15-853:Algorithms in the Real World

Error Correcting Codes ITIT
- Expander graphs
- Tornado codes

Thanks to Shuchi Chawla for the slides
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Why Tornado Codes?

Desgined by Luby, Mitzenmacher, Shokrollahi et al
Linear codes like RS & random linear codes

The other two give nearly optimal rates
But they are slow :

Code Encoding Decoding
Random Linear | O(n?) o(n3)
RS O(n log n) o(n?)
Tornado O(n log 1/¢) O(n log 1/¢)
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The idea behind Tornado codes

Easy coding/decoding:
linear codes with explicit construction

Fast coding/decoding:

each check bit depends on only a few message
bits
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Think of this as a “regular” Bipartite Graph

Each message bit is used in only a few check bits
=> Low degree bipartite graph
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Properties of a good code

There should be “few" check bits

Linear time encoding

- Average degree on the left should be a small
constant

Easy error detection/decoding

- Each set of message bits should influence many
check bits

- Existence of unshared neighbors
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Expander Graphs (bipartite)

Bk bits

Properties
- Expansion: every small subset (k<an) on left has
many (>Bk) neighbors on right

- Low degree - not strictly part of the definition,
but typically assumed
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Expander Graphs (non-bipartite)

> 4
s

G

Properties
- Expansion: every small subset (k<an) has many
(>Bk) neighbors
- Low degree
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Expander Graphs: Applications

Pseudo-randomness: implement randomized
algorithms with fewer random bits

Cryptography: strong one-way functions from weak
ones.

Hashing: efficient n-wise independent hash
functions

Random walks: quickly spreading probability as you
walk through a graph

Error Correcting Codes: several constructions

Communication networks: fault tolerance, gossip-
based protocols, peer-to-peer networks
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d-reqgular graphs

An undirected graph is d-regular if every vertex has
d neighbors.

A bipartite graph is d-regular if every vertex on the
left has d neighbors on the right.

The constructions we will be looking at are all d-
regular.
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Expander Graphs: Properties

If we start at a node and wander around randomly, in
a "short” while, we can reach any part of the graph
with “reasonable” probability. (rapid mixing)

Expander graphs do not have small separators.

Expander graphs have certain important properties
on the eigenvalues of their adjacency matrix.
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Expander Graphs: Eigenvalues

Consider the normalized adjacency matrix A; for an
undirected graph G (all rows sum to 1)

The (x;\;) satisfying
A X; = A X
are the eigenvectors and eigenvalues of A.

Consider the eigenvalues Ay > Ay > A, > ...

For a d-regular graph, A = 1. Why?

The separation of the eigenvalues tell you a lot about
the graph (we will revisit this several times).

For expander graphs A, is much smaller than A,

Expansion B = (1/A,)?
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (B)

Randomized constructions
- A random d-regular graph is an expander with a high
probability
- Construct by choosing d random perfect matchings
- Time consuming and canhot be stored compactly

Explicit constructions
- Cayley graphs, Ramanujan graphs etc

- Typical technique - start with a small expander, apply
operations to increase its size

15-853 Pagel3

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Squaring
- G2 contains edge (uw) if G contains edges (u,v)
and (v,w) for some node v

-A=A?-1/dI
- MN=A2-1/d
-d<d?-d
- Size =
Degree 1
Expansion 1
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Tensor Product
- 6= AxB nodes are (ab) VacA and beB
- edge between (a,b) and (a',b") if A contains (a,a’)
and B contains (b,b)

- n'=nn,

- AN =max (A, Ay) Size X

- d'=dd, Degree 1
Expansion |
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product
- "Multiply” a big graph with a small graph

n, = d;
d2 = \/dl
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product
- "Multiply” a big graph with a small graph

Size 1
Degree !
Expansion 1
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The loss model

Random Erasure Model:
- Each bit is lost independently with some
probability p
- We know the positions of the lost bits
For a rate of (1-p) can correct (1-&)p fraction of the
errors.
Seems to imply a
(n, (I-p)n, (1-€)pn+1),
code, but not quite because of random errors
assumption (worst case distance might be less).
We will assume p = .5.
Error Correction can be done with some more effort
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Tornado codes

Will use d-regular bipartite graphs with k nodes on
the left and pk on the right (notes assume p = .5)

Will need B > d/2 expansion.
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k= # of message bits
my (notes use n)
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Tornado codes: Encoding

Why is it linear time?

