15-853: Algorithms in the Real World

Cryptography 1 and 2

15-853 Page 1

Cryptography Outline

- terminology
- cryptanalytic attacks
- security

Primitives: one-way functions, trapdoors, ... **Protocols:** digital signatures, key exchange, ...

Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

-853 Page 3

Cryptography Outline

Introduction: terminology, cryptanalysis, security

Primitives: one-way functions, trapdoors, ... **Protocols:** digital signatures, key exchange, ...

Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

15-853 Page 2

Some Terminology

 ${\it Cryptography}$ - the general term

Cryptology - the mathematics

Encryption - encoding but sometimes used as general term)

Cryptanalysis - breaking codes

Steganography - hiding message

Cipher - a method or algorithm for encrypting or decrypting

15-853

More Definitions

<u>Private Key</u> or <u>Symmetric</u>: Key₁ = Key₂ <u>Public Key</u> or <u>Asymmetric</u>: Key₁ ≠ Key₂

Key, or Key, is public depending on the protocol

3 Page 5

Cryptanalytic Attacks

C = ciphertext messagesM = plaintext messages

Ciphertext Only: Attacker has multiple Cs but does not know the corresponding Ms

Known Plaintext: Attacker knows some number of **(C,M)** pairs.

Chosen Plaintext: Attacker gets to choose \mathbf{M} and generate \mathbf{C} .

Chosen Ciphertext: Attacker gets to choose ${\bf C}$ and generate ${\bf M}$.

15-853 Page 6

What does it mean to be secure?

<u>Unconditionally Secure</u>: Encrypted message cannot be decoded without the key

Shannon showed in 1943 that key must be as long as the message to be unconditionally secure - this is based on information theory

A one time pad - xor a random key with a message (Used in 2nd world war)

<u>Security based on computational cost</u>: it is computationally "infeasible" to decode a message without the key.

No (probabilistic) polynomial time algorithm can decode the message.

15-853 Page 7

The Cast

Alice - initiates a message or protocol

Bob - second participant

Trent - trusted middleman

Eve - eavesdropper

Mallory - malicious active attacker

Cryptography Outline

Introduction: terminology, cryptanalysis, security Primitives:

- one-way functions
- one-way trapdoor functions
- one-way hash functions

Protocols: digital signatures, key exchange, ..

Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

15-853 Page 9

One-way functions: possible definition

- 1. F(x) is polynomial time
- 2. $F^{-1}(x)$ is NP-hard

What is wrong with this definition?

15-853 Page 11

Primitives: One-Way Functions

A function

Y = f(x)

is <u>one-way</u> if it is easy to compute **y** from **x** but "hard" to compute **x** from **y**

Building block of most cryptographic protocols

And, the security of most protocols rely on their existence.

Unfortunately, not known to exist. This is true even if we assume $P \neq NP$.

15-853 Page 10

One-way functions: better definition

For most y no single PPT (probabilistic polynomial time) algorithm can compute x

Roughly: at most a fraction $1/|x|^k$ instances x are easy for any \underline{k} and as $|x| \to \infty$

This definition can be used to make the probability of hitting an easy instance arbitrarily small.

Some examples (conjectures)

Factoring:

x = (u,v)

y = f(u,v) = u*v

If u and v are prime it is hard to generate them from y.

Discrete Log: $y = q^x \mod p$

where p is prime and g is a "generator" (*i.e.*, g^1 , g^2 , g^3 , ... generates all values < p).

DES with fixed message: $y = DES_x(m)$

This would assume a family of DES functions of increasing key size

-853 Page 13

Note the change of

role of the key and

plaintext from the

previous example

One-way functions in private-key protocols

 \mathbf{y} = ciphertext

m = plaintext

x = key

 $y = f(x) = E_x(m)$

In a known-plaintext attack we know a (y,m) pair.

The m along with E defines f(x)

f(x) needs to be easy

f-1(y) should be hard

Otherwise we could extract the key x.

15-853 Page 14

One-way functions in public-key protocols

y = ciphertext

x = plaintext

k = public key

 $y = f(x) = E_k(x)$

We know k and thus f(x)

f(x) needs to be easy

 $f^{-1}(y)$ should be hard

Otherwise we could decrypt y.

But what about the intended recipient, who should be able to decrypt y?

