
Authoring Interactive Behaviors
for Multimedia

Brad A. Myers

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

Presented at the 9th NEC Research Symposium
August 20-September 1, 1998

Nara, Japan

Abstract

The tools for authoring multimedia presentations start with sophisticated interactive tools
like Director and ToolBook. However, to make the presentations truly interactive
requires programming in “scripting languages.” These languages have generally been
difficult to learn for non-programmers. “Interactive behaviors” allow users to click on,
move, or otherwise interact with objects on the screen, as opposed to just watching the
presentation like a TV show. Behaviors range from simply clicking on buttons or links,
to sophisticated interactions with computerized characters. This paper presents a variety
of ways we are studying to make authoring of these interactive behaviors more accessible
to non-programmers. One approach is “demonstrational” techniques, where the author
gives examples of the desired actions and results, and the system generates the code to
perform the same actions at run time. Using demonstrational techniques has proven
successful for specifying simple behaviors. To represent the behaviors and allow the
author to edit them, we are investigating new languages which are designed to be more
“natural” because they are based on how non-programmers actually think about these
tasks. Human-factors studies have been performed to investigate how people naturally
express algorithms. These studies have revealed some general principles which can be
applied to the design of new languages, such as that a general case is often expressed
first, with exceptions afterwards, and that loops are avoided by applying operations to
sets of objects. Using these new results, along with results from the fields of Empirical
Studies of Programmers and Human-Computer Interaction, we can create languages that
are easier to learn and more effective to use. This will enable a wider range of people to
read, generate and modify the code.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 2

Introduction
We are working to develop new methods, techniques and tools that will make it significantly

easier for people to have the capabilities of programming. We are particularly targeting
applications where people who are not professional programmers are expected to write the
programs. One of the applications for this is to author interactive behaviors for multimedia. But
what do these terms mean?

Definitions
Authoring

“Authoring” is creating the content for any kind of presentation or document. This ranges
from what everyone does when they write text, including authoring a letter or a novel. This
might use paper or a direct manipulation click and edit tool like Microsoft Word. For authoring
World-Wide-Web pages, tools for creating the text include WYSIWYG editors like Adobe
PageMill and Microsoft’s FrontPage. Authoring for pictures uses tools like paper, or drawing
programs like Adobe Illustrator or MacDraw. To create more sophisticated behaviors, the author
might need to use scripting languages like the “Lingo” language used in Macromedia’s Director,
or the author might program in a professional programming language like C++.

The term “authoring” is being used here to cover a wide range of kinds of creating, from just
typing text, to drawing, all the way to writing programs which control the content. Authoring
also covers an enormous range of expertise.

Interactive Behaviors

Some multimedia projects are just designed to be passively watched, like a television show.
However, I am particularly interested in authoring of Interactive Behaviors, which is when the
user can click on or move an object on the screen. In multimedia presentations that include
interactive behaviors, the user must get actively involved. This is the hardest kind of multimedia
production to create, and also the most engaging for the user. Examples of multimedia with
interactive behaviors include all games, most educational software, and web pages where the user
clicks on links or fills in fields.

Multimedia

Multimedia is the use of text, graphics, video, photographs, audio, and animations together on
a computer. I am using this very broad definition to include many different kinds of systems and
situations.

Why is Authoring Important?
We believe that there will be increased demand and opportunity for universal authoring of

multimedia. About 89% of households in the United States have a still camera, 80% have a tape
recorder, and about 38% have a camcorder.1 All of these technologies are becoming widely
available in digital form (digital cameras are now comparably priced to conventional cameras,
and digital video cameras are appearing). When people create their scrapbooks and home movies
in the near future, they might be creating digital multimedia productions. While there may be

1 These statistics are taken from my “Computer Almanac: Numbers about Computers.” See
http://www.cs.cmu.edu/~bam/numbers/. Unfortunately, I do not have the corresponding numbers for
Japan.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 3

specialized viewing and editing hardware, there is also the opportunity to more effectively allow
people to use their general-purpose computers to author multimedia productions.

