y] will always imply that « and y are isolated in their respective
domains. o

A threshold function is easily seen to be continuous, stable and sequential. Every continuous
function f: D — FE is the lub of the threshold functions below it; note that [z,y] <P fiff y < f(z),
so that

F=\"{le.y] | € Dan & y € Egn & y < f(2)}
The lub of an upper-bounded set p of threshold functions is given by

V' p)2) =\ {y|3e <z . [e.y]l €p}.

This is well defined since the lub is taken over a bounded set (with upper bound h(z), for any
upper bound h of p).

Definition 5.7 Define a representation of f to be a set p of threshold functions such that f =
VP p, and a directed representation of f to be a representation of f such that for every z the set
{y| Jx < z.[x,y] € p}is directed. For every continuous function f, f has a directed representation,
by taking all threshold functions approximating f.

A step function f : D — F is the lub of a finite set of threshold functions. The step functions
are the isolated elements of the continuous function space. Note that a step function may dominate
infinitely many threshold functions, but is the lub of a finite subset thereof. In other words, step
functions are functions that have a finite representation.

For a set p of threshold functions, we use the abbreviations m(p) = {a | Jy . [z,y] € p} and

ma(p) =1y | 3z . [z,y] € p}. .

The characterization of the finite elements of the continuous function space by means of thresh-
old functions is well known, see for instance [Plo77]. We need the new notion of directed rep-
resentations, however, in order to show preservation of (FM) by the continuous function space.
Technically, the directedness of the representation will permit us to use the continuity of the meet
operation.

Proposition 5.8 If f is a step function then [ has a finite directed representation.

Proof: Let p be a finite representation of a step function f, and let

po = {1\ m(p),\/ ma(p)] | 0" C p & Arma(p)]}

po is well defined, since wa(p’) is upper-bounded by f(\V/ 7i(p')), p’ is finite, and isolated
elements are closed under finite lubs, so that we have defined valid threshold functions.

For every z,

(VP po)(2)

VAV mAp) [ p" Cp&Vmlp) <z}
V{y|3p' Cp.Va.[z,y]€p = a<z}
VA{y|[z.y]€p&a <z}

(VP p)(2),

(IIRVANI
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so that f = \/? p = \/®Ppo, and pg is a representation of f.

Finally, pg is finite, and it can be seen to be a directed representation: for every z,

{y|3z <z [e,y) € po} = {\/ ma(p) | 0" Cp &\ milp') < 2,

is a directed set, since, if, for i = 1,2, p! C pis such that \/ 71(p}) < z then \V w1 (pj Uph) < 2,
so that the elements \/ mo(p}),V m2(ph) of the set have an upper bound \ ma(p) U p}). .

Proposition 5.9 The continuous function space D —* E between two FM-domains D and F has
property (FM).

Proof: Let fi, f; be two isolated elements of D —°* E with finite directed representations py, pa,
respectively. Let

p={lz1Vay,y Ayl | [z1,11] € p1 &[22, 2] € p2 & 21 ) 22}

Every element of p is a threshold function, since isolated elements are closed under meet,
by property (FM), and under join. Moreover, since the elements of p are dominated by f;
and fp (for instance, [21 V 22,91 A y2] <P [z1,y1] <P f1), VP p is well defined, and \/P? p <P
J1 AP fo. In order to establish equality we rely on continuity of meet and directedness of the
representations, and obtain

(i AP f2)(2) = fi(2) A fa(2)

(VAy [ Far <z [e,m] € por ) AV Ay | Foe < 2. (22, 92] € p2})
VAyr Ayz | For,22 < 20 fen, ] € pr & w2, 92] € pa}

VA{y |3z <z [z,y] € p}

(VP p)(2).

Therefore fi AP fo = \/P p, and fi AP f, has a finite representation and is isolated. .

5.2 Stable Functions under the Pointwise Order

We have already shown, in proposition 4.5, that the stable function space between two Scott
domains is directed-complete. We complete here the proof that FM-domains are closed under the
stable function space. This improves on a result that the pointwise-ordered stable function space
between dI-domains is a Scott domain, a corollary of [Ber78, theorem 4.5.3].

We restrict ourselves to FM-domains, because the poset of stable opens, ordered by inclusion, is
not bounded-complete for general Scott domains. (Recall that a necessary condition for closure of a
family of domains under a function space is closure under the corresponding generalized topology.)

Example 5.10 For a counter-example to bounded-completeness of stable opens, consider the fol-
lowing Scott domain, where w is the limit of an infinite ascending chain, and all other elements are
isolated. The domain lacks (FM) since w is the meet of the isolated elements o and 3. The stable
opens up(«) and up(3) are upper-bounded under inclusion, but have no lub: up(w) is not stable
open, since w is not isolated.
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Property (FM) rules out the counter-example, and lets us define an operation to obtain the
least stable open (with respect to inclusion) that contains a given Scott open set. We define first
a general notation for iterated closure operators.

Definition 5.11 We use the following notation for iterated versions of a function (or functional)

F :S5 — 5 defined on some set 5
FO = XzefS.z

Frlo = dxeS. F(F'(x)) = ForFn
F = eSS . V{F(z)|n>0} = VP{F"|n>0}.
[ ]
Definition 5.12 For a Scott open set p, define the stable closure of p to be stc*(p), where
ste(p) = up{z1 Nz | 21,22 € p& a1 22}
[ ]

Proposition 5.13 For every Scott open p of an FM-domain D, stc(p) is Scott open, p C stc(p),
and stc*(p) is the least stable open that contains p.

Proof: Property (FM) is necessary to show that ste(p) and stc*(p) are determined by their isolated
elements. It is easy to check that stc*(p) is closed under consistent meets. Finally, it is easy
to see that stc™(p) is least among stable opens containing p. .

Corollary 5.14 The stable opens of an FM-domain, ordered by inclusion, are bounded-complete,
and a complete lattice, with stc*(|J P) as the lub of a family P of stable opens.

The lub operation stc*(|J P) was defined by Zhang [Zha89, proposition 8.1.1] for dI-domains.
We move now to the general case — the stable function space. The stable closure operation can
be generalized to stable functions.
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Definition 5.15 For a function f: D — F dominated by some stable function, define the stable
closure of f to be stc*(f), where

ste(f)=Ax €D .\ {f(z)A f(22) | 21,22 € Din & 21 fh 22 & 21 A 23 < 2}

Proposition 5.16 Let f: D — FE be a continuous function and let h be a stable function such
that f <P h. Then stc(f) is a well defined continuous function, f <P stc(f) <P h, and stc*(f) is
well defined and is the least stable function that dominates f.

Proof: For every z and z; 1| z2 such that z; A 25 < =z,

f(z) A f(22) h(z1) A h(z2)
h(z1 A z2)

h(z),

IA A

since f <P h and h is stable, so that stc(f)(z) is the lub of a bounded set in £, and thus
stc( f) is well defined. Moreover, ste(f)(z) < h(z).