853

Page 15

One-Way Trapdoor Functions

A one-way function with a "trapdoor"

The <u>trapdoor</u> is a key that makes it easy to invert the function y = f(x)

Example: **RSA** (conjecture)

 $y = x^e \mod n$

Where n = pq(p, q, e are prime)

p or q or d (where ed = (p-1)(q-1) mod n) can be

used as trapdoors

In public-key algorithms

f(x) = public key (e.g., e and n in RSA)

Trapdoor = private key (e.g., d in RSA)

15-853

One-way Hash Functions

Y = h(x) where

- y is a fixed length independent of the size of x.
 In general this means h is not invertible since it is many to one.
- Calculating y from x is easy
- Calculating <u>any</u> x such that y = h(x) give y is hard

Used in digital signatures and other protocols.

15-853 Page 17

Protocols

Other protocols:

- Authentication
- Secret sharing
- Timestamping services
- Zero-knowledge proofs
- Blind-signatures
- Key-escrow
- Secure elections
- Digital cash

Implementation of the protocol is often the weakest point in a security system.

5-853 Page 19

Cryptography Outline

Introduction: terminology, cryptanalysis, security **Primitives:** one-way functions, trapdoors, ...

Protocols:

- digital signatures
- key exchange

Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

15-853 Page 18

Protocols: Digital Signatures

Goals:

- Convince recipient that message was actually sent by a trusted source
- 2. Do not allow repudiation, *i.e.*, that's not my signature.
- 3. Do not allow tampering with the message without invalidating the signature

Item 2 turns out to be really hard to do

Using private keys

- ka is a secret key shared by Alice and Trent
- kb is a secret key shared by Bob and Trent sig is a note from Trent saying that Alice "signed" it.

To prevent repudiation Trent needs to keep m or at least h(m) in a database

5-853 Page 21

Using Public Keys

Alice
$$D_{k1}(m)$$
 Bob

K1 = Alice's private key Bob decrypts it with her public key

More Efficiently

Alice
$$D_{k1}(h(m)) + m$$
 Bob

h(m) is a one-way hash of m

15-853 Page 22

Key Exchange

Public Key method

Or we can use a direct protocol, such as Diffie-Hellman (discussed later)

15-853 Page 23

Cryptography Outline

Introduction: terminology, cryptanalysis, security

Primitives: one-way functions, trapdoors, ... **Protocols:** digital signatures, key exchange, ...

Number Theory Review:

- Groups
- Fields
- Polynomials and Galois fields

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

Number Theory Outline

Groups

- Definitions, Examples, Properties
- Multiplicative group modulo n
- The Euler-phi function

Fields

- Definition, Examples
- Polynomials
- Galois Fields

Why does number theory play such an important role?

It is **the** mathematics of finite sets of values.

15-853 Page 25

Examples of groups

- Integers, Reals or Rationals with Addition
- The nonzero Reals or Rationals with Multiplication
- Non-singular n x n real matrices with Matrix Multiplication
- Permutations over n elements with composition $[0\rightarrow 1, 1\rightarrow 2, 2\rightarrow 0]$ o $[0\rightarrow 1, 1\rightarrow 0, 2\rightarrow 2]$ = $[0\rightarrow 0, 1\rightarrow 2, 2\rightarrow 1]$

We will only be concerned with <u>finite groups</u>, I.e., ones with a finite number of elements.

15-853 Page 27

<u>Groups</u>

A **Group** (G, *, I) is a set G with operator * such that:

- 1. Closure. For all $a,b \in G$, $a * b \in G$
- 2. Associativity. For all $a,b,c \in G$, a*(b*c) = (a*b)*c
- **3. Identity.** There exists $I \in G$, such that for all $a \in G$, a*I=I*a=a
- **4. Inverse.** For every $a \in G$, there exist a unique element $b \in G$, such that a*b=b*a=I

An <u>Abelian or Commutative Group</u> is a Group with the additional condition

5. Commutativity. For all $a,b \in G$, a*b=b*a

Page 26

Key properties of finite groups

Notation: $a^{j} \equiv a * a * a * ... j times$

Theorem (Fermat's little): for any finite group (G, \star, I) and $g \in G$, $g^{|G|} = I$

<u>Definition</u>: the order of $g \in G$ is the smallest positive integer m such that $q^m = I$

<u>Definition</u>: a group G is cyclic if there is a $g \in G$ such that order(g) = |G|

<u>Definition</u>: an element $g \in G$ of order |G| is called a generator or primitive element of G.