Access and authoring for the world-wide-web is increasing exponentially. Universal
authoring has been one of the basic tenets of the world-wide-web from the beginning. One of the
chief reasons that the WWW started to become popular was that it allows everyone to author.
HTML was simple enough that tens of thousands of people created web pages in the first few
years of the WWW. Now, there are many interactive programs like Microsoft FrontPage and
Adobe PageMill that make it even easier to author, at least for static text and pictures. The digital
cameras mentioned above will make it easy for people to include still pictures and video into their
WWW pages. However, it remains difficult to make the pages interactive with more than just
clicking, as is needed to support forms, draggable items, or any kind of game. In this case,
programming in Java, Perl, Visual Basic, or some other programming language is often required.

Another popular use for multimedia is in educational software. An article from a recent issue
of the Communications of the ACM claims says that “Digital multimedia offers the key to
educational reform” [6]. Certainly, just as there are text books created by experts and produced
by professional publishing houses, there will be multimedia publications created by large teams
of experts. However, teachers must prepare lessons that are individualized to each classroom and
even to each student, and they do this today by picking and choosing from their text books, and
by creating a lot of their own material and handouts. If teachers are to use multimedia
effectively, then the teachers themselves will similarly have to be able to refine existing material
and create their own multimedia material, so that it will be geared to their particular needs and
their particular classes. Furthermore, educational multimedia is often interactive, with small
games, quizzes, and user-selectable options. Therefore, teachers are going to have to be authors
of interactive multimedia material, but they do not have the resources to spend a lot of time
learning how.

Another reason for supporting general authoring is that people learn better when they
construct things than when they just use them [33]. Therefore, providing an environment where
people can create many interesting kinds of multimedia applications will enhance learning. This
is the topic of a recent issue of Communications of the ACM [11], and has been promoted by
many researchers from Papert [26] to Soloway [32].

Why are Interactive Behaviors Important?
The importance for interactivity in multimedia was highlighted by a recent New York Times

article that summarized the conclusions of the 1997 Roundtable in Multimedia [1]. It concluded
that “customers are not interested” in many of today’s multimedia products, so “money is not
being made.” This is because it is not sufficient just to have good material: “content is most
certainly not king. Interaction matters an order of magnitude more than content.” Furthermore,
“people liked interactive media best when they were able to create something, or participate in the
process of creation” [1]. Thus, it is not sufficient just to present the content in a static way.
People want to provide interesting and sophisticated experiences for the viewer by allowing the
viewer to interact with their productions.

Roger Schank calls for more interactivity in educational multimedia:
“Creating educationally effective multimedia programs means taking
seriously the idea of learning by doing. Good educational software is
active, not passive, and ensures that users are doing, not simply watching.”
[29, p. 69]

Authoring Interactive Behaviors for Multimedia NEC Symposium - 4

Goal: More People Able to Author Interactive Behaviors
One important issue is the range of people who can be authors. Who are the authors going to

be? Is it just professional programmers, or can everyone create multimedia productions that
include interaction? How much extra training does a design major need in order to be able to
create multimedia that interacts with the user? An important theme of this paper is that authoring
of multimedia should be accessible to everyone. This should even include allowing everyone to
be able to author interesting interactive behaviors, not just have this be limited to professional
programmers.

This comes under the category of “End User Programming,” since we are aiming to allow end
users to write programs.

Approach
To address these problems, we are working to decrease the difficulty of programming. One

approach is to eliminate the appearance of programming where possible. However, users still
need the capabilities of programming, as we have argued above, such as conditionals, iterations,
etc. Therefore, we use direct manipulation and “demonstrational” techniques, where users can
give examples of how they want the interface to work. Our second approach is to try to make the
programming languages themselves easier to learn by being more “natural.”

Why study programming languages at all today? More than a decade ago, Allen Newell and
Stu Card pointed out:

“Millions for compilers but hardly a penny for understanding human
programming language use. Now, programming languages are obviously
symmetrical, the computer on one side, the programmer on the other. In an
appropriate science of computer languages, one would expect that half the
effort would be on the computer side, understanding how to translate the
languages into executable form, and half on the human side, understanding
how to design languages that are easy or productive to use. ... The human
and computer parts of programming languages have developed in radical
asymmetry.” [22, p 212-3]

This situation still holds. Somewhat surprisingly, it even applies to multimedia scripting
languages, which are programming languages designed for use by people who are not
professional programmers, and therefore are most likely to benefit from research on the human
side. There are surprising gaps in the knowledge about how to make programming languages
effective for people, and we are working to fill those in.

