15-853:Algorithms in the Real World

Indexing and Searching I
- Introduction
- Inverted Indices
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Outline for next few classes

Inverted Indices (used by all search engines)
- Compression
- The lexicon
- Merging terms (unions and intersections)
Vector Models
Latent Semantic Indexing
Link Analysis:
- PageRank (Google)
- HITS
Duplicate Removal
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Basic Model

“Document Collection”

Document List

Applications:

- Web, mail and dictionary searches

- Law and patent searches

- Information filtering (e.g., NYT articles)
Goal: Speed, Space, Accuracy, Dynamic Updates
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How big is an Index?
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Main Approaches

Oull text searching

- e.g. grep, agrep (used by many mailers)
Inverted Indices

- good for short lueries

- used by most search engines
Signature [iles

- good for longer lueries with many terms
Vector Space Models

- good for better accuracy

- used in clustering, SOD, [
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Queries

Oypes oll [ ueries on Multiple [terms[

- boolean (and, or, not, andnot)

- proximity (adl, within On)

- keyword sets

- in relation to other documents
And [ithin each term

- prefix matches

- wildcards

- edit distance bounds
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Technillue used Across Methods

Uase Oolding
London - london
Stemming
compress = compression = compressed

(several off-the-shelf English Language stemmers
are freely available)

Stop Oords

to, the, it, be, or, [I

how about “to be or not to be"
0 hesaurus

fast -0 rapid
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Documents as Bipartite Graph

Ualled an [Inverted [ile Index(l
Doc 1 Oan be stored using adllacency

Aardvark lists, also called
- posting lists (or files)
- inverted file entry
Uxample sille ol OROD
- 5380 terms
terms - 0020 documents
Documents - 333,85010 edges

@)

)
[

Oor the Oeb, multiply by 00000
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Documents as Bipartite Graph

Implementation Issues:
Doc 1 00 Space [or posting lists

Aardvark these take almost all the space

00 Access to lexicon
- btrees, tries, hashing

@)

1. Space for Posting Lists

losting lists can be as large as the document data

- saving space and the time to access the space is
critical for performance

0 e can compress the lists,
but, Oe need to uncompress on the [lyll

Dilllerence encoding:
Lets say the term elephant appears in documents:
@, o, oo, oo, oo, oo, oo, ooo
then the difference code is
m, o, oo, o0, 0, oo, 0, OO
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. 0 - prefix and wildcard Queries
00 Merging posting list
terms - multiple term Oueries
Documents
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Some Codes
Gamma code:

if most significant bit of nis in location k, then
gamma(n) = Okt nlk..O0
2 log(n) - 1 bits
Delta code:
gamma(k)nlk..00
2 log(log(n)) U log(n) - 1 bits
Orelluency coded:
base on actual probabilities of each distance
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Global vs. Local Probabilities

Global:
- Count [ of occurneces of each distance
- ' se Huffman or arithmetic code
Local:
generate counts for each list
elephant: 3, 2,1, 2,53, 1, 10
Problem: counts take too much space
Solution: batching
group into buckets by |log(length) |
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Performance

Global bitslledge
Binary ooooo
Gamma oooo
Delta gooo
Huffman gooo

Local
Skewed Bernoulli gooo
Batched Huffman gooo

Oits per edge based on the R0 document
collection
Ootal sille 0 O000OM [ 000 bytes 0 O00Mbytes
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2. Accessing the Lexicon

0 e all knoll holl to store a dictionary, OULQ

- it is best if lexicon fits in memory---can we
avoid storing all characters of all words

- what about prefix or wildcard Oueries?

Some possible data structures
- Oront Coding
- Tries
- Perfect Hashing
- B-frees
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Oront Coding

0 ord [ront coding
0 ezebel 0,0 lezebel
5,lezer O1r
0,lezerit 5,2,it
0 ,leziah 3,3,iah
0.leziel 0,2el
0 Oezliah 3,0 liah

Uor large lexicons can save 000 oll space
Out Ohat about random accessll
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Prefix and Wildcard Queries

Urellix Oueries

- Handled by all access methods except hashing
0 ildcard Oueries

- n-gram

- rotated lexicon
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n-gram

Oonsider every block oll n characters in a term:
e.g. 2-gram of lezebel -0$j ,je, ez, ze,eb,el ,1$

Break wildcard Query into an
lezebel n-grams and search.
ec o e.g.j*el would
el 1. search for $j,el,1$ as
if searching for documents
2. find all potential terms
3. filter matches for which
the order does not match

eb o

—_
[

n-grams
terms
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Rotated Lexicon

Oonsider every rotation ol a term:
e.g. lezebel -0 lezebel, I0lezebe, elll lezeb, bell leze
0ol store lexicon oll all rotations