Monotonicity of stc(f) is immediate. If X is a directed set we rely on property (FM) to
obtain continuity:

ste(IVX) = Vif(e)Af(z2) |zt € Dan& 21 22 & 21 A 22 SV X}
= V{f)ANf(z2) |21, 2 € Dan & 1 T 22 & e € X oy AN zp <z}
= VA{VA{/(z)

ANflz2) | 21,220 € Din & 21 22 & ;1 ANzg <z} |z € X}
|z e X}.

|
<
—~
n
—+
o
P
~
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&
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To see that f(z) < ste(f)(x) for isolated z take z; = z3 = a; for non-isolated x rely on
continuity.

Now turn to stc*(f). It is well defined and continuous, since it is the pointwise lub of an
increasing chain in the domain D —° F. To see that stc*(f) is stable, let 21 and z3 be a
pair of consistent elements. By monotonicity,

stc™(f)(z1 A zo) <ste™(f)(a1) Astc™(f)(z2).

For the reverse direction, we first use the continuity of meet and of f to show that

fle) A flze) = f(V{z1 € Dan | 2 < 21}) A f(V {22 € Dan | 22 < 22})
VA{f(z) A fz2) | 21 < a1 & 29 < a3 & 21,23 € Din}
ste(f)(z1 A z2).

Now recall that stc is inflationary, i.e., f <P stc(f), and again use continuity of meet to

IA

obtain:

stc*(f)(@1) Aste*(f)(w2) = (VP Aste™ (f)(@1) [ ma > 0}) A (VP {stc™2(f)(22) | n2 > 0})
V {ste™ (f)(z1) Aste™(f)(22) [ n1,m2 > 0}

VA{ste"(f)(x1) Aste™(f)(z2) | n > 0}
V st ()@ Axg) | n >0}
stc*(f)(z1 A z2).

Finally, stc*(f) is pointwise below h, and since h is chosen arbitrarily among the stable
functions dominating f, stc*(f) is the least stable function dominating f. .

Il
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Corollary 5.17 The stable function space between FM-domains is bounded-complete. The lub of
a bounded set F' in the stable function space is stc*(\/® I).

Remark: by proposition 4.5, if F' is directed then \/* F'is stable, and \/? F' = stc*(\/* I).
We can give an alternative formulation of stc, in terms of threshold functions:

Proposition 5.18 For a continuous function f : D — E with a directed representation p, stc( f)
has a representation

ste(p) = {[z1 A 2o,y Ayl | [21, ], [22, 2] € p & 21 22} .

Proof: For every z,

ste(f)(2) = VAf(x) A flog) | 21,22 € Dn & a1 g & oy Ay < 2}
= V{V{w [ T2y <21 fog, i) € ph) AV {2 | 325 < aa . [23.92] € ) |
21,29 € Dgp & vy T ag & 2y Ny < 2}
= V{VA{yi Aye [ F21 <, 2) <o [2h, i) [0, 92] € p} |
21,29 € Dgp & vy T ag & 2y Ny < 2}
= VA{m Aye | Fay,2) . 2y, (25, ] € p & af fra) & oy Aoy < 23
V Ay Aye | Fal, o [af Al Ay € ste(p) & o) A ah < 2}
Vv |32 < = - [r.3] € ste(p)}
(VP ste(p))(2).

It follows that ste(f) = /P ste(p). .

Proposition 5.19 [f f is isolated in D —°* F then stc(f) and stc*(f) are isolated as well, and
stc*(f) = stcN(f) for some N.

Proof: If f is isolated in D —¢* E then f has a finite directed representation p, and, by 5.18,
stc( f) has finite representation stc(p), so that ste( f) also is isolated, as is stc™( f) for every n.

Consider now the operation p — stc(p) defined by proposition 5.18. If we start out with a
finite p then repeated application of this operation must eventually result in a finite fixpoint,
since we always remain within the finite set

{IAm(p"), Ama(p)] | p" € p} -

Therefore there exists N such that for every n > N, stc”(f) = stc’V(f), and stc*(f) = stV (f),
an isolated function. .

Proposition 5.20 The isolated elements of D —5' E are the isolated elements of D —°* E that
are stable.

Proof: Let f: D — E be a stable function. If f is isolated in D —¢' F then it is certainly isolated
in D =%t E. If fis not isolated in D —°" E let F be the set of finite approximations to f
in D —°* E. Of course, f ¢ F. Now consider stc*(F) = {stc*(f’) | f € F}. This is clearly
a directed set of D —5 E, and f = \/Pstc*(F). However, f ¢ stc*(F), since stc* preserves
isolatedness of elements in /' and f is not isolated in D —* E: therefore f is not isolated in
D —>St FE. ]
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Proposition 5.21 The pointwise meet of two stable functions is stable.

Proof: If fi, fo : D — FE are stable functions then their pointwise meet is continuous by proposi-
tion 5.5. If 1 and x5 are two consistent elements, then

(fi AP fo)(mi Axa) = filzr Axa) A folzr Axg)
= filz) A fil@2) A fa(@1) A fa(a2)
= filz) A fal@) A fi(@2) A fa(a2)
= (i AP f2)(@) A(f1 AP f2)(@2),
and the pointwise meet is stable. .

Corollary 5.22 For any FM-domains D and E, D —* F has property (FM).

Proof: If f; and f, are two isolated elements of D —*' E then they are isolated elements of
D —°t E. so that fi AP fy is isolated in D —¢* E. But f; AP fy is stable, so that it is isolated
in D -5t E. .

Proposition 5.23 For any FM-domains D and E, D —3' E is an FM-domain.

Proof: directed-completeness follows from proposition 4.5. Bounded completeness and property
(FM) have been established. w-algebraicity follows easily from the explicit characterization
of isolated elements of D —5t E. .

Example 5.24 We have yet to motivate the generalization of the “minimum point” definition
of the stable functions when the pointwise order is used, see proposition 3.10 and the discussion
following it.

For every set s of naturals, let ¢, : Nat —5' Bool be the strict function that maps all integers
in s to tt, and all others to L. It is easy to see that ¢, is stable (and sequential), and ¢, =
VP A{[n,tt] | n € s}. It is easy to see that ¢, is isolated in the pointwise-ordered function space iff s
is finite. ¢, : Nat —5* Bool is the strict function that maps all naturals to tt, and is not isolated.

Now let ¥ : ((Nat —** Bool) —** Bool) — Bool be the functional that applies its argument to
bu; ¥ = A . ®(¢,). It is easy to verify that po = ¥~1({tt}) is given by

po = up {[¢ps,tt] | s a finite subset of Nat},

and since s; C sp implies ¢5, <P ¢, which implies [¢s,,tt] <P [¢ps,,tt], po is down-directed.
Moreover, pg has no least element, since ¢, is not isolated. Thus, pg is an example of a lobe that
has no least element.

Finally, ¥ is not stable according to the “minimum point” definition of stability, since pg has
no least element. But ¥ should be considered stable, however, since it is definable in PCF. Using
self-explanatory shorthands, let

M
N

AF : (Nat — Bool) — Bool . F'N
Y(Af:Nat — Bool . An:Nat.if 0 =n then tt else f(n—1)).

When the function spaces are ordered pointwise, N should be interpreted as ¢, and M should
be interpreted as V. °
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6 Sequential Functions under the Pointwise Order

We now consider the sequential functions under the pointwise order. Of course, a necessary con-
dition for closure under the pointwise-ordered sequential function space is that sequential opens
form a domain under inclusion. This is not the case for Scott domains in general, as illustrated
by example 5.10. It turns out, however, that the sequential opens of an FM-domain are bounded-
complete (and hence a complete lattice). We show this by defining a sequential closure operation
for Scott opens, analogous to the stable closure operation.

