Permission Accounting in Separation Logic

Richard Bornat Cristiano Calcagno
School of Computing Science Department of Computing
Middlesex University Imperial College, University of London
LONDON N17 8HR, UK LONDON SW7 2AZ, UK
R.Bornat@mdx.ac.uk ccris@doc.ic.ac.uk
Peter O’Hearn Matthew Parkinson
Department of Computer Science Computer Laboratory
Queen Mary, University of London University of Cambridge
LONDON E1 4NS, UK CAMBRIDGE CB3 0FD, UK

ohearn@dcs.qmul.ac.uk mjp41@cl.cam.ac.uk

7. FRACTIONAL PERMISSIONS IN DE-
TAIL

We modify the model of separation logic (see section 10
for more detail). A heap is now a partial map from addresses
to values with permissions. We use Boyland’s [3] numerical
scheme: a permission is z, where 0 <z < 1; z = 1 allows
dispose, write and read; any other value is read access only.
We annotate the s relation to show the level of permission
it carries:

g E => 0<z<1 (6)

Heaps can be combined with () iff, where their addresses
coincide, they agree on values and their permissions combine
arithmetically. Reading in the other direction, an existing
permission can always be split in two.

zp Exzr E xwﬁ'!\z}ﬁf\z’ >0 (7)
We require positive z and z' to avoid silly nonsense like 2 x
—1 <= 1: otherwise, the fractions we choose are arbitrary,
an aide-memoire for future recombination. Reasoning about
their magnitudes would seem to be like reasoning about the
identity of the names we use for the parameters of a theorem.

new and dispose deal only in full permissions:

{emp} z := new() {z -}

{B+p_} dispose E {emp} ®

Assignment needs full access for writing, any access at all
for reading:

(R} ==E (R}
{zr }al=E {z+p E} (9)
{E'v» E} z=[F|{E'> EAz=E'}

(the side-condition on the last rule is once again x not free
in E or E'). It’s then completely straightforward to check
the correctness of the program in figure 4, in which parallel
threads require simultaneous read access to location [z].

Most fractional problems are as simple as this. It really
is that easy. Section 9 discusses a larger example.

{emp}
x = new();
{z+p -}
[z} :=T;
{zp T} {zge Tz 53 T}
{zgp T} {z 5z 7}
y:i=[z] -1 z:=lz]+1 ;

{5 TAy=6}|{z 59 TAz=8}
{zr5p Txzgp TAY=6Az=8}.
{z TAy=6A2z=8}

dispose z;

{empAy=6Az=28}

Figure 4: Fractions are easy

7.1 Passivity

Passivity is a property of a command which has access to a
heap cell but leaves it unchanged. Any fractional permission
less than 1 prescribes nassivity hv the following argument.

Commands in our language obey the frame property. In
the sequential sub-language they also display termination
monotonicity (section 11.3): if a command terminates in
a particular heap, then it terminates in any larger heap.
Suppose that C is a command which is given fractional per-
mission to access cell 10, and which manages to change that
cell somehow — say to increase its value. That is, it obeys

{10 5 N}C{10 5 N +1}

and it terminates. It must therefore terminate in any larger
heap. Using the frame rule you can show

{10 55> N %10 55 N}C{10 55 N #1055 N + 1}

— but the postcondition is false, so C can’t terminate in the
larger heap, so it can’t be a command of the sequential sub-
language since it doesn’t exhibit termination monotonicity.

That proof, and its conclusion, must be treated with care
in the non-sequential case, because a command can apply
to a bundle for additional resource. Suppose

=105 -
C = with b when true do [10] := 3 od

then you can show with the CCR rule that
{10 5> 2}C{10 r55> 3}
Using the frame rule you can prove
{10 55> 2% 10 > 2}C{10 55> 2% 10 15> 3}
But the proof is useless, because to use this triple in parallel

with the resource bundle b the conclusion of the concurrency
rule must be

{Iy %1059 2% 10152 2}C{Is x 10 55+ 2% 10 53> 3}

The precondition is false; there is no such heap; the conclu-
sion is vacuous.

