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Two conflicting Bayesian views?

View 1: Occam’s Razor. Bayesian learning automatically finds the optimal
model complexity given the available amount of data, since Occam’s Razor
is an integral part of Bayes [Jefferys & Berger; MacKay]. Occam’s Razor
discourages overcomplex models.

View 2: Large models. There is no statistical reason to constrain models; use
large models (no matter how much data you have) [Neal] and pursue the
infinite limit if you can [Neal; Williams, Rasmussen].

Both views require averaging over all model parameters.

These two views seem contradictory.

Example, should we use Occam’s Razor to find the “best” number of hidden
units in a feedforward neural network, or simply use as many hidden units as
we can manage computationally?



View 1: Finding the “best” model complexity

Select the model class with the highest probability given the data:

P (Mi|Y ) =
P (Y |Mi)P (Mi)

P (Y )
, P (Y |Mi) =

∫
θi

P (Y |θi,Mi)P (θi|Mi) dθi

Interpretation: The probability that randomly selected parameter values from
the model class would generate data set Y .

Model classes that are too simple are unlikely to generate the data set.

Model classes that are too complex can generate many possible data sets, so
again, they are unlikely to generate that particular data set at random.
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Bayesian Model Selection: Occam’s Razor at Work
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Lower Bounding the Evidence
Variational Bayesian Learning

Let the hidden states be x, data y and the parameters θ.
We can lower bound the evidence (Jensen’s inequality):

lnP (y|M) = ln
∫
dx dθ P (y,x,θ|M)

= ln
∫
dx dθ Q(x,θ)

P (y,x,θ)
Q(x,θ)

≥
∫
dx dθ Q(x,θ) ln

P (y,x,θ)
Q(x,θ)

.

Use a simpler, factorised approximation to Q(x,θ):

lnP (y) ≥
∫
dx dθ Qx(x)Qθ(θ) ln

P (y,x,θ)
Qx(x)Qθ(θ)

= F(Qx(x), Qθ(θ),y).



Variational Bayesian Learning . . .

Maximizing this lower bound, F , leads to EM-like updates:

Q∗x(x) ∝ exp 〈lnP (x,y|θ)〉Qθ(θ) E−like step

Q∗θ(θ) ∝ P (θ) exp 〈lnP (x,y|θ)〉Qx(x) M−like step

Maximizing F is equivalent to minimizing KL-divergence between the
approximate posterior, Q(θ)Q(x) and the true posterior, P (θ,x|y).



Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):
Condition (1) . The joint probability over variables is in the exponential family:

P (x,y|θ) = f(x,y) g(θ) exp
{
φ(θ)>u(x,y)

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics
Condition (2) . The prior over parameters is conjugate to this joint probability:

P (θ|η,ν) = h(η,ν) g(θ)η exp
{
φ(θ)>ν

}
where η and ν are hyperparameters of the prior.
Conjugate priors are computationally convenient and have an intuitive
interpretation:

• η: number of pseudo-observations
• ν: values of pseudo-observations



Conjugate-Exponential examples

In the CE family:

• Gaussian mixtures
• factor analysis, probabilistic PCA
• hidden Markov models and factorial HMMs
• linear dynamical systems and switching models
• discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart,
Multinomial and others.

Not in the CE family:

• Boltzmann machines, MRFs (no conjugacy)
• logistic regression (no conjugacy)
• sigmoid belief networks (not exponential)
• independent components analysis (not exponential)

Note: one can often approximate these models with models in the CE family.



The Variational EM algorithm

VE Step : Compute the expected sufficient statistics
∑
iu(xi,yi) under the

hidden variable distributions Qxi(xi).

VM Step : Compute expected natural parameters φ(θ) under the parameter
distribution given by η̃ and ν̃.

Properties:

• Reduces to the EM algorithm if Qθ(θ) = δ(θ − θ∗).

• F increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VE step has same complexity as corresponding E step.

• We can use the junction tree, belief propagation, Kalman filter, etc, algorithms
in the VE step of VEM, but using expected natural parameters.



View 2: Large models

We ought not to limit the complexity of our model a priori (e.g. number of hidden
states, number of basis functions, number of mixture components, etc) since we
don’t believe that the real data was actually generated from a statistical model
with a small number of parameters.

Therefore, regardless of how much training data we have, we should consider
models with as many parameters as we can handle computationally.

Neal (1994) showed that MLPs with large numbers of hidden units achieved
good performance on small data sets. He used MCMC techniques to average
over parameters.

Here there is no model order selection task:

• No need to evaluate evidence (which is often difficult).

• We don’t need or want to use Occam’s razor to limit the number of parameters
in our model.

In fact, we may even want to consider doing inference in models with an infinite
number of parameters...