Definition 6.1 For a Scott open set p, define the sequential closure of p to be sqc*(p), where

sqc(p) = up{As|s Cp& As € Dap & s is a critical set}.

Proposition 6.2 For every Scott open p of an FM-domain D, sqc(p) is Scott open, p C sqc(p),
and sqc*(p) is the least sequential open that contains p.

Proof: sqc(p) is determined by its isolated elements, by construction. p C sqc(p), since every
singleton is a critical set. It is easy to check that sqc*(p) is closed under isolated critical
meets, so that it is sequential open (proposition 5.4). Finally, it is easy to see that sqc™(p)
is least among sequential opens containing p, since every point added to p by the closure
process must also be present in any other sequential open that contains p. .

Corollary 6.3 The sequential opens of an FM-domain, ordered by inclusion, are bounded-complete,
and a complete lattice, with sqc*(|J P) as the lub of a family P of sequential opens.

6.1 Upwards Motion of Covers: Property (U)

We would like to continue the analogy with the development in the stable case, and define a
sequential closure operation for continuous functions dominated by sequential functions, in order
to establish bounded-completeness of the sequential function space. Some preliminaries are needed,
however, in order to obtain suitable analogues for some of the building blocks of the proofs in the
stable case. We now impose on our domains a property (U) that talks about “upwards motion” of
covers, and enables us to obtain simple and uniform characterizations of sequential opens, critical
sets, and sequential functions.

Definition 6.4 We say that a domain has property (U) iff

(U) For every z < 2’ and every cover r of  such that 2’ ¢ r, r Nup(2’) is a cover of z’.

This property states, roughly, that covers may be “moved upwards”. The analogue for concrete
domains would be to say that if a cell ¢ is enabled (and accessible) from z and is not filled in 2’ > z
then ¢ is enabled (and accessible) from 2. This is, in fact, the case in all concrete domains.

By proposition 3.12, if r is a cover of # and 2’ ¢ r then ' = rNup(2’) is a stable open of up(z’),
and 2’ ¢ 1/, so that property (U) amounts to a guarantee that A(a’,7) is empty.

Property (U) may be stated in terms of single lobes:
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Proposition 6.5 A domain has property (U) iff for every x < 2’ and single lobe cover r of x such
that &' ¢ r, r Nup(a’) is a single lobe cover of a'.

Proof: Fasy consequence of the decomposition A(z,r) = J{A(z,79) | 7o € lobes(r)}. Of course,
r N up(z) is a single lobe whenever r is a single lobe. .

Upwards motion of covers provides upwards motion of indices.

Proposition 6.6 In a domain with (U), if s C up(s), r € Wa,s), @ < &’ and 2’ ¢ r then
rNup(z’) €l(z’,s).

Proof: By (U), r Nup(a) is a cover of 2’. Moreover,
s'Nup(z’) C (snup(z))Nup(z’) C rNup(az’),
so that » Nup(2’) is an index of s at a'. .

Corollary 6.7 In a domain with (U), if s C up(s), r € [(As,s), and As" ¢ r then r Nup(As’) €
[(As',s").

Proof: Note that if s’ C up(s) then As < As'. .

Upwards motion of covers and indices provides for “downwards motion” of criticality. Compare
this with proposition 5.3 for FM-domains.

Definition 6.8 We write s C s’ for the Egli-Milner order on the sets s and s, i.e., s C s iff
s C down(s’) and s" C up(s). .

Proposition 6.9 In a domain with (U), for every critical set s’ and finite set s, if s C s then s
s critical.

Proof: Let s be a finite set with s C s’. Surely As < As’.

If s is not critical then there exists an index r € I(As,s). If As’ ¢ r then, by (U), rnup(As’) €
I(As',s"), and s is not critical, a contradiction. If As’ € r then let ro be the lobe of r that
contains As’. But then rg contains s’, and necessarily all elements of s, since every element of
s is consistent with As’. Since rq is down-directed and s is finite, s must have a lower bound
in 79, and thus As € rg, a contradiction. .

6.2 Sequential Functions on U-domains

Let U-domains be FM-domains with property (U). We now show that our definitions may be
improved in this class of domains. We can give a more uniform definition of the sequential closure
operation. Moreover, sequential opens may be characterized as being closed under critical meets,
and critical sets may be characterized as sets that are not separable from their meets by sequential
opens.

Proposition 6.10 In a U-domain, for every Scott open p, sqc(p) = sqc’(p) = sqc”(p), where

sqc’/(p) = up{As|sCp& s isa critical set}
sqc’(p) = up{As|sCpN Day & s is a critical set} .
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Proof: By property (FM), the meet of a finite set of isolated elements is isolated. Therefore
sqc”’(p) C sqe(p) C sqc’(p). To show that sqc’(p) C sqc”(p), note that if ' is a critical set
contained in p then, by the Scott property, there exists a finite set s C p of isolated elements,
with s C down(s’) and s’ C up(s), i.e., s C ', which must be critical, by proposition 6.9, so
that As € sqc”(p), and As’ € sqc”(p) by up-closure. .

We may now extend proposition 5.4.
Proposition 6.11 In a U-domain, the following are equivalent,
(1) p is a sequential open.
(2) p is Scott open and is sequential at every x € D.

(3) p is Scott open and is closed under critical meets, i.e., if s C p is critical then As € p.
Proof: Fach of (2) and (3) trivially imply (1), by proposition 5.4.

(1)=-(2) If p is sequential open then it is sequential at all isolated = € D, i.e., for every z € Dgy
and finite s C p, I(z, s) is non-empty.

Now, consider an arbitrary 2’ ¢ p and a finite s’ C p. If 2’ < A(s' Nup(z’)) then I(z’, ') is
non-empty, by proposition 3.20. We may therefore, without loss of generality, consider solely
the case where s C up(2’), and 2’ = As'.

By the Scott property there exists a finite set s C p of isolated elements with s' C up(s).
We may take s minimal so that s C down(s’). Since As < As' and As" ¢ p, As ¢ p. By
(FM), As is isolated, and since p is sequential at all isolated points, s is not critical. But, by
proposition 6.9, this means that s’ cannot be critical, and thus p is sequential at 2’ = As'.

(2)=-(3) Assume that p is sequential at every z. Let s’ be a finite subset of p. If As’ ¢ p then
I(As',s") is non-empty, since p is sequential at As’. Therefore s’ is not critical, and p must
necessarily be closed under all meets of critical sets. .

Proposition 6.12 In a U-domain, a finite set s is critical iff every sequential open p that contains
s also contains its meet As.

Fquivalently, a finite set s is not critical iff there exists a sequential open p that contains s but
not As.

Proof: If s is a critical set then every sequential open that contains it contains its meet, by
proposition 6.11.

Conversely, assume that s is finite, but not critical. Since s is not critical, there exists an
index r of s at As. Let p be a Scott open of D such that s C pnup(As) C r. If all elements
of s are isolated then p = up(s) will do, and under more general circumstances the existence
of such a p is assured by proposition 3.133.