Gentle Slope Systems
Our research is closely aligned with the concept of “Gentle Slope Systems” [4] [21] which are

systems where for each incremental increase in the level of customizability, the user only needs to
learn an incremental amount. This is contrasted with most systems which have “walls” where the
user must stop and learn many new concepts and techniques to make further progress (see Figure
1). We use direct manipulation and demonstrational techniques to lower the initial starting point
(so users can get useful work done immediately), and we are creating a language that is easy to
learn so the number and height of the walls is minimized, if they cannot be eliminated entirely.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 5

Figure 1: The intent of this graph is to try to give a feel for how hard it is to use the tools to
create things of different levels of sophistication. For example, with C, it is quite hard to get
started, so the Y intercept is high up. The vertical walls are where the designer needs to stop and
learn something entirely new. For C, the wall is where the user needs to learn the Microsoft
Foundation Classes (MFC) to do graphics. With Visual Basic, it is easier to get started, so the Y
intercept is lower, but Visual Basic has two walls—one when you have to learn the Basic
programming language, and another when you have to learn C. Click and Create is a menu based
tool from Corel [2], and its line stops because it does not have an extension language, and you can
only do what is available from the menus and dialog boxes.

Programming By Demonstration Research
Systems that are easy to learn and easy to use often have a direct manipulation front end

which significantly reduces the amount of necessary scripting. For example, in Visual Basic,
users can place widgets using the mouse and set their properties using dialog boxes, and in
Director, many simple movements can be specified by dragging objects with the mouse. One
focus of much of our previous work has been how to extend the range of what can be performed
by direct manipulation, by allowing more behaviors to be specified by demonstration [17]. We
have created many systems which have explored various aspects of this problem. A partial list of
these systems includes: Peridot [15], Lapidary [34], Tourmaline [16, 35], Marquise [20], Pursuit
[14], Silk [10], Topaz [19], and Turquoise [13]. Some of these and many other demonstrational
systems are described in a recent book [3].

Our latest system is “Gamut” which allows complete games to be created entirely by
demonstration without scripting [12]. Gamut is the PhD research of my student Rich McDaniel
and stands for Games Are Made Using This. The game author gives examples of what the end
user will do, and then gives examples of what the system will do in response. These examples
take the form of editing the objects using the mouse in the usual direct manipulation way. For
instance, if after rolling a dice, a piece is supposed to move, the designer would click on the
button that rolls the dice, and then select the piece and move it the appropriate number of squares.
Gamut uses various Artificial Intelligence algorithms, including plan recognition and decision
trees, to generalize from the user’s examples. Previous research has shown that systems cannot
create correct programs from just a few examples, so Gamut asks for additional information. The
designer can draw guide objects to show the system important paths and properties that people
see implicitly, but which the system cannot notice. The guide objects disappear at run time. The
user can also give hints to the system about which objects are important, which helps the

Authoring Interactive Behaviors for Multimedia NEC Symposium - 6

inferencing algorithm figure out what to do. Since often the previous state is important for
determining the current state, Gamut explicitly represents the previous state in the form of a
“temporal ghost,” which is a dimmed version of the object shown in its former state. Although
guide objects and hints were proposed in previous systems, Gamut is the first system to make
them work effectively. More information about Gamut is available at
http://www.cs.cmu.edu/~richm.

In summary, we have shown that many interesting behaviors can be demonstrated from
examples, and that this work can be useful in many different domains. However, it often is
necessary to use fairly sophisticated inferencing techniques so that the system will guess correctly
and be able to handle realistic situations. Having a static, editable representation of what is
inferred is important so that the users know what is going on and can repair it if incorrect.

