An Introduction

to Separation Logic
(©2011 John C. Reynolds
March 2, 2011

Chapter 1
An Overview

Separation logic is a novel system for reasoning about imperative programs.
It extends Hoare logic with enriched assertions that can describe the separa-
tion of storage and other resources concisely. The original goal of the logic
was to facilitate reasoning about shared mutable data structures, i.e., struc-
tures where updatable fields can be referenced from more than one point.
More recently, the logic has been extended to deal with shared-variable con-
currency and information hiding, and the notion of separation has proven
applicable to a wider conceptual range, where access to memory is replaced
by permission to exercise capabilities, or by knowledge of structure. In a
few years, the logic has become a significant research area, with a growing
literature produced by a variety of researchers.

1.1 An Example of the Problem

The use of shared mutable data structures is widespread in areas as diverse
as systems programming and artificial intelligence. Approaches to reasoning
about this technique have been studied for three decades, but the result
has been methods that suffer from either limited applicability or extreme
complexity, and scale poorly to programs of even moderate size.

For conventional logics, the problem with sharing is that it is the default
in the logic, while nonsharing is the default in programming, so that declaring
all of the instances where sharing does not occur — or at least those instances
necessary for correctness — can be extremely tedious.

For example, consider the following program, which performs an in-place

4 CHAPTER 1. AN OVERVIEW

reversal of a list:

LREV % j:=nil ;whilei#nildo (k:=[i+1];[i+ 1] :=]j;j:=i:i:=k).

(Here the notation [e] denotes the contents of the storage at address e.)

The invariant of this program must state that i and j are lists representing
two sequences a and (3 such that the reflection of the initial value oy can be
obtained by concatenating the reflection of a onto (:

Ja, B. list i Alist B A oy = a3,
where the predicate list i is defined by induction on the length of a:
listei i=mnil list(a-a)i % Jj.i— a,jAlista]

(and — can be read as “points to”).
Unfortunately, however, this is not enough, since the program will mal-
function if there is any sharing between the lists i and j. To prohibit this
we must extend the invariant to assert that only nil is reachable from both

i and j:
(Ja, B. list i Alist 8] A ofy = o)

1.1
A (Vk. reachable(i, k) A reachable(j, k) = k = nil), (1)

where
reachable(i,j) % 3n > 0. reachable, (i, j)
reachableg(i,j) & i = |
reachable,(i,j) & Ja, k. i — a, k A reachable, (k, j).

Even worse, suppose there is some other list x, representing a sequence ~,
that is not supposed to be affected by the execution of our program. Then
it must not share with either i or j, so that the invariant becomes

(Jav, B. list i Alist 8] A oy = af-)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil)
A list 7 x (1.2)
A (Vk. reachable(x, k)
A (reachable(i, k) V reachable(j, k)) = k = nil).

1.1. AN EXAMPLE OF THE PROBLEM 5

Even in this trivial situation, where all sharing is prohibited, it is evident
that this form of reasoning scales poorly.

In separation logic, however, this kind of difficulty can be avoided by
using a novel logical operation P * (), called the separating conjunction, that
asserts that P and Q hold for disjoint portions of the addressable storage.
Since the prohibition of sharing is built into this operation, Invariant (1.1)
can be written more succinctly as

(Ja, B. list i * list 3j) Aoy = at-3, (1.3)
and Invariant (1.2) as
(Ja, B. list i * list 3] « listyx) Aoy = af-g. (1.4)

A more general advantage is the support that separation logic gives to
local reasoning, which underlies the scalability of the logic. For example, one
can use (1.3) to prove a local specification:

{listai} LREV {list o j}.

In separation logic, this specification implies, not only that the program
expects to find a list at i representing «, but also that this list is the only
addressable storage touched by the execution of LREV (often called the foot-
print of LREV). If LREV is a part of a larger program that also manipulates
some separate storage, say containing the list k, then one can use an infer-
ence rule due to O’Hearn, called the frame rule, to infer directly that the
additional storage is unaffected by LREV:

{listai * listyk} LREV {lista'j * list vk},

thereby avoiding the extra complexity of Invariant (1.4).

In a realistic situation, of course, LRFEV might be a substantial subpro-
gram, and the description of the separate storage might also be voluminous.
Nevertheless, one can still reason locally about LREV, i.e., while ignoring
the separate storage, and then scale up to the combined storage by using the
frame rule.

There is little need for local reasoning in proving toy examples. But it
provides scalability that is critical for more complex programs.

6 CHAPTER 1. AN OVERVIEW

1.2 Background

In 1972, Burstall [1] gave correctness proofs for imperative programs that
alter data structures, by using a novel kind of assertion that he called a “dis-
tinct nonrepeating tree system”; this approach was extended by Kowaltowski
[2]. In 1975, Cook and Oppen [3, 4] devised an more general approach by
extending Hoare logic with extremely complicated inference rules. Then, in
1981, J. M. Morris [5] extended weakest-precondition logic by generalizing
the notion of substitution.