Groups based on modular arithmetic

The group of positive integers modulo a prime p

$$Z_{p}^{*} \equiv \{1, 2, 3, ..., p-1\}$$

 $*_{p}^{r} \equiv \text{ multiplication modulo p}$

Denoted as: $(Z_p^*, *_p)$

Required properties

- 1. Closure. Yes.
- 2. Associativity. Yes.
- 3. Identity. 1.
- 4. Inverse. Yes.

Example: $Z_7^* = \{1,2,3,4,5,6\}$ $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$

53 Page 29

Other properties

 $|Z_{p}^{*}| = (p-1)$

By Fermat's little theorem: $a^{(p-1)} = 1 \pmod{p}$

Example of \mathbb{Z}_7^*

	×	X ²	x ³	x ⁴	x ⁵	X ⁶
	1	1	1	1	1	1
	2	4	1	2	4	1
,	3	2	6	4	5	1
Generators<	4	2	1	4	2	1
`	<u>5</u>	4	6	2	3	1
	6	1	6	1	6	1

For all p the group is cyclic.

5-853

Page 30

What if n is not a prime?

The group of positive integers modulo a non-prime n

 $Z_n \equiv \{1, 2, 3, ..., n-1\}, n \text{ not prime}$

 $*_n \equiv \text{ multiplication modulo n}$

Required properties?

- 1. Closure. ?
- 2. Associativity. ?
- 3. Identity. ?
- 4. Inverse. ?

How do we fix this?

15-853 Page 31

Groups based on modular arithmetic

The multiplicative group modulo n

 $Z_n^* \equiv \{m : 1 \le m < n, \gcd(n,m) = 1\}$

* = multiplication modulo n

Denoted as $(Z_n^*, *_n)$

Required properties:

- Closure. Yes.
- · Associativity. Yes.
- · Identity. 1.
- · Inverse. Yes.

Example: $Z_{15}^* = \{1,2,4,7,8,11,13,14\}$

 $1^{-1} = 1$, $2^{-1} = 8$, $4^{-1} = 4$, $7^{-1} = 13$, $11^{-1} = 11$, $14^{-1} = 14$

The Euler Phi Function

$$\phi(n) = \left| \mathbf{Z}_n^* \right| = n \prod_{p|n} (1 - 1/p)$$

If n is a product of two primes p and q, then

$$\phi(n) = pq(1-1/p)(1-1/q) = (p-1)(q-1)$$

Note that by Fermat's Little Theorem:

$$a^{\phi(n)} = 1 \pmod{n}$$
 for $a \in \mathbb{Z}_n^*$

Or for n = pq

$$a^{(p-1)(q-1)} = 1 \pmod{n}$$
 for $a \in \mathbb{Z}_{pa}^*$

This will be very important in RSA!

Page 33

Generators

Example of Z_{10}^* : {1, 3, 7, 9}

	×	x ²	x ³	x ⁴
Generators <	1	1	1	1
	<u>3</u>	9	7	1
	<u>7</u>	9	3	1
	9	1	9	1

For $n = (2, 4, p^e, 2p^e)$, p an odd prime, Z_n is cyclic

2

Page 34

Operations we will need

Multiplication: a*b (mod n)

- Can be done in O(log2 n) bit operations, or better

Power: $a^k \pmod{n}$

- The power method O(log n) steps, O(log³ n) bit ops
fun pow(a,k) =

Inverse: a-1 (mod n)

- Euclids algorithm O(log n) steps, O(log3 n) bit ops

15-853

Page 35

Euclid's Algorithm

Euclid's Algorithm:

 $gcd(a,b) = gcd(b,a \mod b)$

gcd(a,0) = a

"Extended" Euclid's algorithm:

- Find x and y such that ax + by = gcd(a,b)
- Can be calculated as a side-effect of Euclid's algorithm.
- Note that x and y can be zero or negative.

This allows us to find $\underline{a^{-1} \bmod n}$, for $\underline{a} \in Z_n^*$

In particular return \underline{x} in $\underline{ax + ny = 1}$.

15-853

Euclid's Algorithm

The code is in the form of an inductive proof.

Exercise: prove the inductive step

3 Page 37

Discrete Logarithms

If g is a generator of Z_n^* , then for all y there is a unique x (mod $\phi(n)$) such that

 $-y = g^x \mod n$

This is called the <u>discrete logarithm</u> of y and we use the notation

 $- x = \log_a(y)$

In general finding the discrete logarithm is conjectured to be hard...as hard as factoring.

