
AN INTRODUCTION TO

SEPARATION LOGIC

2. Assertions
John C. Reynolds

Carnegie Mellon University

January 7, 2011

c©2011 John C. Reynolds

—

45

Some Notation for Functions
We write

[x1: y1 | . . . | xn: yn]

for the function with domain {x1, . . . , xn} that maps each xi into
yi, and

[f | x1: y1 | . . . | xn: yn]

for the function whose domain is the union of the domain of f
with {x1, . . . , xn}, that maps each xi into yi and all other mem-
bers x of the domain of f into f x.

—

46

For heaps, we write

h0 ⊥ h1

when h0 and h1 have disjoint domains, and

h0 · h1

to denote the union of heaps with disjoint domains.

—

Free Variables

For any phrase p,

FV(p) denotes the set of variables occurring free in p.

There are no binding constructions in expressions or boolean
expressions, so that for these phrases FV(e) is the set of all
variables occurring in e. In assertions, quantifiers are binding
constructions. In commands, declarations will be binding con-
structions.

—

47

The scope of a binding construction is the phrase immediately
following the binding occurrence of a variable, except in

newvar v = e in c⊙e1
v=e0 p,

where the underline phrases are excluded from the scope.

—

Total Substitution

For any phrase p such that FV(p) ⊆ {v1, . . . , vn}, we write

p/v1 → e1, . . . , vn → en

to denote the phrase obtained from p by simultaneously substi-
tuting each expression ei for the variable vi, (When there are
bound variables in p, they will be renamed to avoid capture.)

—

48

The Total Substitution Law for Expressions
Proposition 1 Let δ abbreviate the substitution

v1 → e1, . . . , vn → en,

let s be a store such that FV(e1)∪ · · · ∪FV(en) ⊆ dom s, and
let

ŝ = [v1: [[e1]]exps | . . . | vn: [[en]]exps].

If e is an expression (or boolean expression) such that FV(e) ⊆
{v1, . . . , vn}, then

[[e/δ]]exps = [[e]]expŝ.

—

49

Partial Substitution

When FV(p) is not a subset of {v1, . . . , vn},

p/v1 → e1, . . . , vn → en

abbreviates

p/v1 → e1, . . . , vn → en, v
′
1 → v′1, . . . , v

′
k → v′k,

where {v′1, . . . , v
′
k} = FV(p)− {v1, . . . , vn}.

—

50

The Partial Substitution Law for Expressions
Proposition 2 Suppose e is an expression (or boolean expres-
sion), and let δ abbreviate the substitution

v1 → e1, . . . , vn → en,

Then let s be a store such that

(FV(e)− {v1, . . . , vn}) ∪ FV(e1) ∪ · · · ∪ FV(en) ⊆ dom s,

and let

ŝ = [s | v1: [[e1]]exps | . . . | vn: [[en]]exps].

Then

[[e/δ]]exps = [[e]]expŝ.

—

51

The Meaning of Assertions
When s is a store, h is a heap, and p is an assertion whose free
variables belong to the domain of s, we write

s, h � p

to indicate that the state s, h satisfies p, or p is true in s, h, or p
holds in s, h. Then:

s, h � b iff [[b]]boolexps = true,

s, h � ¬ p iff s, h � p is false,

s, h � p0 ∧ p1 iff s, h � p0 and s, h � p1
(and similarly for ∨,⇒,⇔),

s, h � ∀v. p iff ∀x ∈ Z. [s | v:x], h � p,

s, h � ∃v. p iff ∃x ∈ Z. [s | v:x], h � p,

s, h � emp iff domh = {},

s, h � e 7→ e′ iff domh = {[[e]]exps} and
h([[e]]exps) = [[e′]]exps,

s, h � p0 ∗ p1 iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h and
s, h0 � p0 and s, h1 � p1,

s, h � p0 −∗ p1 iff ∀h′. (h′ ⊥ h and s, h′ � p0) implies
s, h · h′ � p1.