In practice you can constrain a command to passivity by
passing it only a proportion of the permission you hold.
Then it cannot paossibly acquire a total permission from any-
where, and you can be sure of its passivity.

8. COUNTING PERMISSIONS IN DETAIL

To model permission counting we have to distinguish
between the “source permission”, from which read permis-
sions are taken, and the read permissions themselves. We
also have to distinguish a total permission from one which
lacks some split-off parts.

A total permission is written E W2, E’. A source from
which n read permissions have been split is written B3 E
A read permission is written E — §]

EXE —-n>0

EME An>0 « EvtL B «E— E 0

The assignment and new/dispose axioms are very like (8).
Only a total permission, E %, B’ allows write and dispose.

{emp} z=new(E) {z W% E}

{E'%) dispose E' {emp}

(RE) ==F {R) (1)
(E'% } [B')}=E (£’ E}
{E'— E} x=[E'] {E'— EAnz=E}

Read permissions () guarantee passivity in just the
same way as non-integral fractional permissions.

READERS WRITER

P(m);
count := count + 1;
if count =1 then P(write);

V(m); P(write);
.. reading happens here ...; ... writing happens here ...
P(m); V(write)

count := count — 1,
if count = 0 then V(write);
V(m)

Figure 1: Readers and writers (from [8], with shortened names)

8.1 A counting permission example

I can’t yet treat the original version of the readers-and-
writers algorithm because I can’t yet deal formally with per-
mission to access stack variables (see section 13.2). I can
deal with it,though, if I transform the readers prologue and
epilogue, both mutex-protected critical sections, into CCRs,
as shown in figure 3. I've added a guard (count > 0) on the
reader epilogue, and made some insignificant changes which
make the proof presentation easier.

READERS WRITER

with read when true do

if count = 0 then P(write) else skip f;
count +:= 1

od; P(write);

.. reading happens here ...; ... writing happens here ...
with read when count > 0 do V(write)

count —:= 1;

if count = 0 then V(write) else skip fi
od

Figure 3: Readers and writers: CCR version

Agay thounal onru'l-’gy; o % PQ\"WL'I!S&WLLS

l'\] 1"'-'l-.

E s EI*'EHE‘Z.#E"QE'L
K B B2 E'_L%:-_?(F_.l&'—v E + E‘&’Ei)'\Elet
A \-b—'-%_ & E\h" -

@7(‘3 &y Eﬁ‘—?‘&{)“ﬂ (3-&7_. E bﬁ)%z) , 1&1?\«51.,

(«""’? 31&“31. ngih E""“‘i‘;x\.

T T "
T T EVs w2 Yo=K,

W
= Tx. (EFS 5« £ ils o)

el
Er— - ¢ E s —

% Fa,. (B0 X, * & F> %)
IS 3‘61 Eb':‘—?&,

<=2 E L-_L -_—

Suppose the shared resource is a cell pointed to by ¥ and
the two bundles have invariants

write: if write = 0 then emp else y +% _fi
read: if count = 0 then emp else y 22" _fi

(12)

{(emp « if write = 0 then emp else y +% _fi) A write = 1} ..
{(emp *y +%) A write = 1}
P(write) : write := 0
{y % _« (emp A write = 0)} .
{y +% _ (if write = 0 then emp else y v _fi A write = 0)}

{y +% _xif write = 0 then emp else y WO _fi}
{y "5 _x (emp A write = 0)}
V(write) : write := 1
{emp * (y +% _A write = 1)} -
{emp * (if write = 0 then emp else y +% _fi A write = 1)}
{emp}

Figure 5: Proof of pre- and post-condition of P(write) and V(write)