53 Page 38

<u>Fields</u>

A <u>Field</u> is a set of elements F with binary operators
* and + such that

- 1. (F, +) is an abelian group
- 2. ($F \setminus I_+$, *) is an <u>abelian group</u> the "multiplicative group"
- 3. **Distribution**: a*(b+c) = a*b + a*c
- 4. Cancellation: a*I, = I,

The order of a field is the number of elements.

A field of finite order is a finite field.

The reals and rationals with + and * are fields.

5-853 Page 39

Finite Fields

 Z_{D} (p prime) with + and * mod p, is a **finite** field.

- 1. $(Z_p, +)$ is an <u>abelian group</u> (0 is identity)
- 2. $(Z_p \setminus 0, *)$ is an <u>abelian group</u> (1 is identity)
- 3. **Distribution**: a*(b+c) = a*b + a*c
- 4. **Cancellation**: a*0 = 0

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words (i.e with 2^k elements)?

Polynomials over \mathbb{Z}_p

 $\mathbb{Z}_{p}[x]$ = polynomials on x with coefficients in \mathbb{Z}_{p} .

- Example of $\mathbb{Z}_{5}[x]$: $f(x) = 3x^{4} + 1x^{3} + 4x^{2} + 3$
- deg(f(x)) = 4 (the **degree** of the polynomial)

Operations: (examples over $\mathbb{Z}_5[x]$)

- Addition: $(x^3 + 4x^2 + 3) + (3x^2 + 1) = (x^3 + 2x^2 + 4)$
- Multiplication: $(x^3 + 3) * (3x^2 + 1) = 3x^5 + x^3 + 4x^2 + 3$
- $I_{+} = 0$, $I_{*} = 1$
- + and * are associative and commutative
- · Multiplication distributes and 0 cancels

Do these polynomials form a field?

Page 41

Division and Modulus

Long division on polynomials ($\mathbb{Z}_5[x]$):

$$4x^2 + 4x + 3$$

$$(x^3 + 4x^2 + 3)/(x^2 + 1) = (x + 4)$$

$$\frac{4x^2 + 0x + 4}{4x + 4}$$

$$(x^3 + 4x^2 + 3) \mod(x^2 + 1) = (4x + 4)$$

$$(x^{2}+1)(x+4)+(4x+4)=(x^{3}+4x^{2}+3)$$

Page 42

Page 44

Polynomials modulo Polynomials

How about making a field of polynomials modulo another polynomial? This is analogous to \mathbb{Z}_p (i.e., integers modulo another integer).

e.g. $\mathbb{Z}_{5}[x] \mod (x^{2}+2x+1)$

Does this work?

Does (x + 1) have an inverse?

<u>Definition</u>: An irreducible polynomial is one that is not a product of two other polynomials both of degree greater than 0.

e.g. $(x^2 + 2)$ for $\mathbb{Z}_5[x]$

Analogous to a prime number.

15-853 Page 43

Galois Fields

The polynomials

 $\mathbb{Z}_{p}[x] \mod p(x)$

where

 $p(x) \in \mathbb{Z}_p[x],$

p(x) is irreducible,

and deg(p(x)) = n (i.e. n+1 coefficients)

form a finite field. Such a field has p^n elements.

These fields are called Galois Fields or GF(pn).

The special case n = 1 reduces to the fields \mathbb{Z}_p

The multiplicative group of $GF(p^n)/\{0\}$ is cyclic (this will be important later).

GF(2ⁿ)

Hugely practical!

The coefficients are bits {0,1}.

For example, the elements of $GF(2^8)$ can be represented as **a byte**, one bit for each term, and $GF(2^{64})$ as **a 64-bit word**.

-e.g., $x^6 + x^4 + x + 1 = 01010011$

How do we do addition?

<u>Addition</u> over \mathbb{Z}_2 corresponds to xor.

 Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap

53 Page 45

Multiplication over GF(2ⁿ)

If n is small enough can use a table of all combinations.