When s, h � p holds for all states s, h (such that the domain of s
contains the free variables of p), we say that p is valid.

When s, h � p holds for some state s, h, we say that p is satisfi-
able.

—

52

For Instance
s, h � x 7→ 0 ∗ y 7→ 1

iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h

and s, h0 � x 7→ 0

and s, h1 � y 7→ 1

iff ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h

and domh0 = {s x} and h0(s x) = 0

and domh1 = {s y} and h1(s y) = 1

iff s x 6= s y

and domh = {s x, s y}
and h(s x) = 0 and h(s y) = 1

iff s x 6= s y and h = [s x: 0 | s y: 1].

—

53

Examples
s, h � x 7→ y iff domh = {s x} and h(s x) = s y

s, h � x 7→ − iff domh = {s x}

s, h � x ↪→ y iff s x ∈ domh and h(s x) = s y

s, h � x ↪→ − iff s x ∈ domh

s, h � x 7→ y, z iff h = [s x: s y | s x + 1: s z]

s, h � x 7→ −,− iff domh = {s x, s x + 1}

s, h � x ↪→ y, z iff h ⊇ [s x: s y | s x + 1: s z]

s, h � x ↪→ −,− iff domh ⊇ {s x, s x + 1}.
—

54

More Examples of ∗
Suppose s x and s y are distinct addresses, so that

h0 = [s x: 0] and h1 = [s y: 1]

are heaps with disjoint domains. Then

If p is: then s, h � p iff:

x 7→ 0 h = h0

y 7→ 1 h = h1

x 7→ 0 ∗ y 7→ 1 h = h0 · h1

x 7→ 0 ∗ x 7→ 0 false

x 7→ 0 ∨ y 7→ 1 h = h0 or h = h1

x 7→ 0 ∗ (x 7→ 0 ∨ y 7→ 1) h = h0 · h1

(x 7→ 0 ∨ y 7→ 1) ∗ (x 7→ 0 ∨ y 7→ 1) h = h0 · h1

x 7→ 0 ∗ y 7→ 1 ∗ (x 7→ 0 ∨ y 7→ 1) false

x 7→ 0 ∗ true h0 ⊆ h
x 7→ 0 ∗ ¬ x 7→ 0 h0 ⊆ h.

—

55

The Partial Substitution Law for Assertions
Proposition 3 Suppose p is an assertion, and let δ abbreviate
the substitution

v1 → e1, . . . , vn → en,

Then let s be a store such that (FV(p)−{v1, . . . , vn})∪FV(e1)∪
· · · ∪ FV(en) ⊆ dom s, and let

ŝ = [s | v1: [[e1]]exps | . . . | vn: [[en]]exps].

Then

s, h � (p/δ) iff ŝ, h � p.

—

56

Inference Rules
P1 · · · Pn

C
(zero or more premisses)
(one conclusion)

Inference
Inference Rules Instances

p0 p0 ⇒ p1
p1

x + 0 = x x + 0 = x ⇒ x = x + 0

x = x + 0

e2 = e1 ⇒ e1 = e2 x + 0 = x ⇒ x = x + 0

x + 0 = x x + 0 = x

A Proof

x + 0 = x

x + 0 = x ⇒ x = x + 0

x = x + 0.

—

57

Notice:

• Metavariables are in italics (or Greek), object variables are
in sans serif.
• An inference rule is sound iff, for every instance, if the pre-

misses are all valid, then the conclusion is valid.
• An axiom schema is an inference rule with zero premisses.
• An axiom is an axiom schema with no metavariables.

—

58

A Subtlety

p

q

is sound iff, for all instances,
if p is valid, then q is valid, i.e.,
if p holds in all states, then q holds in all states.

p⇒ q
is sound iff, for all instances,
p⇒ q is valid, i.e.,
for all states, if p holds, then q holds.

For example,

p

∀v. p
e.g.

x + y = y + x

∀x. x + y = y + x
or

x = 0

∀x. x = 0

is sound, but

p⇒ ∀v. p e.g. x = 0⇒∀x. x = 0

is not sound.

