15-853:Algorithms in the Real World

Cryptography 1 and 2

15-853 Page 1

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page2

Cryptography Outline

‘ Introduction:

- terminology

- cryptanalytic attacks

- security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ..
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page 3

Some Terminology

Cryptography - the general term
Cryptology - the mathematics

Encryption - encoding but sometimes used as general
term)

Cryptanalysis - breaking codes

Steganography - hiding message

Cipher - a method or algorithm for encrypting or
decrypting

15-853 Page4

More Definitions
Plaintext

)= C
Cyphertext

[Decryption| by(0)=

Original Plaintext

Key,

Key,

Private Key or Symmetric: Key, = Key,

Public Key or Asymmetric: Key, # Key,
Key, or Key, is public depending on the protocol

15-853 Page5

Cryptanalytic Attacks

C = ciphertext messages
M = plaintext messages

Ciphertext Only:Attacker has multiple Cs but does
not know the corresponding Ms

Known Plaintext: Attacker knows some number of
(C.M) pairs.

Chosen Plaintext: Attacker gets to choose M and
generate C.

Chosen Ciphertext: Attacker gets to choose € and
generate M.

15-853 Page 6

What does it mean to be secure?

Unconditionally Secure: Encrypted message cannot
be decoded without the key

Shannon showed in 1943 that key must be as long as
the message to be unconditionally secure - this is
based on information theory

A one time pad - xor a random key with a message
(Used in 2" world war)

Security based on computational cost: it is
computationally “infeasible” to decode a message
without the key.

No (probabilistic) polynomial time algorithm can
decode the message.

15-853 Page 7

The Cast

Alice - initiates a message or protocol
Bob - second participant

Trent - trusted middleman

Eve - eavesdropper

Mallory - malicious active attacker

Mallory

k)4

15-853 Page8

Cryptography Outline

Introduction: terminology, cryptanalysis, security

‘ Primitives:

- one-way functions

- one-way trapdoor functions

- one-way hash functions
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ..
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page9

Primitives: One-Way Functions

A function
Y = f(x)

is one-way if it is easy to compute y from x but
"hard” to compute x from y

Building block of most cryptographic protocols

And, the security of most protocols rely on their
existence.

Unfortunately, not known to exist. This is true even
if we assume P = NP.

15-853 Page 10

One-way functions:
possible definition

1. F(x) is polynomial time
2. FY(x)is NP-hard

What is wrong with this definition?

15-853 Page 11

One-way functions:
better definition

For most y no single PPT (probabilistic polynomial
time) algorithm can compute x

Roughly: at most a fraction 1/|x|¥ instances x are
easy for any k and as |x| -> «

This definition can be used to make the probability
of hitting an easy instance arbitrarily small.

15-853 Page 12

Some examples (conjectures)

Factoring:
x = (uv)
y = f(uv) = u*v
If uand v are prime it is hard to generate them
fromy.
Discrete Log: y = g* mod p
where p is prime and g is a "generator” (ie., g!, g2,
g%, ... generates all values < p).
DES with fixed message: y = DES,(m)
This would assume a family of DES functions of
increasing key size

15-853 Page 13

One-way functions in
private-key protocols

y = ciphertext
m = plaintext
X = key
y = f(x) = Ex(m)
In a known-plaintext attack we know a (y,m) pair.
The m along with E defines f(x)
f(x) needs to be easy
f-1(y) should be hard
Otherwise we could extract the key x.

15-853 Page 14

One-way functions in
public-key protocols

y = ciphertext Note the change of

x = plaintext role of the key and

k = public key plaintext from the
previous example

y = £(x) = Ey(x)
We know k and thus f(x)
f(x) needs to be easy
f-1(y) should be hard
Otherwise we could decrypt y.
But what about the intended recipient, who should be
able to decrypt y?

15-853 Page 15

One-Way Trapdoor Functions

A one-way function with a "trapdoor”

The trapdoor is a key that makes it easy to invert
the function y = f(x)

Example: RSA (conjecture)
y = x¢modn
Where n = pq (p, q, e are prime)

p or q or d (where ed = (p-1)(g-1) mod n) can be
used as trapdoors

In public-key algorithms
f(x) = public key (e.g., e and n in RSA)
Trapdoor = private key (e.g., d in RSA)

15-853 Page 16

One-way Hash Functions

Y = h(x) where
- y is a fixed length independent of the size of x.
In general this means h is not invertible since it
is many to one.

- Calculating y from x is easy

- Calculating any x such that y = h(x) give y is
hard

Used in digital signatures and other protocols.