Natural Programming
Although direct manipulation and demonstrational techniques are powerful and easy to use,

they have well-known limitations. In particular, complex sequences of actions are hard to
perform accurately, there is no way to represent abstractions, iterations and conditionality, and
many repetitive actions are often required. Furthermore, if there is no static representation of the
program, then the users cannot go back and see what they have done, to revise, edit and reuse
prior work. The lack of an editable static representation has been a chief failing of many previous
demonstrational and direct manipulation systems [17].

Why Natural?

We are investigating new representations of programs (which includes multimedia scripts) that
use textual and graphical elements, and are designed to be more natural. We define “natural” as
“faithfully representing nature or life,” which here implies that it works in accordance with the
ways people expect. By “natural programming” we are aiming for the language to work in the
way that people who do not have programming experience would expect. Why would this make
the programming easier? One way to define programming is the process of transforming a
mental plan in familiar terms into one that is compatible with the computer [8]. The closer the
language is to the user’s original plan, the easier this refinement process will be. This is closely
related to the concept of directness which, as part of “direct manipulation,” is a key principle in
making user interfaces easier to use. Hutchins, Hollan and Norman describe directness as the
distance between one’s goals and the actions required by the system to achieve those goals [9].
Reducing this distance makes systems more direct, and therefore easier to learn. User interface
designers and researchers have been promoting directness at least since Shneiderman identified
the concept in 1982 [30], but it was not even a consideration in most programming language
designs. Green and Petre also argue in favor of directness, which they call closeness of mapping:
“The closer the programming world is to the problem world, the easier the problem-solving ought
to be.... Conventional textual languages are a long way from that goal.” [5, p. 146].

User interfaces in general are also recommended to be “natural” so they are easier to learn and
use, and will result in fewer errors. For example, Nielsen recommends that user interfaces should
“speak the user’s language” which includes having good mappings between the user’s conceptual
model of the information and the computer’s interface for it [23, p. 126]. One of Hix and
Hartson’s usability guidelines is “Use Cognitive Directness,” which means to “minimize the
mental transformations that a user must make. Even small cognitive transformations by a user
take effort away from the intended task” [7, p. 38]. Conventional programming languages require
the programmer to make tremendous transformations from the intended tasks to the code design.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 7

For example, to add a set of numbers uses 3 kinds of parentheses and 3 kinds of assignment
operators in 5 lines of C code, whereas a single “SUM” operator is sufficient in a spreadsheet [5].

Background Research

Our first step in thinking about the design of new easy-to-learn languages was to thoroughly
study the Empirical Studies of Programmers (ESP) and Human-Computer Interaction (HCI)
literature. It is somewhat surprising that in spite of 30 years of research in these areas, the designs
of new programming languages have generally not taken advantage of what has been discovered.
In particular, most languages for scripting multimedia still use features that have been shown to
be particularly difficult to learn and use. We cataloged many results which can be used to guide
the design of a new programming system [25]. For example:

• The syntax in many languages is a significant barrier, as evidenced by the special
symbols needed in the SUM example above.

• One way to ease the entry into programming is to capitalize on the beginner’s
knowledge about the world. Many languages are based on a metaphor, which
should be drawn from a concrete real-world system that is familiar to the user
audience [31]. Director tries to use the metaphor of a musical score, but it breaks
down when applied to interactive situations [36]. We will investigate other
metaphors that might be better suited for interactive interfaces.

• When they are stumped, beginners will attempt to transfer knowledge from other
domains even if they are not appropriate [8]. This is a problem when the language
uses words and symbols in ways that are different from English or math. For
example, “AND” is often read to mean “THEN” as in: “We went to the store and
bought milk,” whereas in computers, AND is always used between two things that
must both be true at the same time. People often use “AND” when a computer would
require the use of “OR,” as in: “All people whose names begin with ‘A’ and ‘B’
should be in the first line.” Another example is that many languages use “=” for
assignment, but “a = a+3” makes no sense if read as in mathematics. These kinds of
features should be avoided in a new language.

• The object-oriented style seems to be harder to learn for novice programmers, and a
full inheritance hierarchy has been shown to be too complex for novices, but a fixed
two-level inheritance hierarchy is understandable [27].