For any such Scott open p, we show, by induction on n, that r € I(As,sqc™(p)). This is
immediate for n = 0, since p Nup(As) C r. Now assume r € I(As,sqc”(p)), and thus

#We remark that this is the essential use of the (relative) Scott property of covers. Were it not for this use, we
could equally well have defined covers of = to be up-closed stable sets  of up(z) with ¢ ¢ r and A(z,r) empty. But
then we would not have been able to use proposition 3.13 to obtain a Scott open p as desired here.

31



sqc™(p)Nup(As) C r. For every 2’ € sqc™ 1 (p)Nup(As) there exists a critical set s’ C sqc”(p)
with As < As' < ', But if A" ¢ 7 then, by (U), » Nnup(As’) € I(As',s), contradicting
criticality of s'; therefore As’ € r, and sqc™ 1 (p) Nup(As) C r.

It follows that sqc*(p) is a sequential open that contains s, but not its meet. .

We are now able to give a characterization of sequential functions in terms of preservation of
critical sets. We always assume here that the target domain is a U-domain, and the source domain
is an FM-domain, and point out where we additionally assume property (U) for the source domain.

Proposition 6.13 For a continuous function f : D — F between an FM-domain D and a U-
domain FE, the following are equivalent:

(1) f is sequential.

(2) f preserves criticality and meets of critical sets with isolated meet.

That is, for every critical set s with isolated meet, f(s) is a critical set, and f(As) = Af(s).
(3) f preserves criticality and meets of critical sets of isolated elements.
If, in addition, D is a U-domain, then the following is also equivalent to the above:

(4) [ preserves criticality and meets of critical sets.

Proof: (4) clearly implies (2), and (2) implies (3), since, by property (FM), every finite set of
isolated elements has an isolated meet.

(3)=-(1) Assume that f preserves criticality and meets of critical sets of isolated elements. Let ¢
be a sequential open of £, and s C f~1(q) a critical set of isolated elements, so that f(s) C ¢
is critical and f(As) = Af(s). By proposition 5.4, f(As) = Af(s) € ¢, so that As € f71(q),
and ¢ is closed under critical meets of isolated elements. Therefore f~1(q) is sequential open,
by 5.4, and f is a sequential function.

(1)=(2) Assume that f is a sequential function, and let s be a critical set with isolated meet.
Let ¢ be a sequential open that contains f(s). Therefore f~!(g) is a sequential open and
s C f7Yq), and by proposition 5.4, As € f7l(q), so that f(As) € ¢. By monotonicity,
f(As) < Af(s). It follows that every sequential open ¢ of F that contains f(s) also contains
Af(s), and hence f(s) is critical, proposition 6.12, and, moreover, a sequential open contains
f(As) iff it contains A f(s), so that, by T0 separation, f(As) = Af(s).

(1)=(4) We prove this implication under the additional assumption that D is a U-domain.

Assume that f is a sequential function, and let s be a critical set. Let ¢ be a sequential
open that contains f(s). Therefore s C f~!(q), and by proposition 6.11, As € f~(q), so
that f(As) € ¢. By monotonicity, f(As) < Af(s). It follows that every sequential open
q that contains f(s) also contains Af(s), and hence f(s) is critical, proposition 6.12, and,
moreover, a sequential open contains f(As) iff it contains A f(s), so that, by T0 separation,

f(ns) = Nf(s). .

Every monotone function preserves consistency of a set, so that, when testing continuous func-
tions for stability we need only ask whether they preserve meets of consistent sets. This is not true
in general for critical sets, but a weak analogue does hold.
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Proposition 6.14 If a function f : D — FE between an FM-domain D and a U-domain F is
dominated by a sequential function, then f preserves criticality of critical sets with isolated meet.
That is, f(s) is critical whenever s is critical with isolated meet.

If, in addition, D is a U-domain, then [ preserves criticality of all critical sets.

Proof: Let & be a sequential function dominating f, and s C D be a critical set. If s has an isolated
meet, or if D is a U-domain, then, by proposition 6.13, h(s) is critical. Since f(s) C h(s),
f(s) must itself be critical, by proposition 6.9. .

Example 6.15 Note that a function f dominated by a sequential function & need not preserve the
critical meets themselves, unless f happens to be sequential. Consider for instance the function
gf AP[L,tt], dominated by the sequential function [L,tt], that preserves criticality of the critical set
so = {(tt,ff, L), (L,tt,ff),(£f, L, tt)}, but not its meet. The function gf itself is not dominated
by a sequential function. It preserves criticality, but not the meet, of sy, and preserves the meet,
but not the criticality, of so U {(£f,ff,ff)}. o

We are now able to define a sequential closure operation for continuous functions.

Definition 6.16 For a function f : D — F dominated by some sequential function, define the
sequential closure of f to be sqc*(f), where

sqc(f) =Xz e D. \/{/\f(s) | s critical & As € Dgy & As <z}

Proposition 6.17 If f : D — FE is a continuous function between an FM-domain D and a U-
domain F, dominated by some sequential function h : D — F, then sqc(f) is a well defined
continuous function, f <P sqc(f) <P h, and sqc*(f) is well defined and is the least sequential
function that dominates f.

Proof: For every x and critical s with isolated meet such that As < z,

Af(s)

IA I IA
=y
>
Ny

since f <P h and h is sequential, so that sqc(f)(2) is the lub of a bounded set in £. Thus
sqc( f) is well defined. Moreover, sqc(f)(z) < h(z).

Monotonicity of sqc(f) is immediate. To show continuity we rely on isolatedness of meets
used in the definition of sqc:

sqc( f)(VX) VA{ASf(s) | s critical & As € Dgn & As <V X'}
VA{Af(s) | s critical & As € Dg, & 2 € X . As <z}
VA{VA{AS(s) | s critical & As € Dy & As <z} |z € X}

VAsqe(f)() [z € X}

To see that f(z) < sqc(f)(z) for isolated z take s = {2} in the definition of sqc(f)(z); for
non-isolated x rely on continuity.
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Now turn to sqc*(f). It is well defined and continuous, since it is the pointwise lub of an
increasing chain in the domain D —¢* E.

In order to establish that sqc*( f) is sequential we show that it preserves criticality and meets
of critical sets with isolated meet. Criticality is automatically preserved, by proposition 6.14,
since sqc*(f) is dominated by the sequential function h. Now, if &' is a critical set with
isolated meet then

sqc™(f)(As')

VP {sac"())(AS) | 0 > 0}

VA{Asqc"(f)(s) | n > 0& s critical & As € Dgn & As < As'}
VA{nsqc"(f)(s") [ n = 0}

Asqc*(f)(s),

IIAVAR

using continuity of meet. Of course, by monotonicity, we have sqc*(f)(As") < Asqc*(f)(s'), so
that we have established preservation of isolated critical meets. Thus sqc*(f) is a sequential
function, by proposition 6.13.

Finally, sqc*(f) is pointwise below h, and since h is chosen arbitrarily among the sequential
functions dominating f, sqc*(f) is the least sequential function dominating f. .

As for sequential closure for Scott opens, the sequential closure for continuous functions may
be given alternative characterizations that differ in the quantification over critical sets.