The size will be $2^n \times 2^n$ (e.g. 64K for $GF(2^8)$). Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an overflow by 1 term is simply a test and an xor.

```
e.g. 0111 / 1001 = 0111
1011 / 1001 = 1011 xor 1001 = 0010
^ just look at this bit for GF(2<sup>3</sup>)
```

Page 46

Multiplication over GF(2ⁿ)

```
typedef unsigned char uc;

uc mult(uc a, uc b) {
   int p = a;
   uc r = 0;
   while(b) {
      if (b & 1) r = r ^ p;
      b = b >> 1;
      p = p << 1;
      if (p & 0x100) p = p ^ 0x11B;
   }
   return r;
}</pre>
```

15-853 Page 47

Finding inverses over GF(2n)

Again, if n is small just store in a table.

- Table size is just 2ⁿ.

For larger n, use Euclid's algorithm.

- This is again easy to do with shift and xors.

15-853

Polynomials with coefficients in $GF(p^n)$

Recall that $GF(p^n)$ were defined in terms of coefficients that were themselves fields (i.e., Z_p). We can apply this **recursively** and define:

 $GF(p^n)[x]$ = polynomials on x with coefficients in $GF(p^n)$.

- Example of $GF(2^3)[x]$: $f(x) = 001x^2 + 101x + 010$ Where 101 is shorthand for x^2+1 .

15-853 Page 49

Cryptography Outline

Introduction: terminology, cryptanalysis, security

Primitives: one-way functions, trapdoors, ... **Protocols:** digital signatures, key exchange, ...

Number Theory: groups, fields, ...

Private-Key Algorithms:

- Block ciphers and product ciphers
- Rijndael, DES
- Cryptanalysis

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

Case Studies: Kerberos, Digital Cash

15-853 Page 51

Polynomials with coefficients in GF(pⁿ)

We can make a <u>finite field</u> by using an irreducible polynomial M(x) selected from $GF(p^n)[x]$.

For an order m polynomial and by <u>abuse of notation</u> we write: $GF(GF(p^n)^m)$, which has p^{nm} elements.

Used in Reed-Solomon codes and Rijndael.

- In Rijndael p=2, n=8, m=4, i.e. each coefficient is a byte, and each element is a 4 byte word (32 bits).

Note: all finite fields are isomorphic to $GF(p^n)$, so this is really just another representation of $GF(2^{32})$. This representation, however, has practical advantages.

-853 Page 50

Private Key Algorithms

What granularity of the message does E_k encrypt?

Private Key Algorithms

Block Ciphers: blocks of bits at a time

- DES (Data Encryption Standard)
 Banks, linux passwords (almost), SSL, kerberos, ...
- Blowfish (SSL as option)
- IDEA (used in PGP, SSL as option)
- Rijdael (AES) the new standard

Stream Ciphers: one bit (or a few bits) at a time

- RC4 (SSL as option)
- PKZip
- Sober, Leviathan, Panama, ...

15-853 Page 53

Private Key: Block Ciphers

Encrypt one block at a time (e.g. 64 bits)

$$c_i = f(k,m_i)$$
 $m_i = f'(k,c_i)$

Keys and blocks are often about the same size.

Equal message blocks will encrypt to equal codeblocks

- Why is this a problem?

Various ways to avoid this:

E.g. c_i = f(k,c_{i-1} ⊕ m_i)
 "Cipher block chaining" (CBC)

Why could this still be a problem?

Solution: attach random block to the front of the message

15-853 Page 54

Security of block ciphers

Ideal:

- k-bit → k-bit key-dependent substitution (i.e. "random permutation")
- If keys and blocks are k-bits, can be implemented with 2^{2k} entry table.

15-853 Page 55

Product Ciphers

Each round has two components:

- <u>Substitution</u> on smaller blocks Decorrelate input and output: "confusion"
- Permutation across the smaller blocks Mix the bits: "diffusion"

Substitution-Permutation Product Cipher

<u>Avalanche Effect</u>: 1 bit of input should affect all output bits, ideally evenly, and for all settings of other in bits

15-853 Page 59

Rijndael

Selected by AES (Advanced Encryption Standard, part of NIST) as the new private-key encryption standard.

Based on an open "competition".