• … and many others. See [25] for details.
However, there are many significant gaps in the knowledge about how people reason about

programs and programming, and how languages can be made more effective. In particular:
• What programming paradigm works best for non-programmers? Professional

languages like Java and C++ are object-oriented, but most novice languages, like
Visual Basic and HyperTalk are not. And, should the language be textual or
graphical?

• How can difficult constructs like iterations and conditionals be minimized and made
easier?

• What is the tradeoff between ease of use and correctness? In particular, what is the
role of type checking?

• How should abstractions, such as variables, procedures and modules, be presented?
To what extent do non-programmers focus only on the concrete examples?

• How can the reuse of procedures, modules and other components be facilitated?

Authoring Interactive Behaviors for Multimedia NEC Symposium - 8

• What terminology and syntax should be used? HyperTalk, AppleScript, and other
recent languages from Apple have used a verbose style with words like “the” and
“set.” Is this better than the more conventional language design using a terse syntax
and special symbols like = := == {}[]()"' ? Director’s Lingo language uses the
verbose style (“set the visible of sprite P1 to false”), whereas ScriptX and
GLPro use the terse style (GLPro: “layer hey$@loop wait to @loop*30 @loop*15
10 5”).

• Are there other ways to express Boolean concepts without using AND, OR, and
NOT, since our results show that people often use these incorrectly?

• What is the role of the environment in overcoming problems in the language? For
example, syntax editors can overcome some problems with the language syntax.

Our work in the Natural Programming project [18] is beginning to answer these questions.
This forms the basis for John Pane’s PhD thesis, and Chotirat “Ann” Ratanamahatana’s BS thesis
[28].

First study: PacMan

To find out what is natural, we are asking people to describe in their own words how they
would express algorithms. We have performed two studies so far, and the details of both studies
are in [28]. The first study was conducted with 14 fifth graders at East Hills International Studies
Academy (a public K-5 school) in Pittsburgh. The children were evenly divided by gender and
were racially diverse. They were asked to describe how they would make PacMan move about
the screen, eating dots and killing or being killed by monsters. A real risk in designing a study
like this is that the experimenter could bias the subjects by the language used in asking the
questions. For example, the experimenter cannot just ask: “How would you tell the monsters to
turn blue when the PacMan eats a power pill?” because this may lead the participants to simply
parrot the question back. Therefore, the participants were shown depictions of the scenarios and
asked to write down using their own words or diagrams how they would instruct the computer to
implement the actions shown. This enabled the experimenter to show the images and ask general
questions to prompt the participants for their responses. As responses, the participants could both
draw pictures and write text on the unlined blank paper that we supplied. This allows us to look at
whether linguistic (textual) or graphical notations are preferred.

To analyze the data, we gave the participants’ responses to five people who are not affiliated
with the project, and asked them to classify what they saw in the answers. These raters were all
programmers, and were paid to participate. Among the observations from this study are:

• Much of the control (54% of all utterances) was expressed in an “event language”
(also called the “production language”) style, with rules to control behaviors. For
example: “If PacMan loses all his lives, its game over.” This result is already
reflected in some of today’s end-user programming languages. The event-based style
used by Visual Basic, Lingo for Director, and HyperTalk for HyperCard, is a form of
rule-based style, since the code is of the form “if this event happens, then execute
this code.”

• Iterations were usually expressed implicitly, by operating on sets of objects. In fact,
95% of the participants’ utterances about multiple objects used a set/subset
specification. For example, “When PacMan eats all of the yellow balls he goes to the
next level.” This is instead of using any form of iteration or explicit counting, as
would be required in most programming languages.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 9

• When there were multiple options for a conditional, the most frequent construction
was a set of mutually exclusive rules, which appeared 37% of the time (for example:
“When the monster is green he can kill PacMan. When the monster is blue PacMan
can eat the monster”). The next most popular construction was to specify a general
condition that was subsequently modified with exceptions, which appeared 27% of
the time (for example: “When you encounter a ghost the ghost should kill you. But if
you get a power pill you can eat them”). This is in contrast to conventional
languages that generally require the conditional to be set up in advance using
“ANDs,” “NOTs” and “ORs,” forcing the user to think about all the cases first, and
resulting in a complicated Boolean expression.