P(_wrl-}{) = wirh write wha WAL | de WritR '= 0

v LWVH-Q,) = With wuite Whae true do write ;= [

write: if write = 0 then emp else y W _fi
count (12)

read: if count = 0 then emp else y ~==== _fi

{emp}
with read when true do
count

{if count = 0 then emp else y — - fixemp}
if count = 0 then {emp} P(write) {y 2}

else {y count _} Skip {y count ‘}

fi
{y count —}
count +:= 1
{y count—1 _} {y count —*3’-’ _}
od
{ﬁ’—' ad

{ng N}
ith read when count > 0 do
{if count = 0 then emp else y peount, ﬁ*s — P A count > 0}
count —:= 1
{if count + 1 = 0 then emp else y 220, i g A count +1> 0} .
{y reounttl, o gessWNeA count > 0} {y ve2zmts A count > 0}
if count =0 then {y v _} V(write) {emp}

else {y count _} Skip {y count _}

fi
{if count = 0 then emp else y veeunt, £« emp}
od
{emp}

Figure 6: Resource release in readers prologue and reclamation in epilogue

8.2 No more critical sections?

When Dijkstra [9] introduced semaphores, the name re-
ferred to those mechanical railway signals which let only one
train at a time onto a critical (signal-controlled) section of
track. This block signalling technique provides mutual ex-
clusion in the critical section. Hardware provides mutual
exclusion only between executions of the test-and-set / in-
crement instructions which implement the semaphore and
we must rely on proof techniques to show mutual exclusion
in critical sections. Sometimes the critical sections of a pro-
gram are hard to identify or non-existent. Brinch Hansen,
arguing for the use of monitors instead of semaphores, stated
the problem:

Since a semaphore can be used to solve arbitrary
synchronizing problems, a compiler cannot con-
clude that a pair of wait and signal operations on
jeal region, nor that a missing member of such a
pair is an error. [4]

Our treatment (following [15]) inverts Dijkstra’s view by
focussing on permission rather than prohibition. A thread in
possession of a permission can use it at any time. Separation
guarantees absence of races even while permitting sharing.
Semaphores are resource-holders which can be unlocked, not
guardians of critical sections.

In figure 3 there is mutual exclusion between the readers
prologue and epilogue and between the four uses of the write
sermaphore, but otherwise it is unnecessary to invoke the
notion of critical section. I can write a silly but perfectly
verifiable pattern use of read permissions:

prologue; prologue; prologue;
(f‘eader 1;)
readers | ;

epilogue
epilogue; readera; epilogue

readers

and an even sillier use of total permission:
P(write); writery; (readers || readers) ; writera; V(write)

If the count variable of figure 1 were in the heap, I could
apply resourcing to a version of the algorithm which uses
a mutex m instead of the CCRs of figure 3, and produce a
proof entirely free of the notion of critical section (but see
also section 13.2).

Since counting is so clearly sometimes necessary, I have to
make a similar case for fractions. I do so by example.

9.1 Lambda-term substitution

Our example is substitution on a lambda term, performed
in parallel for the sub-terms of a function application.
The syntax of lambda terms is

Tu=LlamvT |App T T |Varv (13)

1 define substitution (for simplicity, allowing variable cap-
ture) in the obvious way

(Lam o' B)[7/v]
(App ¢ a)[7/v]

(Var v')[r/v]

{Lam o (Blr/r]) A

Lam v’ 3 v =w

App (¢[7/v]) (alr/v])
{Var v ov#EY

T v=v

A possible heap representation predicate for a lambda
term pointed to by x with access permission z is
ASTz (Lamv B) z=3b(x+> 0,v,bx ASTh 3 z

ASTz (App $a) 2 af,a.(xh‘*l,faa*ASTmz*)

I»

ASTaaz
AST z (Varv) z =25 2w

For simplicity, variables are represented by integers; the
0/1/2 tags which distinguish different kinds of nodes in the
heap are arbitrarily chosen.