In the late 80’s Mason and Talcott [6, 7, 8] investigated reasoning about
program equivalence for LISP-like functional languages where expression
evaluation can alter data structures as a side effect; more recently they and
others [9, 10] have extended this approach to a logic for reasoning about
programs.

Pitts and Stark [11] have studied operational reasoning about an ML-like
language with data-altering expressions. (In this work, however, only simple
values can be stored at locations; not structured values that themselves con-
tain locations.) This research builds upon earlier work by Stark [12, 13, 14]
on languages that create local names.

Separation logic was inspired by Burstall’s ideas, which were pleasantly
compatible with Hoare logic [15, 16], as well as earlier work by Floyd [17],
Naur [18], and Good [19]. Burstall’s “distinct nonrepeating tree system” was
a sequence of assertions, written P, * --- *x P, in the notation of these notes,
where each P; described a distinct region of storage, so that an assignment
to a single location could change only one of the P;. This seems to be the
first occurrence of the idea that an assertion about a state can be built out of
assertions about disjoint substates — the essence of the notion of separating
conjunction.

In lectures in the fall of 1999, Reynolds described separating conjunction
explicitly, and embedded it in a flawed extension of Hoare logic. Soon there-
after, a sound intuitionistic version of the logic was discovered independently
by Ishtiaq and O’Hearn [20] and by Reynolds [21]. Realizing that this logic
was an instance of the logic of bunched implications [22, 23], Ishtiaq and
O’Hearn also introduced a separating implication P — Q).

The intuitionistic character of this logic implied a monotonicity property:
that an assertion true for some portion of the addressable storage would
remain true for any extension of that portion, such as might be created by
later storage allocation.

1.2. BACKGROUND 7

In their paper, however, Ishtiaq and O’Hearn also presented a classical
version of the logic that does not impose this monotonicity property, and can
therefore be used to reason about explicit storage deallocation; they showed
that this version is more expressive than the intuitionistic logic, since the
latter can be translated into the classical logic.

O’Hearn also went on to devise the frame rule and illustrate its importance
[24, 25, 20].

Originally, in both the intuitionistic and classical version of the logic,
addresses were assumed to be disjoint from integers, and to refer to entire
records rather than particular fields, so that address arithmetic was pre-
cluded. Later, Reynolds generalized the logic to permit reasoning about un-
restricted address arithmetic, by regarding addresses as integers which refer
to individual fields [24, 26]. It is this form of the logic that will be described
and used in most of these notes.

Since these logics are based on the idea that the structure of an assertion
can describe the separation of storage into disjoint components, we have come
to use the term separation logic, both for the extension of predicate calculus
with the separation operators and for the resulting extension of Hoare logic.

At present, separation logic has been used to manually verify a variety
of small programs, as well as a few that are large enough to demonstrate
the potential of local reasoning for scalability, such as the Schorr-Waite al-
gorithm [27], treated in [28, 29], and the Cheney copying garbage collector
[30], treated in [31, 32]. In addition:

1. As discussed briefly in Section 1.10, it has been shown that deciding
the validity of an assertion in separation logic is not recursively enu-
merable, even when address arithmetic and the characteristic operation
emp, —, %, and —, but not < are prohibited [33, 29]. On the other
hand, it has also been shown that, if the characteristic operations are
permitted but quantifiers are prohibited, then the validity of assertions
is algorithmically decidable within the complexity class PSPACE [33].

2. As discussed in Section 1.8 and Chapter 6, an iterative form of sepa-
rating conjunction has been introduced to reason about arrays [34].

3. The logic has been extended to procedures with global variables, where
a “second-order frame rule” permits reasoning with information hiding

35, 36].

CHAPTER 1. AN OVERVIEW

4. A rich type system called “Hoare Type Theory” has been developed,
in which the specifications of Hoare logic and separation logic reap-
pear as types [37, 38, 39, 40]. This approach has been applied to an
ML-like language with higher-order procedures but no assignment to
variables (as opposed to mutation of heap locations), and only inte-
gers and addresses as values in the heap [41]. This setting leads to
higher-order versions of the frame rule. It is also possible to introduce
more general forms of abstraction and information hiding [42, 43] that
are based on relational parametricity (as in the polymorphic lambda
calculus [44]). This work draws upon the combination of relational rea-
soning and FM-domain theory [45], which in turn drew upon the work
of Pitts and Stark [11, 12, 13, 14].

5. Separation logic has been extended to a higher-order logic [46]. This
permits the user to define abstract data types and their implementation
directly in the logic (rather than as extensions to the logic).

6. The logic has been extended to deal with heaps that map addresses
into procedures [47, 48]. (A denotational semantics of the underlying
programming language is developed in [49].) In combination with the
extension to a higher-order logic, this provides the concepts that are
needed to provide higher-order reasoning about an ML-like language,
which is currently being explored by N. Krishnaswami.

7. The logic has been integrated with data refinement [50, 51, 52], and
with object-oriented programming (i.e., with a subset of Java) [53, 54,
55, 56, 57).