—

59

Inference Rules for Predicate Logic

p p⇒ q

q
(modus ponens)

p⇒ q

p⇒ (∀v. q)
when v /∈ FV(p)

p⇒ q

(∃v. p)⇒ q
when v /∈ FV(q).

—

60

Axiom Schema
p⇒ (q⇒ p)

(p⇒ (q⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r))

(p ∧ q)⇒ p

(p ∧ q)⇒ q

p⇒ (q⇒ (p ∧ q))
p⇒ (p ∨ q)
q ⇒ (p ∨ q)

(p⇒ r)⇒ ((q⇒ r)⇒ ((p ∨ q)⇒ r))

(p⇒ q)⇒ ((p⇒¬ q)⇒¬ p)
¬(¬ p)⇒ p

(p⇔ q)⇒ ((p⇒ q) ∧ (q⇒ p))

((p⇒ q) ∧ (q⇒ p))⇒ (p⇔ q)

(∀v. p)⇒ (p/v → e)

(p/v → e)⇒ (∃v. p).
—

61

Inference Rules for ∗ and −∗
p0 ∗ p1 ⇔ p1 ∗ p0

(p0 ∗ p1) ∗ p2 ⇔ p0 ∗ (p1 ∗ p2)
p ∗ emp⇔ p

(p0 ∨ p1) ∗ q ⇔ (p0 ∗ q) ∨ (p1 ∗ q)
(p0 ∧ p1) ∗ q ⇒ (p0 ∗ q) ∧ (p1 ∗ q)
(∃x. p0) ∗ p1 ⇔ ∃x. (p0 ∗ p1) when x not free in p1
(∀x. p0) ∗ p1 ⇒ ∀x. (p0 ∗ p1) when x not free in p1

p0 ⇒ p1 q0 ⇒ q1
p0 ∗ q0 ⇒ p1 ∗ q1

(monotonicity)

p0 ∗ p1 ⇒ p2
p0 ⇒ (p1 −∗ p2)

(currying)
p0 ⇒ (p1 −∗ p2)
p0 ∗ p1 ⇒ p2.

(decurrying)

—

62

Some Axiom Schemata for 7→ and ↪→
e0 7→ e′0 ∧ e1 7→ e′1 ⇔ e0 7→ e′0 ∧ e0 = e1 ∧ e′0 = e′1
e0 ↪→ e′0 ∗ e1 ↪→ e′1 ⇒ e0 6= e1

emp⇔ ∀x. ¬(x ↪→ −)

(e ↪→ e′) ∧ p⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).
—

63

Pure Assertions
An assertion p is pure iff, for all stores s and all heaps h and h′,

s, h � p iff s, h′ � p.

A sufficient syntactic criteria is that an assertion is pure if it does
not contain emp, 7→, or ↪→.

—

64

Axiom Schemata for Purity

p0 ∧ p1 ⇒ p0 ∗ p1 when p0 or p1 is pure
p0 ∗ p1 ⇒ p0 ∧ p1 when p0 and p1 are pure

(p ∧ q) ∗ r ⇔ (p ∗ r) ∧ q when q is pure
(p0 −∗ p1)⇒ (p0 ⇒ p1) when p0 is pure
(p0 ⇒ p1)⇒ (p0 −∗ p1) when p0 and p1 are pure.

—

65

Strictly Exact Assertions (Yang)
An assertion is strictly exact iff, for all stores s and all heaps h
and h′,

s, h � p and s, h′ � p implies h = h′.

Examples of Strictly Exact Assertions
• emp.
• e 7→ e′.
• p ∗ q, when p and q are strictly exact.
• p ∧ q, when p or q is strictly exact.
• p, when p⇒ q is valid and q is strictly exact.

—

66

Proposition 4 When q is strictly exact,

((q ∗ true) ∧ p)⇒ (q ∗ (q −∗ p))

is valid.

PROOF Suppose s, h � (q ∗ true)∧ p, so that s, h � q ∗ true

and s, h � p. Then there are heaps h0 and h1 such that h0 ⊥
h1, h0 · h1 = h, and s, h0 � q.