subst x y v = [x+2] := subst [x+2] y v);

if [x] = 0 then X
if [x+1] != v then elsf [x+1] = v then
[x+2] := subst {x+2] y v dispose x; dispose (x+1);
else skip fi; wouldycopy—yd W ! = Q’opﬂ ¢
X else o
elsf [x] = 1 then X
([x+1] := subst [z+1] y v || fi

Figure 7: Substitution Source

The substitution function is given in Figure 7 (the pro-
gram is abbreviated: some of the calculations and assign-
ments in the figure represent sequences of correct separation-
logic assignments). The algorithm reads the node type from
the heap: for a lambda abstraction it checks if the bound
variable is the same variable as the substitution and if not
substitutes on the body; for an application it performs the
substitution on each sub-term concurrently; and for a vari-
able if it is the variable being replaced it calls a copy function
and returns a pointer to that copy.

The copy function has the specification

{ASTyrz} x := copy y {ASTy72%xASTz 71}
The substitution function is specified as
{ASTz71%xASTy 7' 2}

z := subst x y v
{AST z (77" /¢]) 1« AST y ' z}

The interesting part of the proof is the application case
(lz1 =1).

{AST z (App ¢ @) 1 x AST y 7' 2}
[=+1] := subst [x+1] y v ||
[x+2] := subst [x+2] y v
{AST = (App (¢[r'/v]) (al7'/v])) 1x AST y 7' 2}

The proof requires the substituted lambda term to be split
into two pieces, and needs the equivalence

ASTy7r(z2+2) =2 ASTyTz+xASTy 72

This equivalence is proved by induction on the structure
of 7.* Using the Hoare-logic rule of consequence with this
equivalence and the definition of AST, followed by an ap-
plication of the frame rule, I can derive the following proof
obligation

21, f,axAST f ¢ 1x AST y 7' (2/2) =
ASTaal+ASTy7' (2/2)

[=x+1] subst [x+1] y v ||
[x+2] := subst [x+2] y v
1, f 0’ « AST f' (¢[r'/v]) 1x AST y 7’ (2/2) %
{AST a’ (alr'/v]) 1x AST y 7' (2/2) }

The proof is straightforward from the specification of subst.
But — and this is the point which justifies fractional rather
than counting permissions — because the proof uses frac-
tions I don’t need to know how many times the permission
AST y 7 (2/2) will have to be split to complete either of
the parallel threads (i.e. how many application nodes there
are altogether in ¢ and). The split is genuinely symmet-
rical; both sides may need to split further; there isn't any
machinery in the program which corresponds to a splitting
authority.

94q

VAST 4 L» AST 4y t° ¥
“'t-"-'-. SWst § ‘aV
TAST £ (FTr7vi)a= ASTy 2 7L

Th%,u\p‘iu) +he Yvame V“-L(.

VI8 et S AST R L AsTy 1 %)

iz Ixel7;

xS §w AST%I#:L*-HST'/}"L“ T §

FU= sulse '\;"JV?

Tuetid 5 o AST PP /v])L AST v ' %]
Cedlye=ff

Trel By 209 AST S (d ')l AT gt ¥
TI sl 3 AT (4 Trv)L s Ast 4T ¥}
Sm;twl?)

Vo %42 b3 o AST a < ‘-\.*ATT‘QT'VJ
*i= Lxat]s

A = subrtr o Y Vv ;
L] s !
1 3al.