Infinite Models 1: Gaussian Processes

Neal (1994) showed that a one-hidden-layer neural network with bounded
activation function and Gaussian prior over the weights and biases converges
to a (nonstationary) Gaussian process prior over functions.

p(y|x) = N (0, C(x))

where e.g. Cij ≡ C(xi, xj) = g(|xi − xj|).

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Gaussian Process with Error Bars

x 

y 

Bayesian inference is GPs is conceptually and algorithmically much easier than
inference in large neural networks.

Williams (1995; 1996) and Rasmussen (1996) have evaluated GPs as
regression models and shown that they are very good.



Gaussian Processes: prior over functions
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Linear Regression ⇒ Gaussian Processes
in four steps...

1. Linear Regression with inputs xi and outputs yi: yi =
∑
k

wkxik + εi

2. Kernel Linear Regression: yi =
∑
k

wkφk(xi) + εi

3. Bayesian Kernel Linear Regression:

wk ∼ N(0, βk) [indep. of w`], εi ∼ N(0, σ2)

4. Now, integrate out the weights, wk:

〈yi〉 = 0, 〈yiyj〉 =
∑
k

βkφk(xi)φk(xj) + δijσ
2 ≡ Cij

This is a Gaussian process with covariance function:

C(x,x′) =
∑
k

βkφk(x)φk(x′) + δijσ
2 ≡ Cij

This is a Gaussian process with finite number of basis functions. Many useful
GP covariance functions correspond to infinitely many kernels.



Infinite Models 2: Infinite Gaussian Mixtures

Following Neal (1991), Rasmussen (2000) showed that it is possible to do
inference in countably infinite mixtures of Gaussians.

P (x1, . . . , xN |π,µ,Σ) =
N∏
i=1

K∑
j=1

πj N (xi|µj,Σj)

=
∑

s

P (s,x|π,µ,Σ) =
∑

s

N∏
i=1

K∏
j=1

[πj N (xi|µj,Σj)]δ(si,j)

Joint distribution of indicators is multinomial

P (s1, . . . , sN |π) =
K∏
j=1

π
nj
j , nj =

N∑
i=1

δ(si, j) .

Mixing proportions are given symmetric Dirichlet prior

P (π|β) =
Γ(β)

Γ(β/K)K

K∏
j=1

π
β/K−1
j



Infinite Gaussian Mixtures (continued)

Joint distribution of indicators is multinomial

P (s1, . . . , sN |π) =
K∏
j=1

π
nj
j , nj =

N∑
i=1

δ(si, j) .

Mixing proportions are given symmetric Dirichlet conjugate prior

P (π|β) =
Γ(β)

Γ(β/K)K

K∏
j=1

π
β/K−1
j

Integrating out the mixing proportions we obtain

P (s1, . . . , sN |β) =
∫
dπ P (s1, . . . , sN |π)P (π|β) =

Γ(β)
Γ(n+ β)

K∏
j=1

Γ(nj + β/K)
Γ(β/K)

This yields a Dirichlet Process over indicator variables.



Dirichlet Process Conditional Probabilities

Conditional Probabilities: Finite K

P (si = j|s−i, β) =
n−i,j + β/K

N − 1 + β

where s−i denotes all indices except i, and n−i,j is total number of observations
of indicator j excluding ith.
DP: more populous classes are more more likely to be joined

Conditional Probabilities: Infinite K
Taking the limit as K →∞ yields the conditionals

P (si = j|s−i, β) =


n−i,j
N−1+β j represented

β
N−1+β all j not represented

Left over mass, β,⇒ countably infinite number of indicator settings.
Gibbs sampling from posterior of indicators is easy!



Infinite Models 3: Infinite Mixtures of Experts

Motivation:

1. Difficult to specify flexible GP covariance structures:
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eg, varying spatial frequency, varying signal amplitude, varying noise etc.

2. Predictions and training requires C−1 which has O(n3) complexity.

Solution: the divide and conquer strategy of Mixture of Experts.
A (countably infinite) mixture of Gaussian Processes, allows:

• different covariance functions in different parts of space

• divide-and-conquer efficiency (by splitting O(n3) between experts).



Mixture of Experts Review
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Simultaneously train the gating network and the experts using the likelihood:

p(t|x,Ψ, w) =
n∏
i=1

k∑
j=1

p(ci = j|x(i), w)p(t(i)|ci = j, x(i),Ψj).
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Mixture of GP Experts

The likelihood traditionally used for Mixture of Experts:

p(t|x,Ψ, w) =
n∏
i=1

k∑
j=1

p(ci = j|x(i), w)p(t(i)|ci = j, x(i),Ψj),

assumes the data is iid given the experts.
This does not hold for GPs: The experts change depending on what other
examples are assigned to them:
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The likelihood becomes a sum over (exponentially many) possible assignments:

p(t|x,Ψ, w) =
∑

c

p(c|x, w)
k∏
j=1

p({t(i) :ci = j}|x,Ψj).