Proposition 6.18 For a continuous function f : D — F between an FM-domain D and a U-
domain F, sqc(f) =sqc”(f). If, in addition, D is a U-domain, then sqc(f) = sqc’(f), where

sqc’(f) = Az e D . V{Af(s)|s critical & Ns <z}
sqc”’(f) = Az e D .\ A{Af(s)]| s critical & s C Dgy & As <z}

Proof: The argument that shows that sqc( f) is well defined also shows that sqc”( f) is well defined,
and likewise for sqc/(f) if D is a U-domain.

Let s be a critical set with As < z, and let z1,...,2, be the elements of s. By algebraicity,
x; =\ X;, where X is the directed set of isolated approximations to z;. By continuity of f
and of meet we have:

Nf(s) = Ewl)A Af(wn)

) /\( f(Xn))
= V{f(z)A-- /\f(zn)|Vz<n zi € X;}.

[
<=
=
>
>

For every choice of sg = {z1,...,2,} with z; € X for i <n, s C s and Asg < As < z.

e If s has an isolated meet then, for every such choice of sg, tg = {#V (As) ]| 2 € so} is
a finite set of isolated elements, with Asp < Atg = As < 2 and Af(so) < Af(to). By
proposition 5.3 (for the Scott open D), o is critical, and it follows that sqc’(f)(z) =

sqc(f) ().
e If D is a U-domain then every such choice of sq is critical, by 6.9, and thus sqc”( f)(z) =
sqc’(f)(2).
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We are now able to assert bounded-completeness of the sequential function space.

Corollary 6.19 The sequential function space from an FM-domain to a U-domain is bounded-
complete. The lub of a bounded set I in the sequential function space is sqc*(\/* ).

Directed-completeness has already been established, by proposition 4.5. Moreover, if Fis a
directed set in the sequential function space then \/* F' is sequential, and \/* F' = sqc*(\/* F').
We can give an alternative formulation of sqc, in terms of threshold functions:

Proposition 6.20 For a continuous function f : D — F between an FM-domain D and a U-
domain F with a directed representation p, sqc( f) has a representation

sqc(p) = {[Ami(p"), Am2(p)] | p Coin p & T1(p') is critical} .

Proof: Forevery z we obtain the following. We may use continuity of meet, since the representation
is directed.

sqc(f)(z) = VA{AS(s)|s critical & As € Dg, & As < 2}
= VA{A{f(z) ]|z € s} |s critical & As € Dg, & As < z}
— VAV 3 < g e p) 2 es)
s critical & As € Dgy & As < z}
= V{V{rm((s))|t:s—=p&Vees.m(z)) <a}|
s critical & As € Dgy & As < z}
VAAT2p") | p' Con p & m1(p") critical & Ami(p') < 2}
VAy |3z <z . [z,y] € sqc(p)}
(VP sac(p))(2).

Note that if s is critical with an isolated meet and ¢ : s — p is such that 71 (¢(2)) < z for every
r € s we may assume without loss of generality that Ami(:(s)) = As, since we can replace
tby = Xz € s . u(z)V (As), because Ama(e(s)) < Ama(d/(s)). Hence, by proposition 5.3,
m1(¢(s)) is critical. Conversely, if p’ Cgy, p with m1(p’) critical, then one may take s = w1(p’)
and «(z) to be [z,y] for some y such that [z,y] € p'.

We therefore conclude that sqe( f) = /P sqc(p). .

Proposition 6.21 For an FM-domain D and a U-domain E, if f is isolated in D —°* E then
sqc(f) and sqc*(f) are isolated as well, and sqc*(f) = sqc™N (f) for some N.

Proof: If f is isolated in D —°* E then f has a finite directed representation p, and, by 6.20,
sqc( f) has finite representation sqc(p), so that sqc(f) is isolated as well, as is sqc™(f) for
every n.

Consider now the operation p — sqc(p) defined by proposition 6.20. If we start out with a
finite p then repeated application of this operation must eventually result in a finite fixpoint,
since we always remain within the finite set

{Unm(p"), Ama(p)] | 0" Chin p} -

Therefore there exists N such that for every n > N, sqc”(f) = sqc™V(f), and sqc*(f) =
sqcV(f), an isolated function. .
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Proposition 6.22 For an FM-domain D and a U-domain F, the isolated elements of D —1 F
are the isolated elements of D —* F that are sequential.

Proof: Let f: D — E be a sequential function. If f is isolated in D —¢* E then it is certainly
isolated in D —*4 E. If f is not isolated in D —°* F let I be the set of finite approximations
to fin D —° E. Of course, f ¢ F. Now consider sqc*(F) = {sqc*(f") | f' € F'}. This is
clearly a directed set of D —%1 E and f = \/Psqc*(F). However, f ¢ sqc*(}'), since sqc*
preserves isolatedness of elements in F and f is not isolated in D —* E; therefore f is not
isolated in D —*1 B, .

Proposition 6.23 The pointwise meet of two sequential functions between an FM-domain D and
a U-domain F is sequential.

Proof: If fi,fy; : D — FE are sequential functions then their pointwise meet is continuous by
proposition 5.5. Since fi AP f5 is a continuous function dominated by sequential functions, it
must preserve criticality of critical sets with isolated meets, proposition 6.14. To show that it
also preserves isolated critical meets, let s be a critical set with isolated meet. Since f; and
fo are sequential they preserve isolated critical meets, and we have

(fi AP f2)(As) = fi(As) A fa(As)
= (M) A (Afa(s))
= A(fi AP f1)(s).
Therefore fi AP f; is sequential, proposition 6.13. .

Corollary 6.24 For any FM-domain D and U-domain F, D —*4 E has property (FM).

Proof: If f; and f; are two isolated elements of D —%1 E then they are isolated elements of
D —° E, so that fi AP f, is isolated in D —°* E. But f; AP f, is sequential, so that it is
isolated in D —*1 B, .

Proposition 6.25 For any FM-domain D and U-domain E, D —%1 E is an FM-domain.

Proof: directed-completeness follows from proposition 4.5. Bounded completeness and property
(FM) have been established. w-algebraicity follows easily from the explicit characterization
of isolated elements of D —%1 F. .

We are still working on finding a class of domains closed under the pointwise-ordered sequential
function space. We continue in the next section to refine property (U), in the hope of eventually
attaining that goal. Meanwhile, we conclude this section by pointing out that we have already
established such a closure for a restricted setting: FM-domains are closed under the pointwise-
ordered sequential function space into a flat domain. Flat domains are especially important, since
they serve to interpret PCF base types. For instance, every function in the continuous functions
model of PCF has a flat target domain when taken in its maximally uncurried form. In the
conclusion we point out a possible need to interpret PCF terms as maximally uncurried functions.

Corollary 6.26 If D is an FM-domain and F is a flat domain, then the pointwise-ordered sequen-
tial function space from D to F is an FM-domain.

Proof: It is easy to check that a flat domain is a U-domain. .
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6.3 From Property (U) to Property (UY)

We have established so far that the pointwise-ordered sequential function space between two U-
domains is an FM-domain. An eventual goal is to show (a subclass of) U-domains closed under
the pointwise-ordered sequential function space. We have yet to identify such a class. The class of
U-domains is not satisfactory since they are not closed under product, as we shall show. Instead
we strengthen property (U) to property (UT), and show that Ut-domains are closed under the
continuous function space, as well as products.