To see that s, h1 � q −∗ p, let h′ be any heap such that h′ ⊥ h1

and s, h′ � q. Since q is strictly exact, h′ = h0, so that h′ · h1 =

h0 · h1 = h, and thus s, h′ · h1 � p.

Then s, h0 · h1 � q ∗ (q −∗ p), so that s, h � q ∗ (q −∗ p).
END OF PROOF

For example, taking q to be the strictly exact assertion e 7→ e′

gives the final axiom schema for 7→:

(e ↪→ e′) ∧ p⇒ (e 7→ e′) ∗ ((e 7→ e′) −∗ p).

—

Precise Assertions
An assertion q is precise iff

For all s and h, there is at most one h′ ⊆ h such that

s, h′ � q.

—

67

Examples of Precise Assertions

• Strictly exact assertions.
• e 7→ −.
• p ∗ q, when p and q are precise.
• p ∧ q, when p or q is precise.
• p, when p⇒ q is valid and q is precise.
• list α e and ∃α. list α e.
• tree τ (e) and ∃τ. tree τ (e).

—

68

Examples of Imprecise Assertions

• true

• emp ∨ x 7→ 10

• x 7→ 10 ∨ y 7→ 10

• ∃x. x 7→ 10

• dag τ (i)

• ∃τ. dag τ (i)

—

69

Preciseness and Distributivity
The semi-distributive laws

(p0 ∧ p1) ∗ q ⇒ (p0 ∗ q) ∧ (p1 ∗ q)
(∀x. p) ∗ q ⇒ ∀x. (p ∗ q) when x not free in q

are valid for all assertions. But their converses

(p0 ∗ q) ∧ (p1 ∗ q)⇒ (p0 ∧ p1) ∗ q
∀x. (p ∗ q)⇒ (∀x. p) ∗ q when x not free in q

are not. For example, when

s(x) = 1 s(y) = 2 h = [1: 10 | 2: 20],

the assertion

(x 7→ 10 ∗ (x 7→ 10∨ y 7→ 20))∧ (y 7→ 20 ∗ (x 7→ 10∨ y 7→ 20))

is true, but

((x 7→ 10 ∧ y 7→ 20) ∗ (x 7→ 10 ∨ y 7→ 20))

is false.

However, the converses are valid when q is precise.

—

70

Preciseness and Distributivity (continued)
Proposition 5 When q is precise,

(p0 ∗ q) ∧ (p1 ∗ q)⇒ (p0 ∧ p1) ∗ q

is valid. When q is precise and x is not free in q,

∀x. (p ∗ q)⇒ (∀x. p) ∗ q

is valid.

PROOF (first law) Suppose s, h � (p0 ∗ q) ∧ (p1 ∗ q). Then
there are:

• An h0 ⊆ h such that s, h− h0 � p0 and s, h0 � q, and

• An h1 ⊆ h such that s, h− h1 � p1 and s, h1 � q.

Thus, since q is precise,

h0 = h1

h− h0 = h− h1

s, h− h0 � p0 ∧ p1
s, h � (p0 ∧ p1) ∗ q.

END OF PROOF

—

71

Intuitionistic Assertions

An assertion i is intuitionistic iff, for all stores s and heaps h and
h′:

(h ⊆ h′ and s, h � i) implies s, h′ � i.

Assume i and i′ are intuitionistic assertions, and p is any asser-
tion. Then:

• The following assertions are intuitionistic:

Any pure assertion p ∗ i
p −∗ i i −∗ p
i ∧ i′ i ∨ i′

∀v. i ∃v. i
dag τ (e) ∃τ. dag τ (e),

and as special cases:

p ∗ true true −∗ p e ↪→ e′.

