
Architectural Issues in Software Reuse:
It’s Not Just the Functionality, It’s the Packaging

Mary Shaw
School of Computer Science & Software Engineering Institute

Carnegie Mellon University
Pittsburgh PA 15213

Proc IEEE Symosium on Software Reusability, April 1995

Abstract

Effective reuse depends not only on finding and
reusing components, but also on the ways those
components are combined. The informal folklore
of software engineering provides a number of
diverse styles for organizing software systems.
These styles, or architectures, show how to com-
pose systems from components; different styles
expect different kinds of component packaging
and different kinds of interactions between the
components. Unfortunately, these styles and
packaging distinctions are often implicit; as a
consequence, components with appropriate
functionality may fail to work together. This talk
surveys common architectural styles, including
important packaging and interaction distinc-
tions, and proposes an approach to the problem
of reconciling architectural mismatches.

1. Software designers use diverse
architectural styles

The software architecture group at Carnegie Mellon
has studied descriptions of software system architec-
tures and identified a number of patterns that occur
regularly [Shaw & Garlan 95]. Some of these patterns
govern the overall style for organizing the systems;
others determine the character of component inter-
faces or abstractions for component interaction. A
few of the patterns (e.g., objects) have been carefully
refined [Booch 86], but others are still used quite
informally, even unconsciously. Nevertheless, the
idiomatic patterns are widely recognized. System
designs often appeal to several of these patterns,
combining them in various ways. Inspecting descrip-
tions of actual systems shows that the motivations for
using different patterns are often not carefully
separated, and the interactions of the patterns are
correspondingly obscure.

Systems are composed from identifiable components of
various types. The components interact in identifiable,
distinct ways. Components correspond roughly to
compilation units of conventional programming lan-
guages and to other user-level objects such as files.
Connectors mediate interactions among components:
they govern component interaction and any auxiliary
implementation mechanism required. Connectors do
not in general correspond directly to compilation
units; they manifest themselves as table entries, in-
structions to a linker, dynamic data structures, system
calls, initialization parameters, servers that support
multiple independent connections, and so on. An ar-
chitectural style is based on selected types of compo-
nents and connectors, together with a control structure
that governs execution and rules about other proper-
ties of the system. An overall system model captures
the intuition about how these are integrated. Here are
the major elements of some popular architectural
styles. They have many variations.

Pipeline
System modelmapping data streams to data

streams
Components filters (purely computational, local

processing)
Connectors data streams (ASCII data streams for

unix pipelines)
Control structure data flow

Data abstraction (object-oriented)
System model localize state maintenance
Components managers (e.g., servers, objects,

abstract data types)
Connectors procedure call (method invocation is

essentially procedure call with
dynamic binding)

Control structure decentralized, usually single
thread

Implicit invocation (event-based)
System model independent reactive processes

Proceedings of the Symposium on Software Reuse (SSR "95), (ICSE "95), pp.3-6

Components processes that signal significant
events without knowing recipients of
signals

Connectors automatic invocation of processes
that have registered interest in events

Control structure decentralized; individual com-
ponents are not aware of recipients of
signal

Repository (includes databases and black–
board systems)

System modelcentralized data, usually richly
structured

Components one memory, many purely
computational processes

Connectors computational units interact with
memory by direct data access or
procedure call

Control structure varies with type of repository;
may be external (depends on input
data stream, as for databases),
predetermined, or internal (depends
on state of computation, as for
blackboards)

Interpreter
System model virtual machine
Components one state machine (the execution

engine) and three memories (current
state of execution engine, program
being interpreted, current state of
program being interpreted)

Connectors data access and procedure call
Control structureusually state-transition for

execution engine; input-driven for
selection of what to interpret

Main program and subroutines
System model call and definition hierarchy
Components procedures
Connectors procedure calls
Control structure single thread

Layered
System model hierarchy of opaque layers
Components usually composites; composites are

most often collections of procedures
Connectors depends on structure of components;

often procedure calls, might also be
client-server

Control structure single thread

Notice that each style relies on particular types of
components. The characteristics that are significant to
the style are not the computational functionality of the
components, or the performance, or other properties
usually included in specifications. Rather, they are
the characteristics that affect the abstractions of the
component’s interface—how it interacts with other
components.

