15-853: Algorithms in the Real World

Indexing and Searching I

- Introduction
- Inverted Indices

© Guy Blelloch, 2002

15-853

Page1

Outline for next few classes

Inverted Indices (used by all search engines)

- Compression
- The lexicon
- Merging terms (unions and intersections)

15-853

Vector Models

Latent Semantic Indexing

Link Analysis:

- PageRank (Google)
- HITS

Duplicate Removal

© Guy Blelloch, 2002

Page2

Basic Model

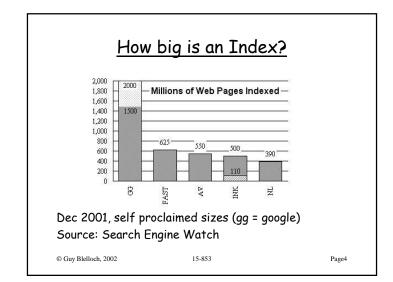
Applications:

- Web, mail and dictionary searches
- Law and patent searches
- Information filtering (e.g., NYT articles)

Goal: Speed, Space, Accuracy, Dynamic Updates

© Guy Blelloch, 2002

15-853



Main Approaches

Uull text searching

- e.g. grep, agrep (used by many mailers)

Inverted Indices

- good for short Dueries
- used by most search engines

Signature 🛚 iles

- good for longer Dueries with many terms

Vector Space Models

- good for better accuracy
- used in clustering, SDD, D

© Guy Blelloch, 2002

15-85

Page5

Page7

Queries

Types of the ueries on Multiple terms

- boolean (and, or, not, andnot)
- proximity (ad0, within 0n0)
- keyword sets
- in relation to other documents

And [] ithin each term

- prefix matches
- wildcards
- edit distance bounds

© Guy Blelloch, 2002 15-853 Page6

Techni ue used Across Methods

Dase Dolding

London - I london

Stemming

compress = compression = compressed (several off-the-shelf English Language stemmers are freely available)

15-853

Stop 0 ords

to, the, it, be, or, [

how about "to be or not to be"

□ hesaurus

fast - Trapid

© Guy Blelloch, 2002

Documents as Bipartite Graph

Aardvark Documents

alled an Inverted lile Indexllan be stored using adlacency lists, also called

- posting lists (or files)
- inverted file entry

[] xample si[]e o[] [] R[] []

- 5380 terms
- 0020 documents
- 333,8500 edges

© Guy Blelloch, 2002

15-853

Documents as Bipartite Graph

Aardvark Doc 1 Aardvark Documents

Implementation Issues:

- □□ Space □or posting lists these take almost all the space
- □□ Access to lexicon
 - btrees, tries, hashing
 - prefix and wildcard Dueries
- □□ Merging posting list
 - multiple term Dueries

© Guy Blelloch, 2002

15-853

Page9

1. Space for Posting Lists

Dosting lists can be as large as the document data

- saving space and the time to access the space is critical for performance

 $\ \square$ e can compress the lists,

but, \square e need to uncompress on the \square ly \square

Dillerence encoding:

Lets say the term $\underline{\text{elephant}}$ appears in documents:

 \square , \square , \square 0, \square 0, \square 0, \square 0, \square 0, \square 00 then the difference code is

00,0,00,0,0,00,00,00

© Guy Blelloch, 2002 15-853 Page10

Some Codes

Gamma code:

if most significant bit of n is in location k, then gamma(n) = 0^{k-1} n[k..0]

2 log(n) - 1 bits

Delta code:

gamma(k)n[k..0]

2 log(log(n)) □ log(n) - 1 bits

[re[uency coded:

base on actual probabilities of each distance

© Guy Blelloch, 2002

15-853

Page11

Global vs. Local Probabilities

Global:

- Count [of occurreces of each distance
- 🛮 se Huffman or arithmetic code

Local:

generate counts for each list

elephant: 🛛 3, 2, 1, 2, 53, 1, 1🗓

Problem: counts take too much space

Solution: batching

group into buckets by $\lfloor log(length) \rfloor$

© Guy Blelloch, 2002

15-853

Performance

Global	bits□edge
Binary	00000
Gamma	0 00 0
Delta	0 00 0
Huffman	0 00 0
Local	
Skewed Bernoulli	0 000 0
Batched Huffman	0 000 0

□its per edge based on the □R□□ document collection

Ootal side O OOOM O OOO bytes O OOOMbytes

© Guy Blelloch, 2002

15-853

Page13

2. Accessing the Lexicon

□ e all kno□ ho□ to store a dictionary, □U□□

- it is best if lexicon fits in memory---can we avoid storing all characters of all words
- what about prefix or wildcard Dueries?

