Abstract

We present a category-theoretic framework for providing intensional semantics of programming
languages and establishing connections between semantics given at different levels of intensional
detail. We use a comonad to model an abstract notion of computation, and we obtain an intensional
category from an extensional category by the co-Kleisli construction; thus, while an extensional
morphism can be viewed as a function from values to values, an intensional morphism is akin
to a function from computations to values. We state a simple category-theoretic result about
cartesian closure. We then explore the particular example obtained by taking the extensional
category to be Cont, the category of Scott domains with continuous functions as morphisms,
with a computation represented as a non-decreasing sequence of values. We refer to morphisms
in the resulting intensional category as algorithms. We show that the category Alg of Scott
domains with algorithms as morphisms is cartesian closed. We define an intensional partial order on
algorithms, with respect to which application, currying and composition are continuous. We show
that every algorithm determines a continuous input-output function, and that every continuous
function is the input-output function of some algorithm. This is in contrast to the sequential
algorithms model of Berry and Curien, in which algorithms determine the sequential input-output
functions (between concrete domains). Since the continuous functions include inherently non-
sequential functions such as parallel-or, we designate our algorithms as parallel. Two algorithms
are input-output equivalent iff they have the same input-output function. The intensional ordering
on algorithms collapses, under input-output equivalence, onto the pointwise ordering on their input-
output functions. We define an intensional semantics of the simply typed A-calculus, and relate it
to the standard extensional semantics. We discuss related work and we propose some topics for
further research.