Two components might well have the same apparent
functionality but still be non-interchangeable because
they are packaged differently. A familiar example is

the sort operation in unix, which is available as either
a filter or a system call.

Similarly, each architectural style relies on particular
kinds of connectors. The connector types for each
style are selected to match the component types.

The overall properties of the style—especially its de-
sign integrity—depend on this judicious match.
Components packaged in other ways may not inter-
operate properly within the style, and other connec-
tors (or “frameworks” with other interaction rules)
may not provide appropriate glue to integrate the
system.

2. Reconciling Architectural Mismatch

2.1. Heterogeneity is Inevitable

Advocates of some specific architectural styles argue
that all systems should be designed within a single
paradigm. This approach is intrinsically flawed.

• Most fundamentally, different architec-
tural styles have different strengths and
weaknesses, and a system architecture
should be chosen to fit the problem at
hand.

In addition,

• Multiple standards for packaging,
frameworks, communication, and other
architectural issues are bound to exist.
Even if one standard dominates at some
time, it will eventually change.

• We will always have legacy code that
works, doesn’t fit the new system, but
nevertheless will not be rewritten for
some combination of technical and
economic reasons.

• Even in restricted communities that
share a packaging or interaction stan-
dard, there will be differences in inter-
pretations or representation conven-
tions. This can be seen in unix, where a
single standard (ASCII) guarantees
communication among filters—but fil-
ters can still be incompatible because
they make different assumptions about
how information is represented in the
ASCII streams.

Despite these problems, we regularly compose sys-
tems from pre-existing fragments. Sometimes we
reuse whole components (even, sometimes, from
libraries); other times we copy fragments of unpack-
aged free-standing code .

Most applications devote less than 10% of their code
to the overt function of the system; the other 90% goes

into system or administrative code: input and output;
user interfaces, text editing, basic graphics, and stan-
dard dialogs; communication; data validation and
audit trails; basic definitions for the domain such as
mathematical or statistical libraries; and so on.

It would be very desirable to compose the 90% from
standard parts. Unfortunately, even if you can find a
collection of parts with the right functionality, you are
likely to discover that they don’t conveniently work
together. Often the problem is that the parts make
different assumptions about how data is represented,
about the nature of system interactions, about specific
details in interaction protocols, or about decisions that
are usually explicit (for example, who “owns” the
main control thread). Garlan describes in detail the
problems encountered in assembling a collection of
subsystems that were explicitly intended to be
reusable [Garlan et al 95]. A simple example is the
sort operation in unix: both a filter and a system call
are provided as part of the standard configuration.
Although both sort, they are far from interchangeable.

2.2. Many Ad hoc Tricks Cope with Mismatched Parts

Software engineers have a wide range of techniques
for dealing with architectural mismatch. The simplest
setting for examining these techniques is the composi-
tion of two components. They might be peer compo-
nents, a pair of independent applications, a library
and a caller, a client and a server, etc.

A B? ?

A and B might fail to work together because they
make different assumptions about representations,
communication, packaging, synchronization, seman-
tics, control, or other properties. We’ll refer to the of-
fending property as the “form”. Here are some of the
ways the mismatch between A and B might be re-
solved, together with some common examples.
Naturally the relations are symmetric; the roles A and
B can be exchanged.

A B

Change A’s
form to
B’s form

Attach adaptor
or wrapper to A

Introduce
intermediate

form

Negotiate to
find common

form for A & B

Make B
multilingual

Transform
on the fly

Publish
abstraction
of A’s form

Provide B with
import/export
convertor

1
2 3 4

5
78 6

9 Maintain parallel consistent versions

1. Change A’s form to B’s form: It is, in prin-
ciple, possible (but expensive) to com-
pletely rewrite one of the components to
work with the other.