• The students expected objects to be moving as their normal behavior, and wrote
commands that would alter the motion (97% of the utterances). For example, “If
PacMan hits a wall, he stops.” This is in contrast to some conventional languages
and environments where to make something move requires setting its position at
each clock timer tick.

• When inserting items, most subjects (74%) treated the data structures as a list, and
just inserted the new item without making room first (as would be required with an
array). To sort the items, the subjects usually inserted the item in an indeterminate
place, and then specified the sort operation afterwards.

Many researchers have identified control structures as a common area of difficulty for novice
programmers [8]. It is interesting that many of the strategies noted above that the subjects used
serve to eliminate control structures by making loops and conditionals implicit. This provides
further evidence that creating a new language that supports these natural tendencies may be easier
to learn.

Second study: Spreadsheets

We next performed a follow-on study using database access with both children and adults, and
both programmers and non-programmers. This is to investigate how well the observations
generalize to other domains and to other populations. We again showed the participants pictures
to avoid biasing the answers. This time the pictures were of the database tables before and after
various operations, and we asked them to write how the computer should carry out the operations.
This study was administered to 19 adults with various levels of programming ability, and to 21
fifth-grade children, four of whom had programmed before. We again developed categories, and
the subjects answers were evaluated by 3 independent raters. The analysis of this second study is
still on-going, but we do have some preliminary results:

• 90% of the time, multiple objects were handled by operating on the set as a whole,
rather than iterating through the individual elements, which is consistent with our
first study.

• Also, as in the first study, subjects did not construct complex conditionals using
ANDs, ORs, and NOTs. Instead, they would express independent conditions (as in
“Black is for G and L. Gold is for B, C, H, J, and S”) or a general case first and
exceptions afterwards.

• Most mathematical operations were expressed in a natural language style, such as
“Add 10,000 points to the scores in Round 1 and Round 3” rather than a
mathematical style (“score + 10000”) or a programming language style (“score =

Authoring Interactive Behaviors for Multimedia NEC Symposium - 10

score + 10000”). However, this natural language style appeared to lead to more
errors in the specification, such as failing to handle boundary cases in ranges.

• The subjects used the words AND, OR and THEN in various ways, often
inconsistently, and usually in ways that would not work in a conventional
programming language. For instance, AND often means “then,” as in “Cross out
the highest score, and add the lower scores.”

We are now working on the implications of these results for programming language design in
general. For instance, it is clear that “AND” is a problematic word to use in a language, but that
built-in support for sets are likely to make the programming language easier to use. By applying
these results to multimedia scripting, the result will be a language that will be significantly easier
to learn than any of today’s languages, and that it will enable a broader range of people to author
more sophisticated behaviors.

Future Work
There are many areas to study further in the area of authoring interactive behaviors for

multimedia. My groups main focus will be on issues relating to the natural programming
approach. One issue that is particularly relevant to this NEC conference is to what extent our
results would be different if we studied people whose native language was not English. For
example, do the “natural” ways of expressing programming concepts differ for Japanese natives?
I would welcome collaborators to help study these issues.

An important next step, which we have not yet begun, is to use the knowledge from the
Natural Programming experiments, along with our Demonstrational techniques, to create a new
multimedia authoring environment. We hope to raise funding to begin this project soon.

An important focus will be investigating how these ideas can be applied in other domains in
addition to multimedia authoring. For instance, we are working on a new programming language
for kids that is designed to be more natural [24]. We have also proposed to create natural
programming languages for controlling robots used for assembly tasks, for authoring digital video
productions, and for performing data visualization and filtering tasks. I believe there are many
domains where end-users who are not professional programmers would benefit from using more
natural programming techniques.

Conclusions
In conclusion, it is inevitable that consumer audio, video and still photography will migrate to

be digital, and new hardware and software will make it possible to view, share and edit video and
audio. With this will come an increasing demand by authors for the ability to control how people
view and interact with their creations. The World-Wide-Web will continue to expand, with more
and more people creating their own Web pages, and wanting to make them more interesting by
adding Multimedia. So authoring will become more and more universal, including the need to
support interactive behaviors.