X2 S ate ASTa (R [e'u 1)1 = AST Yy]

9w

Thﬂ,h- \OA} Y)qvq, [[WQ T ma ?.g AN

'{':Hl,q_. relily fia v ASTE S L ~AST4L
< ASTY T Yye AT %)

t3g ‘si-ll-tﬁ:wAs‘r-cﬁbl e metih o o asTaa

-+ JAﬁT u} 1! '{{11 7 A?T,_J <’ 1115
$:= E‘G«l-!:[; J Q= fn.;..";_]j-
'F".: subsrt £ ? v

a‘t= subst g t# v,

- g ¢
Letile= ¥ LRe2T ¢t 2 av

13 et fa AsT F (PN T {3l xt 2l a's AsTa R T1AT) 1

T ASTY T E[2] FAST y < E/‘k}
1 :.\ sl"l q,f. K I t-‘-l—! F:qf ~ AST‘F‘((¢ ET(/V]) l_*_ AST&‘(“’ETVV])J‘
W AST gl B/ AST@'&'%/.(S

Te

\
& hd by ‘Frqniu; with %> 1,

TAsT ¢ (APPFg)l e ADT 4 /2l
138, a. > L, B a v AT ¥ L+AST aq1

¥ Atha't"{-L““ ASTy ' E/m}
I ST * = Deed;
¥'::s~ub=¢—-\:~&v; H @'tz s‘td:ﬁ-q-}v;

.l:'{vl—l:[1= P Crxetyc=a!

- t ¢ ¢
131}” XS G ele MTE(PTvI)1sASTq (4 C=7v]) 1

‘“"A‘jT‘j T’ e/-(_'*' AS'[~'%
I AT % (App 'j /ti

{ N (ét'rf/v.])(Q I’t"/u:\)) 1 % AST«; * z i
Tx ((A ‘
PP ¢ 4)T2/v1) 1 « AST 4 2e]

10. MODELS

Although there are two logical mechanisms, their models
are very similar.

10.1 General structure of models

We will consider models where heaps are partial functions
Heaps = L — (V x M)

where L and V are the sets of locations and values respect-
ively, and M is equipped with a partial commutative semig-
roup structure, where the binary operator is denoted . The
idea is that * adds permissions together, and the order in
which permissions are combined does not matter. We ex-
tend * to the set V' x M as follows:

ifv =1 and
m*m' defined
undefined otherwise

(v,m) *(‘U’,n;") = (v,m*m’)

and correspondingly to the set Heaps:

o hxh' defined iff h(l)xh'(l) defined for each | € dom(h)N
dom(h')

h(l) if &'(l) undefined
e (hxh')()=¢ R'(l) if h(l) undefined
h(l) = h'(l) otherwise

Given a choice of M, the syntax and semantics of the ()
predicate is

T dom(h) = [E]s and
s,hF EVm™ B iff (h‘{)f[z'ﬂs) = ([E’]}Z,m))

A model (M, mw) is given by a concrete M, together with
a distinguished element mw € M, the write permission,
such that:

mw *m’ undefined for any m' € M (14)

for all r’ € M there exists m” € M
such that m' *m" = mw

(18)

Intuitively, the two conditions say that muw is the maximal
permission, and any permission can be extended to obtain
the maximal one.

10.2 Model of counting permissions

We distinguish read permissions from others. We count
the number of read permissions that have been flaked off a
source permission. You can’t combine two source permis-
sions. You can’t combine a source permission with more
read permissions than it’s generated. Given that, you can
record permission to access a heap cell is represented by an
integer: 0 for a total permission, —1 for a read permission,
+k for a source permission from which k read permissions
have been taken.

Formally, the model is (Z, 1), where Z is the set of in-
tegers and «; is defined as follows:

undefined ifi>0and j =0
i1 j =4 undefined if (i>0orj>0)andi+j<0
i+ otherwise
The write permission is 0. The following properties hold:
EME — B E xBTS FE
whenn > 0and m >0

E ~(n+m) E =i E % E =2 E
when n,m > 0

(16)

/0

10.3 Model of fractional permissions

Fractions are easy: just add them up, make sure you don’t
go zero, negative or greater than 1.