- Competition started Sept. 1997.
- Narrowed to 5 Sept. 1999
 - MARS by IBM, RC6 by RSA, Twofish by Counterplane, Serpent, and Rijndael
- Rijndael selected Oct. 2000.
- Official Oct. 2001? (AES page on Rijndael)

Designed by Rijmen and Daemen (Dutch)

Goals of Rijndael

Resistance against known attacks:

- Differential cryptanalysis
- Linear cryptanalysis
- Truncated differentials
- Square attacks
- Interpolation attacks
- Weak and related keys

Speed + Memory efficiency across platforms

- 32-bit processors
- 8-bit processors (e.g smart cards)
- Dedicated hardware

Design simplicity and clearly stated security goals

High-level overview

An iterated block cipher with

- 10-14 rounds,
- 128-256 bit blocks, and
- 128-256 bit keys

Mathematically reasonably sophisticated

15-853

Page 62

Blocks and Keys

The blocks and keys are organized as matrices of bytes. For the 128-bit case, it is a 4x4 matrix.

$$\begin{pmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \end{pmatrix} \qquad \begin{pmatrix} k_0 & k_4 & k_8 & k_{12} \\ k_1 & k_5 & k_9 & k_{13} \\ k_2 & k_6 & k_{10} & k_{14} \\ k_3 & k_7 & k_{11} & k_{15} \end{pmatrix}$$
 Data block Key

 b_0 , b_1 , ..., b_{15} is the order of the bytes in the stream.

53

Page 63

Galois Fields in Rijndael

Uses GF(28) over bytes.

The irreducible polynomial is: $M(x) = x^8 + x^4 + x^3 + x + 1$ or 100011011 or 0x11B

Also uses degree 3 polynomials with coefficients from $GF(2^8)$.

These are kept as 4 bytes (used for the columns) The polynomial used as a modulus is: $M(x) = 00000001x^4 + 00000001$ or $x^4 + 1$

Not irreducible, but we only need to find inverses of polynomials that are relatively prime to it.

Each round

The inverse runs the steps and rounds backwards. Each step must be reversible!

> 15-853 Page 65

Byte Substitution

Non linear: $y = b^{-1}$ (done over $GF(2^8)$)

z = Ay + B (done over GF(2), i.e., binary) Linear:

To invert the substitution:

 $y = A^{-1}(z - B)$ (the matrix A is nonsingular) b = y-1 (over GF(28))

> 15-853 Page 66

Mix Columns

For each column a in data block

compute $b(x) = (a_3x^3 + a_2x^2 + a_1x + a_0)(3x^3 + x^2 + x + 2) \mod x^4 + 1$

where coefficients are taken over $GF(2^8)$.

New column b is b_0 where $b(x)=b_3x^3+b_2x^2+b_1x+b_0$

> 15-853 Page 67

Using $x^{j} \mod (x^{4} + 1) = x^{(j \mod 4)}$

 $(a_3x^3+a_2x^2+a_1x+a_0)(3x^3+x^2+x+2) \mod x^4+1$

 $= (2a_0 + 3a_1 + a_2 + a_3) +$

 $(a_0+2a_1+3a_2+a_3)x +$ $(a_0+a_1+2a_2+3a_3)x^2+$

 $(3a_0+a_1+a_2+2a_3)x^3$

 $C = \begin{vmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \end{vmatrix}$

Therefore, $b = C \cdot a$

M(x) is not irreducible, but the rows of C and M(x)are coprime, so the transform can be inverted.

Generating the round keys

Words corresponding to columns of the key

Page 69

Performance

Performance: (600Mhz PIII) (from: ssh toolkit):

Algorithm	Bits/key	Mbits/sec
DES-cbc	56	95
twofish-cbc	128	140
Rijndael	128	180

Hardware implementations go up to 2.5 Gbits/sec

15-853

Page 70

Linear Cryptanalysis

A known plaintext attack used to extract the key

Consider a linear equality involving i, o, and k – e.g.: $k_1 \oplus k_6 = i_2 \oplus i_4 \oplus i_5 \oplus o_4$ To be secure this should be true with p = .5 (probability over all inputs and keys) If true with p = 1, then linear and easy to break If true with p = .5 + ϵ then you might be able to use this to help break the system

-853 Page 71

<u>Differential Cryptanalysis</u>

A chosen plaintext attack used to extract the key

Considers fixed "differences" between inputs, $\Delta_{\rm I}$ = ${\rm I}_1$ - ${\rm I}_2$, and sees how they propagate into differences in the outputs, $\Delta_{\rm O}$ = ${\rm O}_1$ - ${\rm O}_2$. "difference" is often exclusive OR Assigns probabilities to different keys based on these differences. With enough and appropriate samples (${\rm I}_1$, ${\rm I}_2$, ${\rm O}_1$, ${\rm O}_2$), the probability of a particular key will converge to 1.