15-853:Algorithms in the Real World

Indexing and Searching I
- Introduction
- Inverted Indices

© Guy Blelloch, 2002 15-853 Pagel

Outline for next few classes

Inverted Indices (used by all search engines)
- Compression
- The lexicon
- Merging terms (unions and intersections)
Vector Models
Latent Semantic Indexing
Link Analysis:
- PageRank (Google)
- HITS
Duplicate Removal

© Guy Bldloch, 2002 15-853 Page2

Basic Model

“Document Collection”

Document List

Applications:

- Web, mail and dictionary searches

- Law and patent searches

- Information filtering (e.g., NYT articles)
Goal: Speed, Space, Accuracy, Dynamic Updates

© Guy Bleloch, 2002 15-853 Page3

How big is an Index?

2,000
1,200
1,600
1,400
1,200
1,000
00
600
400

200 g :! F
0

= =
B 2 =
b

.ZU.UFI :—Millions of Web Pages Indexed —

150

625 550 o

MK
M

Dec 2001, self proclaimed sizes (gg = google)
Source: Search Engine Watch

© Guy Bldloch, 2002 15-853 Paget

Main Approaches

Oull text searching

- e.g. grep, agrep (used by many mailers)
Inverted Indices

- good for short lueries

- used by most search engines
Signature [iles

- good for longer lueries with many terms
Vector Space Models

- good for better accuracy

- used in clustering, SOD, [

© Guy Blelloch, 2002 15-853 Page5

Queries

Oypes oll [ueries on Multiple [terms[

- boolean (and, or, not, andnot)

- proximity (adl, within On)

- keyword sets

- in relation to other documents
And [ithin each term

- prefix matches

- wildcards

- edit distance bounds

© Guy Bleloch, 2002 15-853

Technillue used Across Methods

Uase Oolding
London - london
Stemming
compress = compression = compressed

(several off-the-shelf English Language stemmers
are freely available)

Stop Oords

to, the, it, be, or, [I

how about “to be or not to be"
0 hesaurus

fast -0 rapid

© Guy Bleloch, 2002 15-853 Page7

Documents as Bipartite Graph

Ualled an [Inverted [ile Index(l
Doc 1 Oan be stored using adllacency

Aardvark lists, also called
- posting lists (or files)
- inverted file entry
Uxample sille ol OROD
- 5380 terms
terms - 0020 documents
Documents - 333,85010 edges

@)

)
[

Oor the Oeb, multiply by 00000

© Guy Blelloch, 2002 15-853

Page8

Documents as Bipartite Graph

Implementation Issues:
Doc 1 00 Space [or posting lists

Aardvark these take almost all the space

00 Access to lexicon
- btrees, tries, hashing

@)

1. Space for Posting Lists

losting lists can be as large as the document data

- saving space and the time to access the space is
critical for performance

0 e can compress the lists,
but, Oe need to uncompress on the [lyll

Dilllerence encoding:
Lets say the term elephant appears in documents:
@, o, oo, oo, oo, oo, oo, ooo
then the difference code is
m, o, oo, o0, 0, oo, 0, OO

© Guy Bleloch, 2002 15-853 Pagel0

. 0 - prefix and wildcard Queries
00 Merging posting list
terms - multiple term Oueries
Documents
© Guy Bldloch, 2002 15-853 Paged
Some Codes
Gamma code:

if most significant bit of nis in location k, then
gamma(n) = Okt nlk..O0
2 log(n) - 1 bits
Delta code:
gamma(k)nlk..00
2 log(log(n)) U log(n) - 1 bits
Orelluency coded:
base on actual probabilities of each distance

© Guy Bleloch, 2002 15-853 Pagell

Global vs. Local Probabilities

Global:
- Count [of occurneces of each distance
- ' se Huffman or arithmetic code
Local:
generate counts for each list
elephant: 3, 2,1, 2,53, 1, 10
Problem: counts take too much space
Solution: batching
group into buckets by |log(length) |