Gating Network: Input-dependent Dirichlet Process

Usual Dirichlet Process:

P (ci = j|c−i, β) =


n−i,j
N−1+β j represented

β
N−1+β all j not represented

Input-Dependent Dirichlet Process:

P (ci = j|c−i,x, β, w) =


ñ−i,j(x)

N−1+β j represented

β
N−1+β all j not represented

where the gating function gives a “local estimate” of the occupation number:

ñ−i,j(x) = (N − 1)P (ci = j|c−i,x, w),



Bayesian inference in the model

Using ideas of Gibbs sampling, we can alternately:

1) Update the parameters given the indicators:

– GP hyperparameters are sampled by Hybrid Monte Carlo
– gating function kernel widths are sampled with Metropolis

2) Update the indicators given the parameters:

– Sequentially Gibbs sample the indicators combining the gating
p(ci|c−i,x, w) and expert p(ti|ci,x,Ψ) information

Complexity can be further reduced by constraining nj < nmax.



Infinite Mixtures of Experts Results
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(Rasmussen and Ghahramani, 2001)



Infinite Models 4: Infinite hidden Markov Models
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Motivation: We want to model data with HMMs without worrying about
overfitting, picking number of states, picking architectures...



Review of Hidden Markov Models (HMMs)

Generative graphical model: hidden states st, emitted symbols yt
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Hidden state evolves as a Markov process

P (s1:T |A) = P (s1|π0)
T−1∏
t=1

P (st+1|st) ,
P (st+1 = j|st = i) = Aij

i, j ∈ {1, . . . ,K} .

Observation model e.g. discrete yt symbols from an alphabet produced
according to an emission matrix, P (yt = `|st = i) = Ei`.



Infinite HMMs
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Approach: Countably-infinite hidden states. Deal with both transition and
emission processes using a two-level hierarchical Dirichlet process.

Transition process Emission process
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Gibbs sampling over the states is possible, while all parameters are implicitly
integrated out; only five hyperparameters need to be inferred (Beal, Ghahramani,
and Rasmussen, 2001).



Trajectories under the Prior

explorative: α = 0.1, β = 1000, γ = 100 repetitive: α = 0, β = 0.1, γ = 100

self-transitioning: α = 2, β = 2, γ = 20 ramping: α = 1, β = 1, γ = 10000

Just 3 hyperparameters provide:

• slow/fast dynamics (α)
• sparse/dense transition matrices (β)
• many/few states (γ)
• left→right structure, with multiple interacting cycles



Real data

Lewis Carroll’s Alice’s Adventures in Wonderland

0 0.5 1 1.5 2 2.5
x 10

4

0

500

1000

1500

2000

2500

word position in text

w
or

d 
id

en
tit

y

With a finite alphabet a model would assign zero likelihood to a test sequence
containing any symbols not present in the training set(s).
In iHMMs, at each time step the hidden state st emits a symbol yt, which can
possibly come from an infinite alphabet.



A toy example

ABCDEFEDCBABCDEFEDCBABCDEFEDCBABCDEFEDCB...
This requires minimally 10 states to capture.
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iHMM Results

True transition and
emission matrices n(1) m(1) n(80) m(80) n(150) m(150)

True transition and
emission matrices n(1) m(1) n(100) m(100) n(230) m(230)

True and learned transition and emission probabilities/count matrices up to permutation of the
hidden states; lighter boxes correspond to higher values.

(top row) Expansive HMM. Count matrix pairs {n,m} are displayed after {1, 80, 150} sweeps
of Gibbs sampling.

(bottom row) Compressive HMM. Similar to top row displaying count matrices after
{1, 100, 230} sweeps of Gibbs sampling.

See hmm2.avi and hmm3.avi



Alice Results

• Trained on 1st chapter (10787 characters: A . . . Z, 〈space〉, 〈period〉) =2046 words.

• iHMM initialized with random sequence of 30 states. α = 0; β = βe = γ = γe = 1.

• 1000 Gibbs sweeps (=several hours in Matlab).

• n matrix starts out full, ends up sparse (14% full).

200 character fantasies...