Some possible data structures

- Iront Coding
- Tries
- Perfect Hashing
- B-trees

© Guy Blelloch, 2002 15-853 Page14

1 ront Coding

□ ord	□ront coding
],[lezebel	0,0 ,0ezebel
5,0ezer	0,1,r
[],[]ezerit	5,2,it
🛘 ,🛮 eziah	3,3,iah
🛘 ,🛮 eziel	□,2,el
🛘 ,🗓ezliah	3,🛘 ,liah

 \square or large lexicons can save $\square\,\square\,\square$ o \square space \square ut \square hat about random access \square

© Guy Blelloch, 2002

15-853

Page15

Prefix and Wildcard Queries

Orelix Oueries

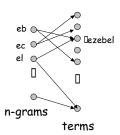
- Handled by all access methods except hashing
- ildcard Queries
 - n-gram
 - rotated lexicon

© Guy Blelloch, 2002 15-853 Page16

n-gram

Onsider every block oo n characters in a term:

e.g. 2-gram of Dezebel -D\$j, je, ez, ze, eb, el, 1\$



Break wildcard Duery into an n-grams and search.

e.g. j*el would

- 1. search for \$j,el,1\$ as if searching for documents
- 2. find all potential terms
- 3. filter matches for which the order does not match

© Guy Blelloch, 2002

15-853

Page17

Rotated Lexicon

Onsider every rotation oo a term:

e.g. [lezebel -] [] [lezebel, |] [lezebe, el] [lezeb, bel] [leze

O o store lexicon o all rotations

Given a Duery Dind longest contiguous block (Dith rotation) and search Dor it:

e.g. Del - search for el in lexicon

 $\hfill \Box$ ote that each lexicon entry corresponds to a single term

15-853

e.g. ebel Dez can only mean Dezebel

© Guy Blelloch, 2002

3. Merging Posting Lists

Lets say Dueries are expressions over:

- and, or, andnot

Vie $\hfill\Box$ the list o $\hfill\Box$ documents $\hfill\Box$ or a term as a set: $\hfill\Box$ hen

 e_1 and e_2 - \mathbb{I} S_1 intersect S_2

 e_1 or e_2 - \mathbb{I} S_1 union S_2

 e_1 and not e_2 - \square S_1 diff S_2

Some notes:

- the sets ordered in the "posting lists"
- S_1 and S_2 can differ in size substantially
- might be good to keep intermediate results
- persistence is important

© Guy Blelloch, 2002

15-853

Page19

I nion, Intersection, Merging

Given $t \cdot 0$ o sets $0 \cdot 0$ length $n \cdot 0$ and $n \cdot 0$ long does it take $n \cdot 0$ or intersection, union and set $n \cdot 0$ length $n \cdot 0$ long a total order $n \cdot 0$ long does this take $n \cdot 0$

Lo er ound:

- There are n elements of A and n

 m positions in the output they could belong
- choose (n [] m, n) possibilities
- assuming comparison based model, the decision tree has that many leaves and depth log of that
- Assuming m \square n this give $\Omega(m \log ((n \square m) \square n))$

© Guy Blelloch, 2002

15-853

Page20

Merging: pper bounds

Tarlan shows O(m log((n l m)ln)) upper bounds using 2-3 trees with cross links and parent pointers. lery messy.

We will take different approach, and base on two operations: split and Doin

© Guy Blelloch, 2002

15-853

Page21

Split and Ooin

Split(S,v): Split S into two sets $S_{\mathbb{Q}} = \mathbb{L} S \in S \mathbb{Q} S \mathbb{Q} V \mathbb{Q}$ and $S_{\mathbb{Q}} = \mathbb{L} S \in S \mathbb{Q} S \mathbb{Q} V \mathbb{Q}$. Also return a flag which is true if $v \in S$.

- Split(\square , \square ,15,18,22 \square , 18) \rightarrow \square , \square ,15 \square ,122 \square ,True

 \square oin(S_0 , S_0): Assuming \forall $k_0 \in S_0$, k_0 in S_0 : $k_0 \square k_0$, it returns $S_0 \cup S_0$

- \square oin(\square , \square ,110, \square 10 ,220) \rightarrow \square , \square ,11,10 ,220

□ ime □or both:

- \square \square (log(min($\square S_{\square}\square$, $\square S_{\square}\square$)), can be shown
- \square \square (log $\square S_{\square}\square$), will suffice for us (shown later)

© Guy Blelloch, 2002

15-853

Page22

nion with Split and oin

Union(S_{\square} , S_{\square}) \square

i \square isempty(S_1) then return S_2

else

 $(S_{20}, S_{20}, fl) = Split(S_2, first(S_1))$ return \square oin $(S_{20}, \square$ nion $(S_{20}, S_1))$