15-853 Page 17

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols:

- digital signatures

- key exchange
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page 18

Protocols

Other protocols:

- Authentication
Secret sharing
Timestamping services
Zero-knowledge proofs
Blind-signatures
Key-escrow
Secure elections
Digital cash

Implementation of the protocol is often the weakest
point in a security system.

15-853 Page 19

Protocols: Digital Signatures

Goals:

1. Convince recipient that message was actually
sent by a trusted source

2. Do not allow repudiation, ie., that's not my
signature.

3. Do not allow tampering with the message
without invalidating the signature

Ttem 2 turns out to be really hard to do

15-853 Page 20

Using private keys

- ka is a secret key shared by Alice and Trent
- kb is a secret key shared by Bob and Trent
sig is a note from Trent saying that Alice “signed” it.
To prevent repudiation Trent needs to keep m or at
least h(m) in a database

15-853 Page 21

Using Public Keys

Dl

K1 = Alice's private key
Bob decrypts it with her public key

More Efficiently

Dia(h(m)) + m

h(m) is a one-way hash of m

15-853 Page 22

Key Exchange

Private Key method

Eku(k)

Generates k Ero(k)

Public Key method

€l

Generates k k1 = Bob's public key

Or we can use a direct protocol, such as Diffie-
Hellman (discussed later)

15-853 Page 23

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..

‘ Number Theory Review:

- Groups

- Fields

- Polynomials and Galois fields
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page 24

Number Theory Outline

Groups
- Definitions, Examples, Properties

- Multiplicative group modulo n
- The Euler-phi function
Fields
- Definition, Examples
- Polynomials
- Galois Fields
Why does number theory play such an important role?

It is the mathematics of finite sets of values.

15-853 Page 25

Groups

A Group (6,*I) is a set & with operator * such that:

1. Closure. Forallabe 6, a*bec &6

2. Associativity. For all a.b,ce 6, a*(b*c) = (a*b)*c

3. Identity. There exists I e &, such that for all
ae G, a*I=I*a=a

4. Inverse. For every ae 6, there exist a unique
element b € 6, such that a*b=b*a=T

An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a,b € 6, a*b=b*a

15-853 Page 26

Examples of groups

- Integers, Reals or Rationals with Addition

- The nonzero Reals or Rationals with
Multiplication

- Non-singular n x n real matrices with Matrix
Multiplication

- Permutations over n elements with composition
[0-1, 152, 2-0] 0 [0-1, 150, 2-2] = [0-0, 152, 2-1]

We will only be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-853 Page 27

Key properties of finite groups

Notation: ai=a*a*a* .. j times

Theorem (Fermat's little): for any finite group
(6*I) andge6,glél=T

Definition: the order of g € G is the smallest positive
integer m such that gm= I

Definition: a group G is cyclic if thereisage G
such that order(g) = |6|

Definition: an element g € G of order |G| is called a
generator or primitive element of G.

15-853 Page 28

Groups based on modular arithmetic

The group of positive integers modulo a prime p
z'={1,23,.,p1
*, = multiplication modulo p
Denoted as: (ZP*, o
Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.
Example: Z,"={1,2,3,4,5,6}
11=1,21=4,31=5,61=6

15-853 Page 29

Other properties

|Zp*| = (P'l)
By Fermat's little theorem: a®-1=1 (mod p)
Example of Z,*

X x2 x3 x4 x5 x6
1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
Gener‘afor‘s< 4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1
For all p the group is cyclic.
15-853 Page 30

What if n is not a prime?

The group of positive integers modulo a non-prime n
Z,={1,2,3,.., n1}, nnot prime
*, = multiplication modulo n
Required properties?
1. Closure. ?
2. Associativity. ?
3. Identity. ?
4. Inverse. ?
How do we fix this?

15-853 Page 31

Groups based on modular arithmetic

The multiplicative group modulo n
Z ={m:1<m<n,gcd(nm)=1}
* = multiplication modulo n
Denoted as (Z,”, *,
Required properties:
Closure. Yes.
Associativity. Yes.
Identity. 1.
Inverse. Yes.
Example: Z;5"={1,2,4,7,8,11,13,14}
111=1,21=8,41=4,71=13,111=11,141= 14

15-853 Page 32

The Euler Phi Function

z,

=[Z,[=n[10-1/p)
If nis a product of two primes p and g, then

¢(n) = pa(l-1/ p)A1-1/q) =(p-1)(a-1)
Note that by Fermat's Little Theorem:

a”" =1 (modn) for alZ,

Or forn=pq

alP™ME™ =1 (modn) for adZ,
This will be very important in RSA!