—

72

• The following inference rules are sound:

(i ∗ i′)⇒ (i ∧ i′)
(i ∗ p)⇒ i i⇒ (p −∗ i)

p⇒ i

(p ∗ true)⇒ i

i⇒ p

i⇒ (true −∗ p).
The last two of these rules, in conjunction with the rules

p⇒ (p ∗ true) (true −∗ p)⇒ p,

which hold for all assertions, imply that

• p ∗ true is the strongest intuitionistic assertion weaker than
p.

• true −∗ p is the weakest intuitionistic assertion that is stronger
than p.

• i⇔ (i ∗ true).

• (true −∗ i)⇔ i.

—

The Intuitionistic Version of Separation Logic

If we define the operations

i¬ p def
= true −∗ (¬ p)

p
i⇒ q

def
= true −∗ (p⇒ q)

p
i⇔ q

def
= true −∗ (p⇔ q),

then the assertions built from pure assertions and e ↪→ e′, using
these operations and ∧, ∨, ∀, ∃, ∗ , and −∗ form the intuitionistic
version of separation logic.

—

73

Supported Assertions

It is easily seen that no assertion that is satisfiable (i.e. that holds
in some state) can be both precise and intuitionistic.

So what, in the intuitionistic world, replaces the concept of “pre-
cise”?

An assertion q is supported iff, for all s, h0, and h1,

• if h0 ∪ h1 is a function, and s, h0 � q and s, h1 � q are true,

• then there is an h′ such that h′ ⊆ h0, h′ ⊆ h1, and s, h′ � q
is true.

Equivalently,

Proposition 6 An assertion q is supported iff, for all s and h, if
the set

H = {h′ | h′ ⊆ h and s, h′ � q }

is nonempty, then it has a least element.

—

74

Proposition 6 An assertion q is supported iff, for all s and h, if
the set

H = {h′ | h′ ⊆ h and s, h′ � q }

is nonempty, then it has a least element.

PROOF Suppose that q is supported, fix s and h, and let h0 be a
member ofH with minimum domain size, and h1 be any member
of H. Since h0 and h1 are both subsets of h, h0 ∪ h1 must be
a function. Then the first definition guarantees that there is an
h′ ∈ H that is a subset of both h0 and h1. But h′ must be equal
to h0, since otherwise it would have a smaller domain size. Thus
h0 ⊆ h1 for every h1 ∈ H.

On the other hand, suppose that q meets the conditions of the
proposition, and h0 ∪ h1 is a function, s, h0 � q and s, h1 � q

are true. Take h to be h0 ∪ h1, so that h0, h1 ∈ H. Then take h′

to be the least element of H. END OF PROOF

—

Examples

• Imprecise, Intuitionistic, and Supported

true x ↪→ 10 x ↪→ 10 ∧ y ↪→ 10

dag τ (i) ∃τ. dag τ (i)

• Imprecise, Intuitionistic, Unsupported

x ↪→ 10 ∨ y ↪→ 10 ∃x. x ↪→ 10 ¬ emp

• Imprecise, Nonintuitionistic, Supported

emp ∨ x 7→ 10

• Imprecise, Nonintuitionistic, Unsupported

x 7→ 10 ∨ y 7→ 10 ∃x. x 7→ 10

—

75

Supported Assertions and Distributivity

Proposition 7 When p0 and p1 are intuitionistic and q is sup-
ported,

(p0 ∗ q) ∧ (p1 ∗ q)⇒ (p0 ∧ p1) ∗ q

is valid. When p is intuitionistic, q is supported, and x is not free
in q,

∀x. (p ∗ q)⇒ (∀x. p) ∗ q

is valid.

PROOF (of the first law): Suppose s, h � (p0 ∗ q) ∧ (p1 ∗ q).
Then there are:

An h0 ⊆ h such that s, h− h0 � p0 and s, h0 � q,
An h1 ⊆ h such that s, h− h1 � p1 and s, h1 � q.

Then, since q is supported and h0 ∪ h1 is a function, there is an
h′ ⊆ h0, h1 such that s, h′ � q. Moreover, since h−h0, h−h1 ⊆
h− h′, and p0 and p1 are intuitionistic,

s, h− h′ � p0 ∧ p1,

and therefore

s, h � (p0 ∧ p1) ∗ q.