We have seen, in proposition 6.5, that property (U) may be expressed in terms of single lobe
covers: A domain has property (U) iff for every 2 < 2z’ and r a single lobe cover of z such that
@' ¢ r, rNup(z’) is a single lobe cover of a'.

Recall now that a lobe r of up(z) is a cover of z iff one of two cases holds: Either r has a least
element, i.e., A7 € 7 (and r = up(Ar)), and Ar covers @ — call this a type I single lobe cover;
or else r has no least element, i.e., A7 ¢ r, and @ = Ar — call this a type II single lobe cover.
Therefore property (U) is equivalent to saying that, for every « < 2’ and lobe r with 2" ¢ r, if r is
a type I or type II single lobe cover of & then » Nup(2’) is a type I or type II single lobe cover of 2’

We may rule out one of the combinations by noting that if » is a type I single lobe cover of
x then r Nup(z’) = up((Ar) V 2’), so that » Nup(a’) cannot be of type II. Thus, a domain has
property (U) iff for every z < 2’ and lobe r with 2’ ¢ r, if r is a type I single lobe cover of & then
rNup(a’) is a type I single lobe cover of 2/, and if r is a type II single lobe cover of & then rNup(z’)
is a type I or type II single lobe cover of 2’. Property (U) may now be seen as the conjunction of
two properties, (Uy) and (Usg). Informally, (Uy) states that if r is type I then so is 7 N up(a’), and
(Uy) states that if r is type II then » Nup(2’) is type I or type 1L

We may rule out by decree another of the combinations, by strengthening property (Usz) to
(UF), informally stating that if r is type II then so is 7 Nup(a’). The conjunction of (Uy) and (UZ)
gives us property (UT), a strengthening of property (U).

More formally,

Definition 6.27 We say that a domain has property (Uy) iff
(Uy) Forevery z, 2" and y,if 2 < 2', 2 < y, 2’y and y £ 2/, then 2’ < 2" VvV y.
[ ]

Property (Uy) is a generalization of property (C) [KP78, Cur86]: A domain is said to have
property (C) iffif 2 < y, 2 —< 2,y # z and y {| 2, then y —< y V z, for all isolated elements z, y
and z. Concrete domains, event domains, and distributive domains all have property (C). (In fact,
it is easy to check that distributivity implies property (U;) as well, but we will not expand on that
here.)

For every y and every set X, we use the notation
Xvy={aVvylee X &azvfy}.

It is easy to see that for every y and every up-closed set X, X Vy =X Nup(y).

Definition 6.28 Define a self-lobe to be a lobe X of up(AX). That is, a self-lobe is a down-
directed up-closed set determined by elements isolated with respect to its glb. Note that this
definition does not rule out A X € X, but this makes no difference, as we show in proposition 6.30.
The proof of that proposition also makes it clear why we need to use self-lobes, rather than simply
down-directed sets. o
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Definition 6.29 We say that a domain has property (Us) iff

(Uy) For every self-lobe X and y € down(X), either

(ANX)vy= A\XVy),

or there exists z such that
(/\X)\/y{ z & XVy=up(z).

We say that a domain has property (U7 ) iff

(UJ) For every down-directed up-closed set X and y € down(X),

(ANX)vy=/\XVy).

Property (U;’) asserts that the binary join distributes over certain glbs. We chose here down-
directed glbs, but could have also chosen glbs of self-lobes, i.e., kept a relativized Scott property.
We point this out in the relevant proofs. Property (UZ) trivially implies property (Us).

Define the class of UT-domains to be the class of FM-domains that have properties (Uy) and
(U3).

Proposition 6.30 A domain has property (U) iff it has both property (Uy) and property (Us).

Proof: We formalize the informal arguments given above.

e Assume property (U).

Let © < 2', and @ —< y such that y f} 2" and y £ 2’. Therefore r = up(y) is a cover of z, and
by (U), r Nup(2’) = up(2’ V y) is a cover of 2/, so that 2’ —< 2’ vV y. Therefore (Uy) holds.
Let r be a self-lobe with @ = Ar, and 2’ € down(r). We let 2’ = 2 Vv 2'. If 2’ € r then
rVz' =rva' =rnup(a’) =up(z), and thus (Ar)v2' =2’ = AN(rv2'). If 2’ ¢ r then = ¢ r,
so that 7 is a cover of x, and, by (U), r Nup(a’) is a cover of 2’. But this means that either
(Ar)Vv 2 =a"= ArVva')= A(rVZz), or that there exists y such that (Ar)V 2 =2’ <y
and rVa' =rVvzZ =up(y).

Note that property (Uz) must quantify over self-lobes, rather than just down-directed sets,
precisely so that property (U) can be used here, i.e., so that r is a cover of Ar when Ar ¢ 7.

o Assume (Uy) and (Usy), and let 2 < 2’ and r a single lobe cover of 2z with 2’ ¢ r. Let
= rNup(a’). If 2’ ¢ down(r) then 7' = @, and »' is certainly a cover of 2’. Assume now
that 2’ € down(r).

If there exists y such that @ —< y and r = up(y) then, by (Uy), 2’ —< 2’V y, and thus
' Nup(a’) = up(2’Vy)is a cover of ’. Note that, since 2’ ¢ r, y £ 2’, and since 2’ € down(r),
' I y.

If no such y exists then z = A r. By (Uy), it is either the case that

x:x\/x’:(/\r)\/x’:/\r\/x /\7‘
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or else there exists z such that
x :x\/x’:(/\r)\/x’% z
and " = 7V a’ = up(z). In both cases, r’ is a cover of z'. .

Corollary 6.31 A Ut-domain is a U-domain.

It is easy to see that flat domains are UT-domains, and hence U-domains as well. As we
have already indicated, property (Usy) is not preserved by product. This is easy to see, since, if
(ANX)Vy < AX; V) for i = 1,2, then

(A X1 % Xo) V (y1,92) A< \(X1 X X2V (41,92))-

That is, a covering step may take place in more than one component, so that the end result in
the product will consist of several covering steps, rather than a single one. The same argument also
demonstrates that the (continuous) function space does not preserve property (Usy). Since property
(UF) requires equality, it does not suffer from this problem.

Proposition 6.32 The product of domains preserves each of the properties (Uy) and (UF ).

Proof: If (z1,22) —< (y1,¥2) then either 21 —< 31 and @3 = ¥y, or vice versa. If (z,2) < (y,2),
(2,2) < (&), (2) 1 ('), and (3,2) £ () then & —< y, & < @', y f ', and
Y f Z', so that assumption of (Uy) for the underlying domains leads to 2’ —< y V 2/, so that
(a,2") <(yVva',2) = (y,2) Vv (2',2'). Symmetrically for the right-handed case, so that the
product has property (Uy).

If X is a down-directed up-closed set and (y1,y2) € down X then, for i = 1,2, X; = m;(X)
is down-directed and up-closed (and is a self-lobe if so is X), with y; € down(X;), so that
(AX:)V iy = N(X; Vy;) by assumption of (UJ) for the component domains. Therefore

(ANX)V (y1,92) = (ANX1,AX2)V (y1,92)

= ((AX0)Vy,(AX2)Vy2)
(AX1V 1), A(X2 V y2))

= AXV (y1,92)),

and thus the product has property (UJ). .