15-853 Page 33

Generators

Example of Z,," {1, 3,7, 9}

X x2 x3 x4

1 1 1 1
Generators <: _§, : ; i

9 1 9 1

Forn=(2, 4, pe, 2p¢), p an odd prime, Z, is cyclic

15-853 Page 34

Operations we will need

Multiplication: a*b (mod n)
- Can be done in O(log? n) bit operations, or better
Power: ak (mod n)
- The power method O(log n) steps, O(log® n) bit ops
fun powa, k) =
if (k=0) then 1
else if (k nod 2 = 1)
then a * (pow(a, k/2))?
else (powma, k/2))?2
Inverse: a! (mod n)

- Euclids algorithm O(log n) steps, O(log? n) bit ops

15-853 Page 35

Euclid's Algorithm

Euclid's Algorithm:
gcd(a,b) = ged(b,a mod b)
gcd(@0)=a
“Extended” Euclid's algorithm:
- Find x and y such that ax + by = gcd(a,b)

- Can be calculated as a side-effect of Euclid's
algorithm.

- Note that x and y can be zero or negative.
This allows us to find a-! mod n, forae Z,*
In particular return x inax + ny = 1.

15-853 Page 36

Euclid's Algorithm

fun euclid(a,b) =
if (b =0) then a
el se euclid(b, a nod b)

ged y

fun ext_euclid(a,b) /=
if (b =0) then (a, 1, 0)
el se X
let (d, x, y) = ext_euclid(b, a nod b)
in (d, y, x — (a/b) vy)
end
The code is in the form of an inductive proof.

Exercise: prove the inductive step

15-853 Page 37

Discrete Logarithms

If g is a generator of Z,*, then for all y there is a
unique x (mod @(n)) such that
- y=g“modn

This is called the discrete logarithm of y and we use
the notation
- x = logy(y)

In general finding the discrete logarithm is
conjectured to be hard..as hard as factoring.

15-853 Page 38

Fields

A Field is a set of elements F with binary operators
* and + such that
1. (F,+)is an abelian group

2. (F\TI,,*)isan abelian group
the "multiplicative group”

3. Distribution: a*(b+c) = a*b + a*c

4. Cancellation: a*I, =T,
The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and * are fields.

15-853 Page 39

Finite Fields

Z, (p prime) with + and * mod p, is a finite field.
1. (Z, +)is an abelian group (O is identity)
2. (Z,\0,*)is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0=0

Are there other finite fields?

What about ones that fit nicely into bits, bytes and
words (i.e with 2k elements)?

15-853 Page 40

10

Polynomials over z,

Z,[x] = polynomials on x with coefficients in Z,,.
- Example of Z5[x]: f(x)=3x*+1x3+4x2+ 3
- deg(f(x)) =4 (the degree of the polynomial)
Operations: (examples over Zg[x])
+ Addition: (x3 + 4x2+ 3)+ (3x2+ 1) = (x3+ 2x2+ 4)
+ Multiplication: (x3+3)* (3x2+1) =3x5+x3+4x2+3
«+ I,=0, I.=1
+ +and * are associative and commutative
* Multiplication distributes and O cancels
Do these polynomials form a field?

15-853 Page 41

Division and Modulus

Long division on polynomials (Z5[x]): ’—‘1)“_ 4
X2 +1)x3+4x2 +0x+3
X2 +0x% +1x +0
4x% +4x+3
4AX* +0x+4
0 +4¢ +3)/0¢ +1 = (x+4)
(O +4x2 +3)mod(x? +1) = (4x + 4)
(X +D(x+4) +(@x+4) = (X’ +4x° +3)

15-853 Page 42

Polynomials modulo Polynomials

How about making a field of polynomials modulo
another polynomial? This is analogous to Z,,(i.e.,

integers modulo another integer).
e.g. Zs[x] mod (x2+2x+1)
Does this work?
Does (x + 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of
degree greater than O.

e.g. (x2 +2) for Z[x]
Analogous to a prime number.

15-853 Page 43

Galois Fields

The polynomials
Z,[x] mod p(x)
where
p(x) € Z,[x],
p(x) is irreducible,
and deg(p(x)) = n (i.e. n+1 coefficients)
form a finite field. Such a field has p" elements.
These fields are called Galois Fields or GF(p").
The special case n = 1 reduces to the fields 7,
The multiplicative group of GF(p")/{0} is cyclic (this
will be important later).

15-853 Page 44

11

GF(2M

Hugely practical!
The coefficients are bits {0,1}.

For example, the elements of GF(28) can be
represented as a byte, one bit for each tferm, and
GF(2%) as a 64-bit word.