END OF PROOF

—

76

The Operator − ∗ true

We have already seen that, if p is any assertion, then p ∗ true

is intuitionistic, and if i is intuitionistic, then i⇔ (i ∗ true).

Thus, − ∗ true maps arbitrary assertions into intuitionistic as-
sertions, and acts as an identity (up to equivalence of assertions)
on the latter.

Moreover, − ∗ true maps precise assertions into supported in-
tuitionistic assertions and acts as an identity (up to equivalence
of assertions) on the latter. (This is a consequence of the follow-
ing proposition.)

—

77

Proposition 8 (1) If p is precise, then p is supported.
(2) q is supported iff q ∗ true is supported.

PROOF (1) If p is precise, then, for any s and h, the set

H = {h′ | h′ ⊆ h and s, h′ � q }

contains at most one element.

(2) Suppose q is supported, h0 ∪ h1 is a function, s, h0 � q ∗
true and s, h1 � q ∗ true. Then there are h′0 ⊆ h0 and h′1 ⊆
h1 such that s, h′0 � q and s, h′1 � q, and since q is supported,
there is an h′ that is a subset of h′0 and h′1, and therefore h0 and
h1, such that s, h′ � q, and therefore s, h′ � q ∗ true.

Suppose q ∗ true is supported, h0 ∪ h1 is a function, s, h0 � q
and s, h1 � q. Then s, h0 � q ∗ true and s, h1 � q ∗ true, and
since q ∗ true is supported, there is a common subset h′ of h0

and h1 such that s, h′ � q ∗ true. But then there is a subset h′′

of h′, and therefore of h0 and h1, such that s, h′′ � q.
END OF PROOF

—

The Precising Operation

We define the precising operation:

Pr p
def
= p ∧ ¬(p ∗ ¬ emp).

For example,

Pr true iff emp

Pr (x ↪→ 10) iff x 7→ 10

Pr (emp ∨ x 7→ 10) iff emp

Pr (x ↪→ 10 ∧ y ↪→ 10) iff
if x = y then x 7→ 10 else (x 7→ 10 ∗ y 7→ 10).

The operation Pr maps supported operations into precise oper-
ations, and acts as an identity on the latter. (This is a conse-
quence of the following proposition.)

—

78

Proposition 9 (1) If p is supported, then Pr p is precise.
(2) If p is precise, then Pr p⇔ p.

PROOF (1) Suppose p is supported, and h0, h1 ⊆ h are such
that s, h0 � Pr p and s, h1 � Pr p.

We must show h0 = h1. Assume the contrary. Since s, h0 � p,
s, h1 � p, and p is supported, there is a common subset h′ of h0

and h1 such that s, h′ � p. Since h0 6= h1, however, h′ must be
a proper subset of hi for i = 0 or i = 1. Thus hi = h′ ·(hi−h′),
where s, hi − h′ � ¬ emp. Then s, hi � p ∗ ¬ emp, which
contradicts s, hi � Pr p.

(2) Obviously, Pr p⇒p. To show the opposite implication when p
is precise, assume s, h � p. If s, h � p ∗ ¬ emp held, then there
would be a proper subset h′ of h such that s, h′ � p, which would
contradict the preciseness of p. Thus s, h � ¬(p ∗ ¬ emp).

END OF PROOF

—

Relating − ∗ true and Pr

Proposition 10 (1) Pr (p ∗ true)⇒ p.

(2) p⇒ Pr (p ∗ true) when p is precise.

(3) (Pr q) ∗ true⇒ q when q is intuitionistic.

(4) q⇒ (Pr q) ∗ true when q is supported.

Therefore, Pr (p ∗ true)⇔ p when p is precise, and (Pr q) ∗
true⇒ q when q is supported and intuitionistic.

Thus − ∗ true and Pr are isomorphisms between the set of
precise assertions and the set of supported intuitionistic asser-
tions, and act as identities on these sets:

Precise

���?Pr
Supported Intuitionistic

���
�
−∗ true

-−∗ true
�

Pr
—

79

PROOF

(1) Pr (p ∗ true)⇒ p.