The model is ({g € @ | 0 < g £ 1},#2), where Q is the set
of rational numbers and % is defined as follows:

- undefined ifg+q > 1
729 =1 q+4 otherwise

The write permission is 1. The following property holds:
Ert, B s (EvL E'+EYDL E)Ag+q <1 (17)

10.4 Combined Model

By making read permissions divisible, it’s possible to com-
bine the properties of fractional and counting permissions.
You finish up with an asymmetrical fractional model. Des-
pite the fact that there is only one model, there are still two
ideas — proliferation and divisibility — each of which seems
to be necessary, neither of which is subservient to the other.
The proofs sketched above are all supportable in the com-
bined model. The only significant difference is that it is
impossible in the combined model to set up a logic in which
read permissions cannot be split once issued, and control is
entirely with the splitting authority — a programming dis-
cipline which may prove to be useful in certain situations.

The model (Q,*3) combines counting and fractional per-
missions, where @ is the set of rational numbers and *3 is
defined as follows:

undefined if¢>0andg >0
g+sq = { undefined if (>0o0rqg >0)andg+q <0
g+d otherwise

The write permission is 0. The following properties hold:

EL B s B+, By B F
when g >0and ¢ >0

Etd), gy B 9 B« E—L F
when ¢,¢' >0

(18)

/1]

C_waq\,..Q.

1)

11. SEQUENTIAL SEMANTICS

If we restrict attention to the sequential case, the se-
mantics of commands in the permissions model is a minor
modification of the usual semantics. It is then possible to
show all the usual results about locality, weakest precondi-
tions etc.

11.1 Semantics of commands

Given a model we define the semantics of atomic com-
mands as follows

[Els =v
z:=FE,s,h ~ (s|ax— v),h
[Els=1 [Els=v h()=(,mw)
[E']:==E,s,h ~ s,(h|l— (v,mw))
[Els =1 h(l) = (v,m)
x:=[E'],8,h ~ (s]|zv),h
le L—dom(h) [E]ls=v
z:=new(E),s,h ~ (s|z— 1), (h]|~ (v,mw))
[E'ls=1 h()=(.mw)
dispose(E'), 5,k ~ 3, (h —1)

(19)

‘We observe that this is the usual standard semantics of these
commands, plus runtime checks on permissions.

11.2 Small Axioms

We give small axioms for the atomic commands, in the
style of [14]; the frame rule can be used to infer complex
specifications from these simple ones.

The assignment and new/dispose axioms are as you would
expect. Only the total permission, mw, gets write and dis-
pose access. In contrast, any permission m grants read ac-
cess.

{RE} =:=E {R}
i Y R !
{E'™ E} x:=[F] {E'"™ EAnz=FE} (20)
{emp} z:=new(E) {z+"% E}
{E" /™%) dispose ' {emp}

The side condition on the third axiom is that z does not
occur free in F or E'.

11.3 Frame Property, termination and safety .

monotomcity

Soundness of the frame rule depends on the local beha-
viour of commands. The locality of commands was formal-
ized in [21] with three properties:

e Safety Monotonicity: if C,s,h is safe and h x h' is
defined, then C,s,h % h' is safe.

e Termination Monotonicity: if C,s, h must terminate
normally and h = k' is defined, then C,s, h » k' must
terminate normally.

e Frame Property: if C, s, ho is safe, and C, s, hoxhy ~+*
s',h’ then there is hy such that C, s, hg ~* &', hf and
h" = ha * h._].

The same properties hold when heaps are built using per-
mission models. In particular, condition (14) ensures that
Safety Monotonicity and Frame Property hold for the com-
mands in (19). A simple proof of soundness of the Frame
Rule follows.

/L

13.1 Oddities of inductive definitions

A separation-logic heap predicate for a tree (e.g. in [2]:
versions differ according to whether they have explicit Tips
or store values at Nodes) is

tree nil Empty = emp
treet (Tipa) =t— 0,

- t 1,01 %
tree t (Node X p) =3, r (tree A e

(21)

It’s tempting to define a ztree as a tree whose pointers are
all decorated with a fractional permission:

ztree z nil Empty = emp
ziree z £ (Tipa) =t 0,
% [t Llrx)
stroot (Medersyp) = Zw (ztreez lAxztreezr p
(22)
(cf. the AST predicate in the term-rewriting example
above).