- eg., x5+ x*+ x +1=01010011
How do we do addition?
Addition over Z, corresponds to xor.

+ Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap

15-853 Page 45

Multiplication over GF(2")

If nis small enough can use a table of all
combinations.

The size will be 2" x 2" (e.g. 64K for GF(28)).
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial
on an overflow by 1 term is simply a test and an
xor.

eg. 0111/1001 = 0111
1011 / 1001 = 1011 xor 1001 = 0010
~ just look at this bit for GF(23)

15-853 Page 46

Multiplication over GF(2")

typedef unsigned char uc;

uc mult(uc a, uc b) {

int p=a;
uc r = 0;
whi l e(b) {
if (b&1) r =r1r " p;
b=>b>>1;
p=p <<l
if (p & 0x100) p = p ~ Ox11B;
}
return r;

}

15-853 Page 47

Finding inverses over GF(2")

Again, if nis small just store in a table.
- Table size is just 2",
For larger n, use Euclid's algorithm.
- This is again easy o do with shift and xors.

15-853 Page 48

12

Polynomials with coefficients in GF(p")

Recall that GF(p") were defined in terms of
coefficients that were themselves fields (ie., Z,).

We can apply this recursively and define:
GF(p")[x] = polynomials on x with coefficients in GF(p").

- Example of GF(23)[x]: f(x)=001x? + 101x + 010
Where 101 is shorthand for x2+1.

15-853 Page 49

Polynomials with coefficients in GF(p")

We can make a finite field by using an irreducible
polynomial M(x) selected from GF(p")[x].

For an order m polynomial and by abuse of notation we
write: GF(GF(p™™), which has p™ elements.

Used in Reed-Solomon codes and Rijndael.
- InRijndael p=2, n=8, m=4, i.e. each coefficient is a

byte, and each element is a 4 byte word (32 bits).

Note: all finite fields are isomorphic to GF(p"), so this

is really just another representation of GF(232).

This representation, however, has practical
advantages.

15-853 Page 50

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
‘ Private-Key Algorithms:

- Block ciphers and product ciphers

- Rijndael, DES

- Cryptanalysis
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

15-853 Page 51

Private Key Algorithms

Plaintext
ey, O
Cyphertext
Key, D(C)=M

Original Plaintext

What granularity of the message does E, encrypt?

15-853 Page 52

13

Private Key Algorithms

Block Ciphers: blocks of bits at a time
- DES (Data Encryption Standard)

Banks, linux passwords (almost), SSL, kerberos, ...

- Blowfish (SSL as option)
- IDEA (used in PGP, SSL as option)
- Rijdael (AES) - the new standard
Stream Ciphers: one bit (or a few bits) at a time
- RC4 (SSL as option)
- PKZip
- Sober, Leviathan, Panama, ...

15-853 Page 53

Private Key: Block Ciphers

Encrypt one block at a time (e.g. 64 bits)
¢ =f(km) m; =f(kc)
Keys and blocks are often about the same size.
Equal message blocks will encrypt to equal codeblocks
- Why is this a problem?
Various ways to avoid this:
- Eg.ci=f(kc ®m)
“Cipher block chaining” (CBC)
Why could this still be a problem?
Solution: attach random block to the front of the

message
15-853 Page 54

Security of block ciphers

Ideal:
- k-bit -> k-bit key-dependent subsitution
(i.e. "random permutation”)

- If keys and blocks are k-bits, can be
implemented with 22« entry table.

15-853 Page 55

Iterated Block Ciphers

m key
" \ Consists of n rounds
R
s K R = the "round" function
2
“ s; = state after round i
Sz k = the ith round key
CE e
c
15-853 Page 56

14

Iterated Block Ciphers: Decryption

Run the rounds in

reverse.
Requires that R has an
inverse.
15-853 Page 57

Feistel Networks

If function is not invertible rounds can still be made
invertible. Requires 2 rounds to mix all bits.

high bits low bits
|

R

F

XOR
' '

Forwards Backwards
Used by DES (the Data Encryption Standard)

15-853 Page 58

Product Ciphers

Each round has two components:
- Substitution on smaller blocks
Decorrelate input and output: “confusion”
- Permutation across the smaller blocks
Mix the bits: "diffusion”
Substitution-Permutation Product Cipher
Avalanche Effect: 1 bit of input should affect all

output bits, ideally evenly, and for all settings of
other in bits

15-853 Page 59

Rijndael

Selected by AES (Advanced Encryption Standard,
part of NIST) as the new private-key encryption
standard.