Suppose s, h � Pr (p ∗ true). Then s, h � p ∗ true and
s, h � ¬(p ∗ true ∗ ¬ emp), and there is an h′ ⊆ h such
that s, h′ � p. If h′ = h, we are done; otherwise, h′ is a proper
subset of h, so that s, h � p ∗ true ∗ ¬ emp, which contradicts
s, h � ¬(p ∗ true ∗ ¬ emp).

(2) p⇒ Pr (p ∗ true) when p is precise.

Suppose s, h � p. Then s, h � p ∗ true. Moreover, s, h �
¬(p ∗ true ∗ ¬ emp), for otherwise s, h � p ∗ true ∗
¬ emp would imply that there is a proper subset h′ of h such
that s, h′ � p, which would contradict the preciseness of p.

(3) (Pr q) ∗ true⇒ q when q is intuitionistic.

Suppose s, h � (Pr q) ∗ true. Then there is an h′ ⊆ h such
that s, h′ � Pr q. Then s, h′ � q, and since q is intuitionistic,
s, h � q.

(4) q⇒ (Pr q) ∗ true when q is supported.

Suppose s, h � q. Since q is supported, there is a least h′ ⊆ h

such that s, h′ � q. Then s, h′ � Pr q, since otherwise s, h′ �
q ∗ ¬ emp, which would imply that a proper subset h′′ of h′

would satisfy s, h′′ � q, contradicting the leastness of h′. Thus
s, h � (Pr q) ∗ true. END OF PROOF

—

Some Derived Inference Rules

q ∗ (q −∗ p)⇒ p

1. q ∗ (q −∗ p)⇒ (q −∗ p) ∗ q (p0 ∗ p1⇒ p1 ∗ p0)

2. (q −∗ p)⇒ (q −∗ p) (p⇒ p)

3. (q −∗ p) ∗ q⇒ p (decurrying, 2)

4. q ∗ (q −∗ p)⇒ p (trans impl, 1, 3)

where transitive implication is the inference rule

p⇒ q q⇒ r

p⇒ r.

—

80

r⇒ (q −∗ (q ∗ r))

1. (r ∗ q)⇒ (q ∗ r) (p0 ∗ p1⇒ p1 ∗ p0)

2. r⇒ (q −∗ (q ∗ r)) (currying, 1)

—

(p ∗ r)⇒ (p ∗ (q −∗ (q ∗ r)))

1. p⇒ p (p⇒ p)

2. r⇒ (q −∗ (q ∗ r)) (derived above)

3. (p ∗ r)⇒ (p ∗ (q −∗ (q ∗ r))) (monotonicity, 1, 2)

—

p0⇒ (q −∗ r) p1⇒ (r −∗ s)
p1 ∗ p0⇒ (q −∗ s)

1. p1⇒ p1 (p⇒ p)

2. p0⇒ (q −∗ r) (assumption)

3. p0 ∗ q⇒ r (decurrying, 2)

4. p1 ∗ p0 ∗ q⇒ p1 ∗ r (monotonicity, 1, 3)

5. p1⇒ (r −∗ s) (assumption)

6. p1 ∗ r⇒ s (decurrying, 5)

7. p1 ∗ p0 ∗ q⇒ s (trans impl, 4, 6)

8. p1 ∗ p0⇒ (q −∗ s) (currying, 7)

—

p′ ⇒ p q ⇒ q′

(p −∗ q)⇒ (p′ −∗ q′).