We do now have ztree (z 4+ 2') t 7 <= ztreez t T *
ztree z’ ¢ 7, but sometimes only vacuously! (x) no longer
guarantees disjointness of domains, because of (7), so I can
demonstrate some peculiarities. Consider the following ex-
ample (heavily abbreviated, in particular using A for con-
ditional conjunction, like C's &&):

ift£nil Mt =1m[E+1)=[t+2] M
[E+1]#nilm[t+1]]=0 (23)
then [[t + 1] + 1] := [[t + 1] + 1] + 1 else skip fi

This program checks if it has been given a heap consisting
of a Node in which left and right pointers are equal and point
to a Tip; it then attempts to increment the value in that tip.
Such a heap contains a DAG, not a tree: I would have hoped
that the ztree predicate enforced tree structure just as tree
does. Sharing can occur in ztrees when z < 0.5, because
nothing in the definition provides against the possibility that
part or all of the | heap isn’t then shared with the r heap.

That’s not all. The heap

g LIl 0,351 0,3
satisfies
ztree 0.5 x (Node (Tip 3) (Tip 3))
Program (23)) will change it so that

ztree 0.5 x (Node (Tip 4) (Tip 4))
Given

T gge L x5 0,3%1+550,3

— the same locations with a different fractional permission —
the same program will abort. It’s impossible to havo

T g L L Ex g 0,3 % L= 0,3

— there’s no sharing in a ztree when z > 0.5.

This is all very peculiar. We don’t have passivity in ztrees
as we did with single cells and the values of fractions seem
to matter: has everything gone horribly wrong? Well no,
it hasn’t: not quite. You can use the technique suggested
in section 7.1: pass subprograms only a part of the per-
mission you hold. The term-rewriting example above isn’t
scuppered if the AST you pass in is a DAG, because the
copy rule makes a new copy with 1.0 permission, and it’s a
sequential program so parallel subprograms can’t conspire
to accumulate total permission. In effect we can rely on
passivity and there's no paradox, after all.

Inductive definitions can be similarly confusing us-
ing counting read-only permissions rather than fractions:
there’s no possibility of modification by coincidence of sub-
trees, but once again DAGs are allowed where we'd like to
have only trees. Separation logic isn’t broken by this discov-
ery, but we don’t yet know how to write inductive definitions
which combine obvious separation with obvious reduction of
permission.

/3

13.2 Variables as resources

Separation logic’s success with the heap is partly good
luck. Hoare logic’s variable-assignment rule finesses the
distinction between program variables and logical variables
and assumes an absence of program-variable aliasing. The
price for that sleight of hand is paid in the array-element-
assignment rule, which has to deal with aliasing of integer
indices using arithmetic in the proof.

In programming languages a little more developed than
that treated by Hoare logic, Strachey’s distinction of rvalue
(variable address) and lvalue (variable contents) is made ex-
plicit and can be exploited. Because heap rvalues and lvalues
alike are integers, separation logic can ignore the distinction
and use the conventional Hoare logic variable assignment
rule. The use of ‘pure’ expressions (constants and variable
names) not referring to the heap, and the restriction to par-
ticular forms of assignment that essentially constrain us to
consider single transfers between the ‘stack’ (registers) and
the heap, make it all work. Descriptions of the heap are es-
sentially pictures of separation; issues of aliasing then rarely
arise, and we can regard separation as the problem.

Separation logic treats heap locations and variables quite
differently. Heap locations are localised resources whose al-
location can be reasoned about, for example in the frame
rule. But stacks are global: that fact shows up in the frame
rule’s proviso, which requires extra-logical syntactic separ-
ation between resource formula P and the set of variables
assigned to in C. I'd much prefer to be able to integrate de-
scriptions of variables as resources into the frame rule, make
(*) do all the work, and eliminate the proviso.