6.4 Continuous Functions on Ut-domains

Using the results obtained for U-domains, we know that each of the sequential, stable and con-
tinuous function spaces between UT-domains is an FM-domain. We proceed now to show that
Ut-domains are closed under the continuous function space. As a matter of fact, we show that the
continuous function space preserves property (UJ ), and that it always has property (Uy), regardless
of the underlying domains.

Recall that [z,y] <P fiff y < f(2). If y1 # L then [z1,y1] <P [22,y2] iff 3 < 21 and 31 < o,
and [z, y1] P [@2, yo] iff 21 I} @2 implies that y; f yo.

Definition 6.33 We say that a threshold function [z, yo] is an atomic increment for f iff
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(1) f AP [20,yo], that is, f(zo) T Yo:
(2) f(zo) < f(x0) V yo; and
(3) and yo < f(x) for every @ > zg.

It is easy to see that for every atomic increment [zg,yo] of f and for every z # zg, f(z) =

(f VP [zo,yo])(2). .

Proposition 6.34 In the continuous function space, f —< g iff g = f VP [zo, yo] for some atomic
increment [xg, yo] of f, with xg uniquely determined by f and g.

Proof: Let f —< g. Clearly there exists a threshold function [z¢, yo] dominated by ¢ but not below
f. By definition of covering, f < f VP [zg,y0] = ¢.
If there exists 2’ such that f(z¢) < 2’ < g(x¢) then there exists some isolated z such that
flzo) < f(xo) V 2z < g(xg), and hence f < f VP [x,2] < g, a contradiction. Therefore,
fzo) =<4 (x0) = f(z0) V Yo.
If 29 < 2 then g(z) = f(2)V yo. If z is isolated then f <P f VP [z,y0] < g, and, by definition
of covering, f = fVP[z,yo], so that [z,y0] <P f, and yo < f(z). If x is not isolated then there

must exist an isolated approximation z’ to x that does not approximate xg, and the argument
may be repeated for the isolated element @’ V g, to show that yo < f(a' V zg) < f(2).

We have shown that [zg,yo] is an atomic increment for f. To see that x¢ is uniquely deter-
mined by f and g, assume that there exists some other [z, y] dominated by g, but not below
f. Then, again, by definition of covering, f < f VP [z,y] = g = f VP [z0, yo], and it must be
the case that x = 2g.

Conversely, assume that [zg, 3] is an atomic increment of f. Let g = f VP [xg, yo]. It is easy
to see that f(a) = g(«) for every @ # x¢, and since f(xg) < g(z0), f < ¢g. Assume h such
that f <P h <P g. Then f(z) = h(z) = g(z) for every @ # zg, and f(zg) < h(zo) < g(zo).
But by definition of covering, h(zo) = f(2o) or h(zg) = ¢(zo), so that h = f or h = ¢, and
therefore f —< g¢. .

Proposition 6.35 The continuous function space has property (Ui ).

Proof: Let f < g, f <P f'. g P f', and g £P f'. Let ¢’ = g VP f'.
By proposition 6.34, g = fVP [z, yo] for some atomic increment [zq, yo] of f, thatis, f(zg) <
g(zo) = f(x0) V yo, and for every z > zq, yo < f(2), so that f(z) = g(z).
Therefore, g’ = gVP f' = (fVP[x0,y0]) VP f' = f'VP[x0,y0]. Now, for every z > zq, yo < f'(2),
so that f/($) = gl(x) Since f VP [$07@/0] =9 %p flv [$07@/0] %p flv so that Yo f f/(xo)v and
therefore f'(zo) < f'(z0)Vyo. But since f <P f’ we now have f'(z¢) = f(zo0) < f(x0)Vyo =
f'(z0) V yo = ¢'(xg). Conclude, again by proposition 6.34, that f' —< ¢'. .

Before looking at the preservation of property (U} ), we need to look at the glb operation in
function spaces. Arbitrary non-empty sets have glbs in bounded-complete posets, so that all glbs
should exist in the relevant function spaces.

Definition 6.36 Define the pointwise glb of a family F' of functions to be
AN F = e N{f(e)| f € F}.
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For any monotone function f : Dg, — F, define the continuous extension of f to be cte( f),

defined by
cte(f):/\ZED.\/{f(waEDﬁn&xgz}.

This operation is also defined for any monotone function f: D — F. It is easy to see that, for
every monotone f : D — E, cte(f) is the unique continuous function that agrees with f on isolated
elements, and cte( f) is the lub of the continuous functions dominated by f. .

We show now that the glb in the pointwise-ordered function spaces of a family F of functions
is given by cte(AP F'). The pointwise glb AP F' is not continuous, in general.

Proposition 6.37 Fuvery non-empty subset F of the continuous function space between Scott do-
mains has cte(AP F') as its glb.

Moreover, if I is a collection of stable, respectively sequential, functions between FM-domains,
respectively U-domains, then cte(\P F') is a stable, respectively sequential, function, and it is the
glb of F' in the stable, respectively sequential, function space.

Proof: It is easy to check that cte( AP F'), as defined here, is well defined, monotone, and continu-
ous, and dominates any continuous lower bound of F.

Note that if s is a set of isolated elements whose meet is preserved by all functions in F' then
cte(AP F') also preserves the meet. It follows that cte(AP F') is the meet in the stable function
space and the sequential function space. In more detail: first, if all functions of F' preserve
the meet of a set s of isolated elements then

NF(As) | [ e Fy
ANNF(s) | fe B}
ANf@)| feF&aes;
A{cte(AP F')(z)]| z € s}.

cte(AP £')(As)

Now, if all functions in F" are stable, then cte( AP F) will preserve meets of consistent isolated
elements, a sufficient condition for it to be a stable function. If all functions in F are se-
quential then cte( AP F') preserves criticality of critical sets — since it is a continuous function
dominated by a sequential function — and, moreover, it preserves all critical meets of isolated
elements. This is sufficient to establish that cte(AP F') is sequential. .

Proposition 6.38 The continuous function space preserves property (U;')

Proof: Let I be a down-directed up-closed set of functions, and g € down(}"). For every isolated
x we have, by assumption of (U;’) for the target domain,

AE(z)V g(z)) = cte( A" F)(z) V g().

Note that F(z) is a down-directed and up-closed (and is a self-lobe if so is F'), and g(z) €
down( F'(z)).

We also remark that, for every isolated z,
{fle)vylz)| feF& AP gt 2{f(x)Vy(a) | feF & flx)fgla)}

41



To see this, let fu € F dominate g, so that, if f € F' and f(z) {} g(«) then f AP fo P ¢ and,
by down-directedness, f AP fo € F. The reverse inclusion is, of course, immediate.

Putting things together, we have, for every isolated z,

Af(z)vglz)| fe & fAPg}
A{f(x)Vglx)| feF& fz)fg(x)}
(A{f(z)| feF})Vg(x)

cte(AP F)(z) V g().

cte(AP(£ VP g))()

Since the continuous functions cte(AP(F VP g)) and cte( AP F') VP g agree on isolated elements,
they must be equal. .