Out b1 a1 b2 a2 b3 a3 b0 a0

© Guy Blelloch, 2002

15-853

Page23

Runtime of I nion

Out | o1 | o2 | o3 | o0 | o5 | o0 | o0 | o8 | 0

 $T_{union} = O(\sum_{i} \log \square_{o_{i}} \square \sum_{i} \log \square_{o_{i}} \square)$

Splits 🛘 oins

Since the logarithm function is concave, this is maximized when blocks are as close as possible to eDual size, therefore

 $T_{union} = O(\sum_{i=1}^{m} \log \lceil n \square m \square 1 \rceil)$ = $O(m \log ((n \square m) \square m))$

© Guy Blelloch, 2002

15-853

Intersection with Split and Doin

```
Intersect(S_{\mathbb{D}}, S_2) \mathbb{D}

i\mathbb{D} isempty(S_1) then return \emptyset

else

(S_{2\mathbb{D}}, S_{2\mathbb{D}}, flag) = Split(S_2, first(S_1))

i\mathbb{D} flag then

return \mathbb{D} oin(first(S_1), Intersect(S_{2\mathbb{D}}, S_1))

else

return Intersect(S_{2\mathbb{D}}, S_1)
```

© Guy Blelloch, 2002

15-853

Page25

Efficient Split and Doin

Recall that \Box e \Box ant: $T = O(\log \Box S_{\Box})$

How do we implement this efficiently?

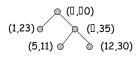
© Guy Blelloch, 2002 15-853

Treaps

 $\mbox{\tt left}$ very key is given a $\mbox{\tt left}$ random $\mbox{\tt left}$ priority $\mbox{\tt left}$

- keys are stored in-order
- priorities are stored in heap-order

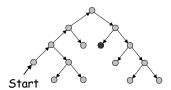
e.g. (key,priority): (1,23), (0,00), (5,11), (0,35), (12,30)



If the priorities are unillue, the tree is unillue.

© Guy Blelloch, 2002 15-853 Page27

Left Spinal Treap



□ ime to split □ length □rom Start to split location
 □ e □ ill sho□ that this is □ (log L) in the expected case, □ here L is the path length bet□ een Start and the split location

☐ ime to ☐ oin is the same

© Guy Blelloch, 2002

15-853

Page28

<u>Analysis</u>

 P_i = lenght of path from Start to i

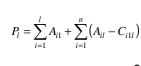
$$p_i = Ex[P_i]$$

$$A_{ij} = \begin{cases} 1 & x_i \text{ ancestor of} \\ 0 & \text{otherwise} \end{cases}$$

$$a_{ij} = Ex[A_{ij}]$$

$$C_{ilm} = \begin{cases} 1 & x_i \text{ common ancestor of } x_l \text{ and } x_m \\ 0 & \text{otherwise} \end{cases}$$

$$c_{ilm} = Ex[C_{ilm}]$$



Start

© Guy Blelloch, 2002

15-853

Page29

Analysis Continued

$$Ex[P_l] = p_l = \sum_{i=1}^{l} a_{i1} + \sum_{i=1}^{n} (a_{il} - c_{i1l})$$

Lemma: $a_{ij} = \frac{1}{|i-j|+1}$

□roo□:

- 1. i is an ancestor of \square iff i has a greater priority than all elements between i and \square , inclusive.
- 2. there are \square i- \square 1 such elements each with e \square ual probability of having the highest priority.

© Guy Blelloch, 2002

15-853

Page30

Analysis Continued

$$\sum_{i=1}^{l} a_{i1} = \sum_{i=1}^{l} \frac{1}{|i-1|+1} = \sum_{i=1}^{l} \frac{1}{i}$$
<1 + ln l (harmonic number H_1)

Can similarly show that:

$$\sum_{i=1}^{n} \left(a_{il} - c_{i1l} \right) = O(\log l)$$

Therefore the epected path length and runtime for split and Doin is O(log 1).

Similar technilue can be used for other properties of Treaps.

© Guy Blelloch, 2002

15-853

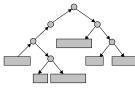
Page31

And back to Inverted Indices

□ e sho□ed ho□ to take Unions and Intersections, but □ reaps are not very space e□□icient□

Idea: i \square priorities are in the range \square \square \square \square then any node \square ith priority \square \square \square α is stored compressed \square

 α represents $\mathbb{I} raction$ o \mathbb{I} uncompressed nodes \mathbb{I}



15-853

© Guy Blelloch, 2002