The most obvious solution puts the stack in the heap.
This naive approach doesn’t work — or rather, it doesn’t
work conveniently, because it destroys the main advant-
age of Hoare logic, which is the elegant simplicity of the
variable-assignment rule. Drawing pictures of separation in

the stack necessarily exposes the rvalue/lvalue distinction
and the pun between logical and program variables which
lies behind Hoare logic’s use of straightforward substitution
no longer makes sense.

The problems of reagoning about concurrent programs
make treatment of variables-as-resources more than a matter
of aesthetics, more than a desire to eliminate ugly provisos.
1 would like to be able to describe transfer of ownership of
variables into and out of resource bundles. I can explain the
original readers and writers algorithm (figure 1) if the count
variable is locked away in the m mutex, released by P and
reclaimed by V. Semantically the notion isn’t very difficult,
but integrating it into a useful proof theory is proving diffi-
cult. It's crucial that this step is made so that we can have
an effective logic of storage-resource in concurrent programs
{and, by the by, eliminate any logical dependence on crit-
ical sections and split binary semaphores, and maybe even
provide a Hoare logic that deals with variable aliasing).

13.3 Existence permissions

The treatments above separate total permission from read
permission. This is not the only distinction it is useful to
draw. A semaphore, for example, has permission to read and
write its own variable. A concurrent thread has no access
to that variable but can P or V it. FEzistence permissions
provide evidence of a resource’s existence, but no access to
its contents. They allow us to separate total from read /write
permissions. A user knows that a semaphore exists, but can-
not read it. The semaphore can’t dispose itself (see below)
unless its permission is total — that is, unless there are no
users with existence permissions.

The proof theory of existence permissions seems to be a
variation on fractional permissions. We don’t yet have a
satisfying and elegant model.

13.4 Semaphores in the heap

I first encountered permission counting in the context of
pipeline processing in the Intel IXP network processor chip
[12]. A read thread waits for packet data to arrive on a par-
ticular network port, and assembles packet fragments into
a newly-allocated packet buffer. It then immediately passes
the buffer, through an inter-thread queue, to the first pro-
cessing thread, and turns to wait for the next packet. The
processing thread does some work on the buffer and passes
it on to the next processing thread, and so on until even-
tually it arrives at a write thread which disassembles the
processed packet, transmits the pieces of data through its
network port, and disposes the buffer.

This is single-casting, in which every packet has a single
destination address, and it’s a beautiful example of the
power of ownership transfer. Each thread owns the buffer
until it transfers it into an inter-thread queue, an example
of a shared resource bundle. Each thread has a loop invari-
ant of emp, so if there are any space leaks it can only be
that a queue is overlooked and never emptied. The most im-
portant feature of the technique is its simplicity — the read
thread, which allocates the buffer, has nothing to do with
its disposal — and efficiency — no need for accounting in the
program, only in the proof.

In multicasting a single packet can be distributed to sev-
eral destinations at once. An obvious technique would be
to copy the incoming packet into several buffers, but the
desire for efficiency and maximum packet throughput com-

pels sharing. The solution adopted is to use a semaphore-
protected count of access permissions to determine when
everybody has finished and the buffer can be disposed. In
principle it’s not much more difficult to program, but there’s
many a slip, so it would be good to be able to formalise it
(10]. ;

The obstacles to a proof don’t seem unsurpassable but I
cannot claim that they are conquered already. The program
must dynamically allocate semaphores as well as buffers,
and the idea of semaphores in the heap makes theoreticians
wince. The semaphore has to be available to a shared re-
source bundle: that means a bundle will contain a bundle
which contains resource, a notion which makes everybody's
eyes water. None of it seems impossible, but it’s a significant
problem, and solving it will be a small triumph.

/&