Based on an open “competition".
- Competition started Sept. 1997.
- Narrowed to 5 Sept. 1999

* MARS by IBM, RC6 by RSA, Twofish by
Counterplane, Serpent, and Rijndael

- Rijndael selected Oct. 2000.
- Official Oct. 2001? (AES page on Rijndael)
Designed by Rijmen and Daemen (Dutch)

15-853 Page 60

15

Goals of Rijndael

Resistance against known attacks:
- Differential cryptanalysis
- Linear cryptanalysis
- Truncated differentials
- Square attacks
- Interpolation attacks
- Weak and related keys
Speed + Memory efficiency across platforms
- 32-bit processors
- 8-bit processors (e.g smart cards)
- Dedicated hardware

Design simplicity and clearly stated security goals
15-853 Page 61

High-level overview

An iterated block cipher with
- 10-14 rounds,
- 128-256 bit blocks, and
- 128-256 bit keys
Mathematically reasonably sophisticated

15-853 Page 62

Blocks and Keys

The blocks and keys are organized as matrices of
bytes. For the 128-bit case, it is a 4x4 matrix.

b by b by ko ki kg koo
b by by by Kok kg kg
b, by byo by ky ks ko ki
b3 b7 Q.1 Q.S k3 I(7 kll I(15
Data block Key

by, by, ..., bis is the order of the bytes in the stream.

15-853 Page 63

Galois Fields in Rijndael

Uses GF(28) over bytes.
The irreducible polynomial is:
M(x) = x8 + x*+ x3+ x+1 or 100011011 or Ox11B

Also uses degree 3 polynomials with coefficients
from GF(28).
These are kept as 4 bytes (used for the columns)
The polynomial used as a modulus is:
M(x) = 00000001x4 + 00000001 or x* +1

Not irreducible, but we only need to find inverses of
polynomials that are relatively prime to it.

15-853 Page 64

16

Each round

Key;

n oo o
Rotate Mix

Byte Rows columns
substitution

The inverse runs the steps and rounds backwards.
Each step must be reversiblel

Byte Substitution

Non linear: y = b! (done over GF(28))
Linear: z = Ay + B (done over GF(2), i.e., binary)

10
11
A=l11
11

P P O O

1
1
1
1

P O o o
o o o »
o o r r
o R kR

O R P OO O PR K

To invert the substitution:
y = Al(z-B) (the matrix A is nonsingular)
b=y! (over GF(28))

15-853 Page 66

15-853 Page 65
Mix Columns
do
For each column a in data block 21
2
as

compute b(x) = (a3x3+a,x?+a;x+ay)(3x3+x2+x+2) mod x*+1
where coefficients are taken over GF(28).

b
New column b is b? where b(x)=b;x3+b,x?+b x+b,

b,
bs

15-853 Page 67

Therefore,b=C+a

Implementation

Using xi mod (x# + 1) = x(imed4)
(a3x3+a,x2+a;x+ao)(3x3+x2+x+2) mod x*+1

= (2ay*3as+ay*az) +

(ag+2a;+3a,+a3)x +
o*ear+toay+ag
(ag*a+2a,+3a3)x2 +
3ay+a;+a,+2a3)x3
o+Gr+ax+eas

w R PN
P P N W
P N WP
N W P

M(x) is not irreducible, but the rows of C and M(x)
are coprime, so the transform can be inverted.
15-853 Page 68

17

Generating the round keys

BHEe
i

Words corresponding to columns of the key

rotate sub byte const;

15-853 Page 69

Performance

Performance: (600Mhz PIII) (from: ssh toolkit):

Algorithm | Bits/key | Mbits/sec
DES-cbc 56 95
twofish-cbc 128 140
Rijndael 128 180

Hardware implementations go up to 2.5 Gbits/sec

15-853 Page 70

Linear Cryptanalysis

A known plaintext attack used to extract the key

ii ik kn

0y O

Consider a linear equality involving i, o, and k
—eg: kidky=i,Dig®is Do,

To be secure this should be true with p = .5
(probability over all inputs and keys)

If true with p = 1, then linear and easy to break

If true with p = .5 + € then you might be able to use
this to help break the system

15-853 Page 71

Differential Cryptanalysis

A chosen plaintext attack used to extract the key

o
_ Round |
o

Considers fixed "differences” between inputs,
Ar =T, - T,,and sees how they propagate into
differences in the outputs, Ag = O; - O,.
“difference” is often exclusive OR

Assigns probabilities to different keys based on
these differences. With enough and appropriate
samples (I, I,, Oy, O,), the probability of a
particular key will converge to 1.

15-853 Page 72

18