By studying people and their needs, we can create much more effective authoring
environments, that will empower everyone to be able to author their own multimedia
presentations that incorporate interesting behaviors. But more research is needed in this area, so I
encourage you to think about performing, sponsoring or using research on the human side of the
authoring challenge.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 11

Acknowledgements
Dr. Myers is supported in part by a grant from NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or
implied, of NCCOSC or the U.S. Government.

References

1. Caruso, D., “Technology; Digital Commerce; The interactive media industry begins to deconstruct its
self-made myths,” in New York Times1997. New York. pp. D7.

2. Corel, “Click and Create,” 1996. Corel Corporation, P.O. Box 3595, Salinas, California, 93912 - 3595.
http://www.corel.com.

3. Cypher, A., ed. Watch What I Do: Programming by Demonstration. 1993, MIT Press: Camb., MA.

4. Dertouzos, M. and al., e., “ISAT Summer Study: Gentle Slope Systems; Making Computers Easier to
Use,” 1992. Presented at Woods Hole, MA, August 16.

5. Green, T.R.G. and Petre, M., “Usability Analysis of Visual Programming Environments: A 'Cognitive
Dimensions' Framework.” Journal of Visual Languages and Computing, 1996. 7(2): pp. 131-174.

6. Hardaway, D. and Will, R.P., “Digital Multimedia Offers Key to Educational Reform.” Communications
of the ACM, 1997. 40(4): pp. 90-91. April.

7. Hix, D. and Hartson, H.R., Developing User Interfaces; Ensuring Usability Through Product & Process.
1993, New York: John Wiley & Sons, Inc. 381.

8. Hoc, J.-M. and Nguyen-Xuan, A., “Language Semantics, Mental Models and Analogy,” in Psychology of
Programming, J.-M. Hoc, et al., Editors. 1990, Academic Press. London. pp. 139-156.

9. Hutchins, E.L., Hollan, J.D., and Norman, D.A. “Direct Manipulation Interfaces,” in User Centered
System Design. 1986. Hillsdale, New Jersey: Lawrence Erlbaum Associates. pp. 87-124.

10. Landay, J. and Myers, B.A. “Interactive Sketching for the Early Stages of User Interface Design,” in
Proceedings SIGCHI'95: Human Factors in Computing Systems. 1995. Denver, CO: pp. 43-50.

11. Lieberman, H., ed. Learner-Centered Design. Communications of the ACM, ed. 39. 1996,

12. McDaniel, R.G. and Myers, B.A. “Building Applications Using Only Demonstration,” in 1998
International Conference On Intelligent User Interfaces. 1998. San Francisco, CA: pp. 109-116.

13. Miller, R.C. and Myers, B.A., Creating Dynamic World Wide Web Pages by Demonstration. Carnegie
Mellon University School of Computer Science, CMU-CS-97-131 and CMU-HCII-97-101, 1997,

14. Modugno, F. and Myers, B.A., “Visual Programming in a Visual Shell -- A Unified Approach.”
Journal of Visual Languages and Computing, 1997. 8(5/6): pp. 276-308.

15. Myers, B.A., “Creating User Interfaces Using Programming-by-Example, Visual Programming, and
Constraints.” ACM Transactions on Programming Languages and Systems, 1990. 12(2): pp. 143-177.

16. Myers, B.A. “Text Formatting by Demonstration,” in Proceedings SIGCHI'91: Human Factors in
Computing Systems. 1991. N.O., LA: pp. 251-256.

17. Myers, B.A., “Demonstrational Interfaces: A Step Beyond Direct Manipulation.” IEEE Computer,
1992. 25(8): pp. 61-73.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 12

18. Myers, B.A., Natural Programming: Project Overview and Proposal. Technical Report, Carnegie
Mellon University School of Computer Science, CMU-CS-98-101 and CMU-HCII-98-100, 1998,
Pittsburgh.

19. Myers, B.A. “Scripting Graphical Applications by Demonstration,” in Proceedings SIGCHI'98:
Human Factors in Computing Systems. 1998. Los Angeles, CA: pp. 534-541.