7 Discussion and Directions for Further Work

One of the primary motivations for the study of sequentiality is the full abstraction problem for
PCF, or, more precisely, the attempt to give a natural, language-independent, construction of the
fully abstract model of PCF. The facts known about the fully abstract model for PCF serve as
useful guidelines in the search for such constructions.

All isolated elements of the fully abstract model should be definable in PCF [Mil77]. Therefore,
models that employ stable functions cannot be fully abstract, since some (isolated) stable functions,
such as gf, are not sequential and are not definable in PCF. Models that employ the stable order
cannot be fully abstract, since the operational pre-order on PCF terms corresponds to the pointwise
order. Ideally, then, we should work with a model of pointwise-ordered sequential functions. (This
is not to say that the stable order cannot be present in the construction, since we should ultimately
be able to regard the domains interpreting types as bi-domains, where the pointwise and the stable
order co-exist [Ber78, theorem 4.5.4].) Having established closure of various classes of domains
under the stably-ordered sequential function space and the pointwise-ordered stable function space,
an immediate goal now is toidentify a class of domains closed under the pointwise-ordered sequential
function space, as discussed above.

A significant problem is that application fails to be sequential under either order, and fails
to be stable under the pointwise order. This seems to indicate that the underlying operational
assumptions leading to our definition of sequentiality do not precisely match PCF’s operational
semantics. As discussed above, the fact that application is not sequential reflects an assumption
that evaluation of a function to be applied is carried out in an incremental way, and may diverge at
any of the increments. This assumption is, in a sense, inherited from Kahn and Plotkin’s definition
of sequential functions, and Berry and Curien’s definition of sequential algorithms. It seems likely
that a sequential language that embodies such operational assumptions would be matched better
by our sequential functions, much as Berry and Curien’s sequential algorithms provided a fully
abstract model for the language CDSO [BC85, Cur86]. It may be interesting to devise and study
such a language.

Still, our notion of sequentiality bears a close relationship to the sequentiality inherent in
PCF’s operational semantics. The sequentiality of PCF [Plo77, lemma 4.2 (Activity lemma)] is
perhaps best expressed by saying that the evaluation function (of PCF programs under the standard
operational semantics) is sequential. See [Cur86, theorem 2.4.11] and its use in [Cur86, proposition
4.1.13]; the theorem actually shows that the Bohm tree function on PCF terms is Kahn-Plotkin
sequential, so that it is also sequential in our sense. It is probably the case, therefore, that our
notion of sequentiality is adequate at first order, but we need to look for a notion of higher-order
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sequentiality, that will make the application function sequential. In other words, while it is fine to
assume, at first order, that a value of base type (a flat domain or perhaps product of flat domains)
is computed incrementally, we need to change our assumptions concerning the way a function
to be applied is computed. Such a definition of higher-order sequentiality should be sensitive to
the distinction between a functional domain and a non-functional domain, and perhaps to the
context where a functional domain appears. This argument can also be made regarding stability.
That is, the failure of application to be stable under the pointwise order makes it necessary to
look for a higher-order definition of stability, so that application turns out to be higher-order stable
(presumably this will be a corollary of higher-order sequentiality). We remark that a such a higher-
order approach is implicit in Bucciarelli and Ehrhard’s work on strong stability [BE91], owing to
their distinction between functional and non-functional domains.

Another aspect of the failure of cartesian closure is that currying and uncurrying, isomorphisms
between pointwise-ordered continuous function spaces or stably-ordered stable functions spaces,
are not isomorphisms of sequential functions. As an example, the uncurried parallel-or function
por : Bool x Bool — Bool is not sequential, but its curried version, curry(por) : Bool — Bool —
Bool, is sequential. Thus uncurrying a sequential function may turn it into a non-sequential one.
Moreover, note that all continuous functions in Bool — (Bool —¢' Bool) are sequential, owing
to the simplicity of their argument domain, in which all Scott opens are sequential opens. But the
curried parallel-or function is not definable in PCF; how do we eliminate it from our model? One
possible way to do so is to interpret arrow types in their maximally uncurried form, that is,

Divvorg = Doy X oo x Dy =% Dy,

where D, is the domain for the type 7, and o is not an arrow type. Recall that we have
shown that FM-domains are closed under the pointwise-ordered sequential function space into
flat domains. But here, again, application poses a problem. When types are interpreted in their
maximally uncurried form, the PCF term

Af :Bool — Bool . Az :Bool . fx

ought to denote application, which is not sequential, at least not in the first-order sense.

We are aware of the fact that the generalized topological approach is unlikely to yield directly
the fully abstract model. The functional F; that maps the left-strict-or lor and the right-strict-or
ror to tt and £f, respectively, is sequential, yet it is not denotable in PCF, since PCF terms may
not yield inconsistent results on pointwise consistent inputs [Cur86, proof of proposition 4.4.2].
The function F3 that maps both lor and ror to tt is definable, using “imbrication” [BCL85, p. 129],
by the term

Af. if (not fffff) then f(fttQ)(fQtt),

where {2 is a diverging term. A generalized topological definition would be hard pressed to give a
suitable definition of open sets such that F; would be ruled out without excluding F,. Nevertheless,
we believe that the topological approach may play an important role in the eventual construction
of the desired model, followed by appropriate refinements; one could for instance intersect the
sequential function space with the continuous function space, using appropriate injections.

Moreover, the generalized notion of topology we have used here may prove to be an interesting
object of study in its own right. Other classes of functions may also be defined using this approach.
For instance, linear functions are induced by linear opens — stable opens with a strengthened Scott
property, quantified over all bounded sets rather than just directed sets. It is useful to assume prime-
algebraicity of the domains in developing this approach. This provides an alternative generalized
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topological definition of linear functions to Lamarche’s definition [Lam91]. Another example may

be provided by the continuous functions that preserve finite meets, induced by Scott opens closed

under finite meets — i.e., single lobes or the empty set. The importance or significance of this
class of functions is not clear yet.

We also intend to check the suitability of our notion of sequentiality for a call-by-value version

of PCF, where one would presumably use strict sequential functions.
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Appendix

We give here Scott opens, stable opens and sequential opens of an example domain whose Hasse
diagram is given below. This domain may be embedded in the sequential function space Bool® —
Bool, with its image being the set

{[(££,££,£F), ££],gf;, gf2, 83, 8F1 2, 8F1 3,825} -

See example 4.14 for terminology.

We define sets by shading points in the Hasse diagram of the domain. Taking advantage of
the three-way symmetry of the domain, we use the notation x3 instead of repeating symmetric
versions of a set.

The sequential opens of the domain are all up-closures of single points and, in addition, the sets

[ ] [ ] (@]
o o o X 3.
(@]

The covers of bottom are
® ® [e]
° o o X 3.
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The stable opens that are not sequential are
[ ] [ ] [ ]
[ ] 9] e} X 37

]

and o
The Scott opens that are not stable are
[ ] [ ] [ ]
° ° o X3,

9] 9]

and K

X LXK
NN X

Note that, since all elements of the example domain are isolated, the Scott opens are the
up-closed subsets of the domain.
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