Given a [uery lind longest contiguous block (0ith
rotation) and search [or it:

e.g. el -Osearch for ell0in lexicon

[ ote that each lexicon entry corresponds to a single
term

e.g. ebelll ez can only mean lezebel
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3. Merging Posting Lists

Lets say [ueries are expressions over:
- and, or, andnot
Viell the list ol documents [lor a term as a set:
Uhen
e;and e, -0 S; intersect S,
e;or e, -0S; union S,
e, andnot e, -0 S, diff S,
Some notes:
- the sets ordered in the "posting lists"
- S;and S, can differ in size substantially
- might be good to keep intermediate results
- persistence is important
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[ nion, Intersection, Merging

Given tl o sets oll length n and m holl long does it
take [or intersection, union and set dillllerencell

Assume elements are taken Orom a total order (0)

Very similar to merging tlo sets A and [, holl long
does this takell

Loller ound:

- There are n elements of A and n Il m positions in
the output they could belong

- choose (n 0 m, n) possibilities
- assuming comparison based model, the decision
tree has that many leaves and depth log of that

- Assuming m [ n this give Q(m log ((n 0 m)On))
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Merging: [ pper bounds

Tarlan shows O(m log((n 0 m)n)) upper bounds using
2-3 trees with cross links and parent pointers.
Oery messy.

We will take different approach, and base on two
operations: split and [oin
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Split and Join

Split(s,v) : Split S into two sets Sy=[s € S Os Ovl
and Sy =k € SOs vl Also return a flag which
is true if v e S.

- split(,0,15,18,220, 18) — M 0,150,020, True
Ooin(Sp, Sp) : Assuming V ky € Sy, kyin Sy kg Ok, it

returns S;U S

- Doin(,0,110,M0,220) — M ,0,11,10,220
Oime Oor both:

- 0 0 0 (log(min(0Sy0, 0Sy0))), can be shown

- 0 0 0(og Osy0), will suffice for us

(shown later)
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[ nion with Split and Uoin

Union(Sy, Sp) [
ill isempty(S,) then return S,
else
(San. San fl) = Split(S,, first(S;))
return 0oin(S,g O nion(S,y, Sy))

A ‘al‘ a2 ‘03‘ al ‘ a5 ‘

B bl |b2| b3 |bl | b5

Out [ bt a1 [b2] a2 [ b3 [a3]bI] al

0
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Runtime of U nion

OUT‘01‘02‘03‘ oll ‘05‘0[]‘0[]‘ 08

Tunion = O log o0 0 Y; log Oo;[)
Splits Uoins
Since the logarithm function is concave, this is
maximized when blocks are as close as possible to
ellual size, therefore

Tunion = O(zizlm |09 |— an 01 D
= O(m log ((n0m)Om))
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Intersection with Split and [oin

Intersect(S;, S,) [0
il isempty(S;) then return O
else
(5,0, San, flag) = Split(S,, first(Sy))
ill flag then
return Doin(first(S,), Intersect(S,y, S1))
else
return Intersect(S,y, Sq)
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Efficient Split and Uoin

Recall that Oe Oant: T = O(log 0S{])

How do we implement this efficiently?
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Treaps

Overy key is given a Orandoml priorityll
- keys are stored in-order
- priorities are stored in heap-order
e.g. (key priority) : (1,23), (0,00), (5,11), (0,35), (12,30)

(0.00)
(1,23)%,35)
(511 (12,30)

If the priorities are unillue, the tree is unilue.
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Left Spinal Treap

Start

Oime to split [ length Orom Start to split location

U e Oill sholl that this is 0 (log L) in the expected
case, [ here L is the path length betlleen Start
and the split location

Oime to Ooin is the same
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Analysis

P =lenght of path from Start toi p = EXR]
A = 1 ¥ ancestor of x; _
1710 otherwise 3 = B{A]
1 x common ancestor of x and
ilm Z{ Xl . Xi Xm QIm = EX[CiIm]
0 otherwise

R zlzlAl"'é(Al e

Start
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Analysis Continued

| n
EXR]=p :Zaﬂ"'Z(aﬂ ‘Cm)
i=1 i=1

Lemma: g = e

Urool:

1. iis an ancestor of 0iff i has a greater priority
than all elements between i and [, inclusive.

2. there are [i-001 such elements each with ellual
probability of having the highest priority.
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Analysis Continued

i=1 i= !
<1+Inl (harmonicnumber H,)
Can similarly show that:

n

Z(ail _Qu): O(logl)
=
Therefore the epected path length and runtime for
split and Doin is O(log ).
Similar technillue can be used for other properties
of Treaps.
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And back to Inverted Indices

0 e sholled holl to take Unions and Intersections,
but [ reaps are not very space ellllicientl]

Idea: ill priorities are in the range MOI0) then
any node [ith priority 0 0 [ a is stored
compressedl

a represents [raction ol uncompressed nodes[l
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