1: LTEMFAODEOHADONARNL SAE UDSEN DTTET ETIR NM H VEDEIPH L.SHYIPFADB
OMEBEGLSENTEI GN HEOWDA EELE HEFOMADEE IS AL THWRR KH TDAAAC CHDEE OIGW
OHRBOOLEODT DSECT M OEDPGTYHIHNOL CAEGTR.ROHA NOHTR.L

250: AREDIND DUW THE JEDING THE BUBLE MER.FION SO COR.THAN THALD THE
BATHERSTHWE ICE WARLVE I TOMEHEDS I LISHT LAKT ORTH.A CEUT.INY OBER.GERD
POR GRIEN THE THIS FICE HIGE TO SO.A REMELDLE THEN.SHILD TACE G

500: H ON ULY KER IN WHINGLE THICHEY TEIND EARFINK THATH IN ATS GOAP
AT.FO ANICES IN RELL A GOR ARGOR PEN EUGUGTTHT ON THIND NOW BE WIT OR
ANND YOADE WAS FOUE CAIT DOND SEAS HAMBER ANK THINK ME.HES URNDEY

1000: BUT.THOUGHT ANGERE SHERE ACRAT OR WASS WILE DOOF SHE.WAS ABBORE
GLEAT DOING ALIRE AT TOO AMIMESSOF ON SHAM LUZDERY AMALT ANDING A BUPLA
BUT THE LIDTIND BEKER HAGE FEMESETIMEY BUT NOTE GD I SO CALL OVE



Alice Results: Number of States and Hyperparameters
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Which view, 1 or 2?

In theory, view 2 (large/infinite models) is more natural and preferable.
But models become nonparametric and often require sampling or O(n3)
computations (e.g. GPs).

hyperparameters

parameters

...data

hyperparameters

...

In practice, view 1 (occam’s razor) is sometimes attractive, yielding smaller
models and allowing deterministic (e.g. variational) approximation methods.



Summary & Conclusions

• Bayesian learning avoids overfitting and can be used to do model selection.

• Two views: model selection via Occam’s Razor, versus large/infinite models.

• View 1 - a practical approach: variational approximations

– Variational EM for CE models and propagation algorithms

• View 2 - Gaussian processes, infinite mixtures, mixture of experts & HMMs.

– Results in non-parametric models, often requires sampling.

• In the limit of small amounts of data, we don’t necessarily favour small models
— rather the posterior over model orders becomes flat.

• The two views can be reconciled in the following way: Model complexity
6= number of parameters, Occam’s razor can still work selecting between
different infinite models (e.g. rough vs smooth GPs).



Scaling the parameter priors

To implement each view it is essential to scale parameter priors appropriately
— this determines whether an Occam’s hill is present or not.

Unscaled models:

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

Model order

−1 0 1

−2

−1

0

1

2

Order 0

−1 0 1

−2

−1

0

1

2

Order 2

−1 0 1

−2

−1

0

1

2

Order 4

−1 0 1

−2

−1

0

1

2

Order 6

−1 0 1

−2

−1

0

1

2

Order 8

−1 0 1

−2

−1

0

1

2

Order 10

Scaled models:
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Appendix: Infinite Mixture of Experts



Graphical Model for iMGPE

µ µ µσ σ σθ θ v v

2 2 2
u u

k ←8

Covariance function

logθ1 log u

1...n

x1...n

α

....w w1 D

c1...n

logθ2
.... logθD log v

Gating function t

x1...n, t1...n inputs and targets (observed)
c1...n indicators ci ∈ {1 . . . k}
w gating function kernel widths
Ψ = {θ, v, u} GP hyperparameters: θ input length scales

v signal variance
u noise variance

α the Dirichlet process concentration parameter
µ’s, σ2’s GP hyper-hypers



How Many Experts?

simple, assume an infinite number of experts!

Dirichlet Process with concentration parameter α defines the conditional prior
for an indicator to be:

p(ci = j|c−i, α) =
n−i,j

n− 1 + α

where n−i,j is the occupation number for expert j (excluding example i) for
currently occupied experts.

The total probability of all (infinitely many) unoccupied experts combined:

p(ci = jnew|c−i, α) =
α

n− 1 + α

Input-Dependent Dirichlet Process combines the DP with a gating function:

ñ−i,j = (n− 1)p(ci = j|c−i,x, w),

which gives a “local estimate” of the occupation number.



The algorithm

Sample:

1. do a Gibbs sampling sweep over all indicators

2. sample gating function kernel widths w using Metropolis

3. for each of the occupied experts:
do Hybrid Monte Carlo for the GP hyperparameters θ, v, u.

4. Sample the Dirichlet process concentration parameter, α using Adaptive
Rejection Sampling.

5. Optimize the GP hyper-hypers, µ, σ2.

Repeat until the Markov chain has adequately sampled the posterior.



Appendix: Infinite HMMs



Generative model for hidden state

Propose transition to st+1 conditional on current state, st.
Existing transitions are more probable,
thus giving rise to typical trajectories.
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If oracle propose according to occupancies.
Previously chosen oracle states are more
probable.
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Another toy example:

Small HMMs with left-right dynamics:

True Transition Matrix True Emission Matrix

Inferred Transition Counts Inferred Emission Counts

Sequence of length 800, starting with 20 states, 150 Gibbs sweeps.