© Guy Blelloch, 2002 15-853 Pagel2

Performance

Global bitslledge
Binary ooooo
Gamma oooo
Delta gooo
Huffman gooo

Local
Skewed Bernoulli gooo
Batched Huffman gooo

Oits per edge based on the R0 document
collection
Ootal sille 0 O000OM [000 bytes 0 O00Mbytes

© Guy Bleloch, 2002 15-853 Pagel3

2. Accessing the Lexicon

0 e all knoll holl to store a dictionary, OULQ

- it is best if lexicon fits in memory---can we
avoid storing all characters of all words

- what about prefix or wildcard Oueries?

Some possible data structures
- Oront Coding
- Tries
- Perfect Hashing
- B-frees

© Guy Bleloch, 2002 15-853 Pagel4

Oront Coding

0 ord [ront coding
0 ezebel 0,0 lezebel
5,lezer O1r
0,lezerit 5,2,it
0 ,leziah 3,3,iah
0.leziel 0,2el
0 Oezliah 3,0 liah

Uor large lexicons can save 000 oll space
Out Ohat about random accessll

© Guy Bleloch, 2002

15-853

Prefix and Wildcard Queries

Urellix Oueries

- Handled by all access methods except hashing
0 ildcard Oueries

- n-gram

- rotated lexicon

© Guy Blelloch, 2002 15-853 Pagel6

n-gram

Oonsider every block oll n characters in a term:
e.g. 2-gram of lezebel -0$j ,je, ez, ze,eb,el ,1$

Break wildcard Query into an
lezebel n-grams and search.
ec o e.g.j*el would
el 1. search for $j,el,1$ as
if searching for documents
2. find all potential terms
3. filter matches for which
the order does not match

eb o

—_
[

n-grams
terms

© Guy Bleloch, 2002 15-853 Pagel7

Rotated Lexicon

Oonsider every rotation ol a term:
e.g. lezebel -0 lezebel, I0lezebe, elll lezeb, bell leze
0ol store lexicon oll all rotations

Given a [uery lind longest contiguous block (0ith
rotation) and search [or it:

e.g. el -Osearch for ell0in lexicon

[ote that each lexicon entry corresponds to a single
term

e.g. ebelll ez can only mean lezebel

© Guy Bleloch, 2002 15-853 Pagel8

3. Merging Posting Lists

Lets say [ueries are expressions over:
- and, or, andnot
Viell the list ol documents [lor a term as a set:
Uhen
e;and e, -0 S; intersect S,
e;or e, -0S; union S,
e, andnot e, -0 S, diff S,
Some notes:
- the sets ordered in the "posting lists"
- S;and S, can differ in size substantially
- might be good to keep intermediate results
- persistence is important

© Guy Bleloch, 2002 15-853 Pagel9

[nion, Intersection, Merging

Given tl o sets oll length n and m holl long does it
take [or intersection, union and set dillllerencell

Assume elements are taken Orom a total order (0)

Very similar to merging tlo sets A and [, holl long
does this takell

Loller ound:

- There are n elements of A and n Il m positions in
the output they could belong

- choose (n 0 m, n) possibilities
- assuming comparison based model, the decision
tree has that many leaves and depth log of that

- Assuming m [n this give Q(m log ((n 0 m)On))

© Guy Blelloch, 2002 15-853 Page20

Merging: [pper bounds

Tarlan shows O(m log((n 0 m)n)) upper bounds using
2-3 trees with cross links and parent pointers.
Oery messy.

We will take different approach, and base on two
operations: split and [oin

© Guy Bleloch, 2002 15-853 Page21

Split and Join

Split(s,v) : Split S into two sets Sy=[s € S Os Ovl
and Sy =k € SOs vl Also return a flag which
is true if v e S.