1. (p −∗ q)⇒ (p −∗ q) (p⇒ p)

2. p′⇒ p (assumption)

3. (p −∗ q) ∗ p′⇒ (p −∗ q) ∗ p (monotonicity, 1, 2)

4. (p −∗ q) ∗ p⇒ q (decurrying, 1)

5. (p −∗ q) ∗ p′⇒ q (trans impl, 3, 4)

6. q⇒ q′ (assumption)

7. (p −∗ q) ∗ p′⇒ q′ (trans impl, 5, 6)

8. (p −∗ q)⇒ (p′ −∗ q′) (currying, 7)

—

Exercise 1

Give a formal proof of the valid assertion

((x 7→ y ∗ x′ 7→ y′) ∗ true)⇒
(((x 7→ y ∗ true) ∧ (x′ 7→ y′ ∗ true)) ∧ x 6= x′)

from the rules in (2.3) and (2.4), and (some of) the following
(derived) inference rules for predicate calculus:

p⇒ true p⇒ p p ∧ true⇒ p

p⇒ q q⇒ r

p⇒ r
(trans impl)

p⇒ q p⇒ r

p⇒ q ∧ r
(∧-introduction)

Your proof will be easier to read if you write it as a sequence
of steps rather than a tree. In the inference rules, you should
regard ∗ as left associative, e.g.,

e0 7→ e′0 ∗ e1 7→ e′1 ∗ true⇒ e0 6= e1

stands for

(e0 7→ e′0 ∗ e1 7→ e′1) ∗ true⇒ e0 6= e1.

For brevity, you may weaken⇔ to⇒ when it is the main operator
of an axiom. You may also omit instances of the axiom schema
p⇒ p when it is used as a premiss of the monotonicity rule.

—

81

Exercise 2

None of the following axiom schemata are sound. For each,
given an instance which is not valid, along with a description of
a state in which the instance is false.

p0 ∗ p1 ⇒ p0 ∧ p1 (unsound)
p0 ∧ p1 ⇒ p0 ∗ p1 (unsound)

(p0 ∗ p1) ∨ q ⇒ (p0 ∨ q) ∗ (p1 ∨ q) (unsound)
(p0 ∨ q) ∗ (p1 ∨ q)⇒ (p0 ∗ p1) ∨ q (unsound)
(p0 ∗ q) ∧ (p1 ∗ q)⇒ (p0 ∧ p1) ∗ q (unsound)

(p0 ∗ p1) ∧ q ⇒ (p0 ∧ q) ∗ (p1 ∧ q) (unsound)
(p0 ∧ q) ∗ (p1 ∧ q)⇒ (p0 ∗ p1) ∧ q (unsound)

(∀x. (p0 ∗ p1))⇒ (∀x. p0) ∗ p1 when x not free in p1
(unsound)

(p0 ⇒ p1)⇒ ((p0 ∗ q)⇒ (p1 ∗ q)) (unsound)
(p0 ⇒ p1)⇒ (p0 −∗ p1) (unsound)
(p0 −∗ p1)⇒ (p0 ⇒ p1) (unsound)

—

82

Exercise 3

Use the semantics of assertions to show:

a. The soundness of

p0 ⇒ p1 q0 ⇒ q1
p0 ∗ q0 ⇒ p1 ∗ q1

(monotonicity)

p0 ∗ p1 ⇒ p2
p0 ⇒ (p1 −∗ p2)

(currying)
p0 ⇒ (p1 −∗ p2)
p0 ∗ p1 ⇒ p2.

(decurrying).

b. When q is pure, the soundness of

(p ∧ q) ∗ r ⇔ (p ∗ r) ∧ q.

c. When i is intuitionistic, that:

p ∗ i, p −∗ i, and i −∗ p are intuitionistic.

d. When i is intuitionistic, the soundness of:

p⇒ i

(p ∗ true)⇒ i

i⇒ p

i⇒ (true −∗ p).
—

83

Exercise 4

An assertion p is said to be domain-exact iff, for all s, h, and h′,
s, h � p and s, h′ � p implies domh = domh′.

Examples of domain-exact assertions include:

• Strictly exact assertions

• e 7→ −
• p ∗ q, when p and q are domain-exact

• p ∧ q, when p or q is domain-exact

• p, when p⇒ q is valid and q is domain-exact.

Use the semantics of assertions to show that any domain-exact
assertion is precise.

—

84