20. Myers, B.A., McDaniel, R.G., and Kosbie, D.S. “Marquise: Creating Complete User Interfaces by
Demonstration,” in Proceedings INTERCHI'93: Human Factors in Computing Systems. 1993. Amsterdam,
The Netherlands: pp. 293-300.

21. Myers, B.A., Smith, D.C., and Horn, B. “Report of the `End-User Programming' Working Group,” in
Languages for Developing User Interfaces. 1992. Boston, MA: Jones and Bartlett. pp. 343-366.

22. Newell, A. and Card, S.K., “The Prospects for Psychological Science in Human-Computer Interaction.”
Human-Computer Interaction, 1985. 1(3): pp. 209-242.

23. Nielsen, J., Usability Engineering. 1993, Boston: Academic Press.

24. Pane, J.F. “Designing a Programming System for Children with a Focus on Usability,” in Adjunct
Proceedings SIGCHI'98: Conference Summary: Human Factors in Computing Systems. 1998. Los
Angeles, CA: pp. 62-63.

25. Pane, J.F. and Myers, B.A., Usability Issues in the Design of Novice Programming Systems. School of
Computer Science Technical Report, Carnegie Mellon University, CMU-CS-96-132, 1996, Pittsburgh, PA.
Also appears as Carnegie Mellon University Human-Computer Interaction Institute Technical Report
CMU-HCII-96-101.

26. Papert, S., Mindstorms: Children, Computers, and Powerful Ideas. 1980, New York: Basic Books. 230.

27. Pausch, R., Conway, M., and DeLine, R., “Lesson Learned from SUIT, the Simple User Interface
Toolkit.” ACM Transactions on Information Systems, 1992. 10(4): pp. 320-344.

28. Ratanamahatana, C.A., Evaluating What is Natural for Beginners. BS Thesis, Computer Science
Department Carnegie Mellon University, 1998, Pittsburgh, PA.

29. Schank, R.C., “Active Learning through Multimedia.” IEEE Multimedia, 1994. Spring: pp. 69-78.

30. Shneiderman, B., “Direct Manipulation: A Step Beyond Programming Languages.” IEEE Computer,
1983. 16(8): pp. 57-69. Aug.

31. Smith, D.C., Cypher, A., and Spohrer, J., “KidSim: Programming Agents Without a Programming
Language.” Communications of the ACM, 1994. 37(7): pp. 54-67.

32. Soloway, E., “Learning to Program = Learning to Construct Mechanisms and Explanations.” CACM,
1986. 29(9): pp. 850-858. Sep.

33. Stasko, J., Badre, A., and Lewis, C. “Do Algorithm Animations Assist Learning? An Empirical Study
and Analysis,” in Proceedings INTERCHI'93: Human Factors in Computing Systems. 1993. Amsterdam,
The Netherlands: pp. 61-66.

34. Vander Zanden, B. and Myers, B.A., “Demonstrational and Constraint-Based Techniques for Pictorially
Specifying Application Objects and Behaviors.” ACM Transactions on Computer-Human Interaction,
1995. 2(4): pp. 308-356.

35. Werth, A.J., Tourmaline: Formatting Document Headings by Example. 1992, Information Networking
Institute, Carnegie Mellon University.

Authoring Interactive Behaviors for Multimedia NEC Symposium - 13

36. Wolber, D., “An Interface Builder for Designing Animated Interfaces.” ACM Transactions on
Computer-Human Interaction, 1997. 4(4): pp. 347-386. Dec.

	Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 http://www.cs.cmu.edu/~bam
	Abstract
	Introduction
	Definitions
	Authoring
	Interactive Behaviors
	Multimedia

	Why is Authoring Important?
	Why are Interactive Behaviors Important?
	Goal: More People Able to Author Interactive Behaviors
	Approach
	Gentle Slope Systems
	Programming By Demonstration Research
	Natural Programming
	Why Natural?
	Background Research
	First study: PacMan
	Second study: Spreadsheets

	Future Work
	Conclusions
	Acknowledgements
	References