2. Publish an abstraction of A’s form:
Application Program Interfaces (APIs)
publish the procedure calls used to con-
trol a component. Open Interfaces
usually provide some abstractions in ad-
dition. Projections or views may be
used to provide abstractions of
databases, especially for federated
databases.

3. Transform from A’s form to B’s form on the
fly: Some distributed systems do on-the-
fly conversions from big-endian to little-
endian representations.

4. Negotiate to find a common form for A and
B: Modems commonly negotiate to find
their fastest common protocol.

5. Make B multilingual: Macintosh “fat bi-
naries” will execute on either 680x0 or
PowerPC processors. Portable unix code
will run on many processors.

6. Provide B with import/export converters:
These come in two important forms.
First, standalone applications provide
representation conversion services.
Several are available for graphics (one of
these translates among over 50 formats
on 10 platforms) and word processor
formats. Second, some systems accom-
modate extensions or external add-ons
that translate to and from foreign
formats on demand. Many personal

computer applications come with sev-
eral of these; some include a table of fea-
tures that may not be handled properly.

7. Introduce an intermediate form: First, ex-
ternal interchange representations,
sometimes supported by Interface
Description Languages (IDLs), can pro-
vide a neutral base. This is especially
useful when many components with dif-
ferent forms are involved. Second, stan-
dard distribution forms, such as RTF,
MIF, Postscript, or Adobe Acrobat pro-
vide another alternative—a widespread
safe representation. Third, active media-
tors can be inserted as intermediaries.

8. Attach an adapter or wrapper to A: The
ultimate wrapper may be the code that
causes one machine to emulate another.
Software wrappers can mask differences
in form, as Mosaic and other Web
browsers hide representations of the
documents they display.

9. Maintain parallel consistent versions of A
and B: It is possible, though delicate, for
A and B to maintain their own forms
and be extremely careful to make all
changes to both forms.

These techniques have different advantages and dis-
advantages. They vary in initial expense, in time and
space performance during operation, in flexibility,
and in absolute capability. Selecting the appropriate
technique is an important design problem. By making
both the problem and the alternatives more explicit,
we make a first step toward providing good
engineering guidance.

2.4. Things to Do to Make Progress

Clearly, this taxonomy of mismatch resolution tech-
niques must be elaborated and refined. This is the
objective of ongoing work, and I hope to get feedback
and more examples from this workshop.

In order for the descriptive taxonomy to be useful, it
must be elaborated with information on behavior
with respect to properties of interest. Run-time per-
formance and absolute capability (i.e., interchange
representations don’t provide any help at all with
control mismatches) would be good properties to start
with.

Working designers need not only organized informa-
tion, but also operational guidance on how to apply it.
A third stage of progress will be a designer’s assistant
that offers advice on deciding which technique best
fits a given problem. This is especially needed when
multiple components with multiple mismatches are

involved. Lane [Lane 90] developed a prototype
designer’s assistant of this kind for the problem of
selecting the structure of the user interface component
of a system.

3. Research Support

This work reported here was sponsored by the Wright
Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research
Projects Agency, under grant F33615-93-1-1330, by a grant
from Siemens Corporation, and by Federal Government
Contract Number F19628-90-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering
Institute, a Federally Funded Research and Development
Center. Some of this material was previously covered in
position papers for the First Workshop on Pattern
Languages for Programming and the 1995 Dagstuhl
Workshop on Software Architecture.

4. References

[Booch 86] Grady Booch. Object-Oriented
Development. IEEE Trans. on
Software Engineering SE-12, 2, Feb.
1986.

[Garlan et al 95] David Garlan, Robert Allen, and
John Ockerbloom. Architectural
Mismatch, or Why it’s hard to build
systems out existing parts. Proc 17th
International Conf on Software
Engineering (ICSE-17), April 1995.

[Lane 90] Thomas G. Lane. Studying Software
Architecture Through Design Spaces
and Rules. Carnegie Mel lon
University Technical Report ,
September 1990.

[Shaw & Garlan 95]Mary Shaw and David Garlan.
Software Architecture: Perspectives on
an Emerging Discipline. Prentice
Hall, 1995, to appear.