- split(,0,15,18,220, 18) — M 0,150,020, True
Ooin(Sp, Sp) : Assuming V ky € Sy, kyin Sy kg Ok, it

returns S;U S

- Doin(,0,110,M0,220) — M ,0,11,10,220
Oime Oor both:

- 0 0 0 (log(min(0Sy0, 0Sy0))), can be shown

- 0 0 0(og Osy0), will suffice for us

(shown later)

© Guy Bleloch, 2002 15-853 Page22

[nion with Split and Uoin

Union(Sy, Sp) [
ill isempty(S,) then return S,
else
(San. San fl) = Split(S,, first(S;))
return 0oin(S,g O nion(S,y, Sy))

A ‘al‘ a2 ‘03‘ al ‘ a5 ‘

B bl |b2| b3 |bl | b5

Out [bt a1 [b2] a2 [b3 [a3]bI] al

0

© Guy Bleloch, 2002 15-853 Page23

Runtime of U nion

OUT‘01‘02‘03‘ oll ‘05‘0[]‘0[]‘ 08

Tunion = O log o0 0 Y; log Oo;[)
Splits Uoins
Since the logarithm function is concave, this is
maximized when blocks are as close as possible to
ellual size, therefore

Tunion = O(zizlm |09 |— an 01 D
= O(m log ((n0m)Om))

© Guy Blelloch, 2002 15-853 Page24

Intersection with Split and [oin

Intersect(S;, S,) [0
il isempty(S;) then return O
else
(5,0, San, flag) = Split(S,, first(Sy))
ill flag then
return Doin(first(S,), Intersect(S,y, S1))
else
return Intersect(S,y, Sq)

© Guy Bleloch, 2002 15-853 Page25

Efficient Split and Uoin

Recall that Oe Oant: T = O(log 0S{])

How do we implement this efficiently?

© Guy Bleloch, 2002 15-853 Page26

Treaps

Overy key is given a Orandoml priorityll
- keys are stored in-order
- priorities are stored in heap-order
e.g. (key priority) : (1,23), (0,00), (5,11), (0,35), (12,30)

(0.00)
(1,23)%,35)
(511 (12,30)

If the priorities are unillue, the tree is unilue.

© Guy Bleloch, 2002 15-853 Page27

Left Spinal Treap

Start

Oime to split [length Orom Start to split location

U e Oill sholl that this is 0 (log L) in the expected
case, [here L is the path length betlleen Start
and the split location

Oime to Ooin is the same

© Guy Blelloch, 2002 15-853 Page28

Analysis

P =lenght of path from Start toi p = EXR]
A = 1 ¥ ancestor of x; _
1710 otherwise 3 = B{A]
1 x common ancestor of x and
ilm Z{ Xl . Xi Xm QIm = EX[CiIm]
0 otherwise

R zlzlAl"'é(Al e

Start

© Guy Bleloch, 2002 15-853 Page29

Analysis Continued

| n
EXR]=p :Zaﬂ"'Z(aﬂ ‘Cm)
i=1 i=1

Lemma: g = e

Urool:

1. iis an ancestor of 0iff i has a greater priority
than all elements between i and [, inclusive.

2. there are [i-001 such elements each with ellual
probability of having the highest priority.

© Guy Bleloch, 2002 15-853 Page30

Analysis Continued

i=1 i= !
<1+Inl (harmonicnumber H,)
Can similarly show that:

n

Z(ail _Qu): O(logl)
=
Therefore the epected path length and runtime for
split and Doin is O(log).
Similar technillue can be used for other properties
of Treaps.

© Guy Bleloch, 2002 15-853 Page31

And back to Inverted Indices

0 e sholled holl to take Unions and Intersections,
but [reaps are not very space ellllicientl]

Idea: ill priorities are in the range MOI0) then
any node [ith priority 0 0 [a is stored
compressedl

a represents [raction ol uncompressed nodes[l

© Guy Blelloch, 2002 15-853 Page32