Computes the sum modulo

my 2 of its neighbors
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Tornado codes: Decoding

Assume that all the check bits are intact

Find a check bit such that only one of its neighbors
is erased (an wnshared neighbor)

Fix the erased code, and repeat.
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Tornado codes: Decoding

Need to ensure that we can always find such a check bit
"Unshared neighbors" property
- Every small subset (I<ak) on left has at least (>2l)
unshared neighbors on right.
- If &> 0 then for sufficiently small humber of errors
(I < ak) at least one has an unshared neighbor
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Tornado codes: Decoding

Can we always find unshared neighbors?

Expander graphs give us this property if B> d/2
In particular & > (2p/d) - 1 (see notes)

Also, [Luby et al] show that if we construct the
graph from a specific kind of degree sequence,
then we can always find unshared neighbors.
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What if check bits are lost?

Cascading

- Use another bipartite graph to construct another level of
check bits for the check bits

- Final level is encoded using RS or some other code

E\:
%% pk ~ Vi
0 total bitsn ~ k(1 +p +p2 +..)

, = k/(1-p)
0 rate = k/n = (1-p)

©oocoococo0ocoo
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Cascading

Encoding time
- for the first k stages : |E| = d x |V| = O(K)
- for the last stage: vk x vk = O(k)

Decoding time
- start from the last stage and move left
- again proportional to |E|
- also proportional to d, which must be at least
1/¢ o make the decoding work
Can fix kp(1-€) random erasures
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Expander Codes

Input:
Regular expander G on n nodes, degree d
Code C of block length d, rate r, rel. distance &

Output:
Code C(6,C) of block length dn/2, rate 2r-1,

rel. distance ~ &

Linear time encoding/decoding
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Expander Codes: Construction

We associate each edge in 6 with a bit of the code

For every vertex, the edges around it form a code
word in C

Block length = number of edges = nd/2

110eC
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non
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001111010 € C(6.,C)
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Expander Codes: Construction

Linear code C has rate r
=> there are (1-r)d linear constraints on its bits

(these constraints define a linear subspace of dimension rd)

Total number of constraints in the entire graph 6
=(1-r)nd

Total length of code = nd/2

=> Total humber of message bits = nd (r-1/2)

Therefore, rate is 2 (r-1/2) = 2r-1
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Expander Codes: Construction

For linear codes, the minimum distance between two
code words = minimum weight of a code word

Intuition:
If the weight of a code word is small, then the
weight of edges around some vertex is small
=> distance of C is small => contradiction
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Expander Graphs: Construction

Expander graphs:
Any set of an nodes must have at most
m = (a? + (a-02) A/d) dn/2 edges
So, a group of m edges must touch at least an vertices
One of these vertices touches at most m/2an edges
But these should be at least 3d for the code to be valid

So, (a + (1-a) A/d)d > &d
=> o> (8- A/d)/(1-A/d)

Minimum distance is atleast a (o + (1-a) A/d) ~ &
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Some extra slides
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Expander Graphs: Properties

Prob. Dist. - t;  Uniform dist. - u
Small |t-u| indicates a large amount of “randomness”

Show that |AT-u| < A, |Teu|
Therefore small A, => fast convergence to uniform

Expansion B = (1/),)?
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Expander Graphs: Properties

To show that |Am-u| < A,|TeUl

Let m=u+n
u is the principle eigenvector Au=u
Tt is perpendicular to u ATt < ATt

So, ATt < u + ATt

Thus, |ATt- u| < A, ||
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