8. Higher-order extensions of the logic have been use to specify design
patterns [58] used in object-oriented programming, and to prove the
correctness of implementations of these patterns [59, 60, 38, 61].

9. As discussed in Section 1.11, the logic has been extended to shared-
variable concurrency with conditional critical regions, where one can
reason about the transfer of ownership of storage from one process to
another [62, 63, 64]. Further extensions have been made to non-
blocking algorithms [65, 66]. The concept of rely /guarantee reasoning
(originally introduced in the 1980’s [67]) has led to more general ap-
proaches to such algorithms [68, 69, 70, 71]. Other work on concurrency
includes [72].

1.3.

10.

11.

12.

13.

14.

15.

16.

THE PROGRAMMING LANGUAGE 9

The logic has been extended to deal with byte-size data, pointer align-
ment restrictions, finite-arithmetic, and other complications imposed
by low-level languages such as C [73, 74].

In the context of proof-carrying code, separation logic has inspired work
on proving run-time library code for dynamic allocation [75].

Separation logic has been repeatedly applied to the design of automatic
systems for insuring memory safety by means of shape analysis [76, 77,
78, 79, 80, 81, 82, 83, 84].

As discussed in Section 1.12, fractional permissions (in the sense of
Boyland [85]) and counting permissions have been introduced so that
one can permit several concurrent processes to have read-only access
to an area of the heap [86]. This approach has also been applied to
program variables [87, 88].

Separation logic has been extended to termination proofs [89].

The concept that primitive operations are local actions, which makes
local reasoning possible, has been used to formulate an abstract form
of separation logic which unifies ordinary separation logic with the sys-
tems that use fractional permissions (as well as certain kinds of Petri
nets) [90].

Isabelle/HOL [91, 92] has been used to implement separation logic [93,
74, 32]. The work in [74] was built upon an earlier general system for
Hoare logic [94].

It should also be mentioned that separation logic is related to other recent
logics that embody a notion of separation, such as spatial logics or ambient
logic [95, 96, 97, 98, 99, 100].

1.3 The Programming Language

The programming language we will use is a low-level imperative language —
specifically, the simple imperative language originally axiomatized by Hoare
[15, 16], extended with new commands for the manipulation of mutable

10 CHAPTER 1. AN OVERVIEW

shared data structures:

(comm) = - -
| (var) := cons({(exp), ..., (exp)) allocation
| (var) := [(exp)] lookup
| [(exp)] := (exp) mutation
| dispose (exp) deallocation

Memory managenent is explicit; there is no garbage collection. As we will
see, any dereferencing of dangling addresses will cause a fault.

Semantically, we extend computational states to contain two components:
a store (sometimes called a stack), mapping variables into values (as in the
semantics of the unextended simple imperative language), and a heap, map-
ping addresses into values (and representing the mutable structures).

In the early versions of separation logic, integers, atoms, and addresses
were regarded as distinct kinds of value, and heaps were mappings from finite
sets of addresses to nonempty tuples of values:

Values = Integers U Atoms U Addresses

where Integers, Atoms, and Addresses are disjoint
nil ¢ Atoms
Storesyy = V' — Values

Heaps = U ¢ (A — Values™)
AC Addresses

Statesy = Storesy x Heaps

where V' is a finite set of variables.

(Actually, in most work using this kind of state, authors have either imposed
restricted formats on the records in the heap, to reflect the specific usage of
the program they are specifying [28, 29, 31], or they have used a programming
language with a type system that can describe the layout of records.)

To permit unrestricted address arithmetic, however, in the version of the
logic used in most of this paper we will assume that all values are integers,
an infinite number of which are addresses; we also assume that atoms are
integers that are not addresses, and that heaps map addresses into single

1.3. THE PROGRAMMING LANGUAGE 11

values:

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil ¢ Atoms
Storesy = V' — Values

Heaps = U s (A — Values)
AC Addresses

Statesy = Storesy x Heaps

where V is a finite set of variables.

(To permit unlimited allocation of records of arbitrary size, we require that,
for all n > 0, the set of addresses must contain infinitely many consecutive
sequences of length n. For instance, this will occur if only a finite number of
positive integers are not addresses.)

Our intent is to capture the low-level character of machine language. One
can think of the store as describing the contents of registers, and the heap
as describing the contents of an addressable memory. This view is enhanced
by assuming that each address is equipped with an “activity bit”; then the
domain of the heap is the finite set of active addresses.

The semantics of ordinary and boolean expressions is the same as in the
simple imperative language:

[e € {exDP)] o € (UVﬁ;"FV(e) Storesy) — Values

[b € (boolexp)],ey, €

(U Storesy) — {true, false}
VOFV(b)

(where FV(p) is the set of variables occurring free in the phrase p). In
particular, expressions do not depend upon the heap, so that they are always
well-defined and never cause side-effects.

Thus expressions do not contain notations, such as cons or [—], that
refer to the heap; instead these notations are part of the structure of com-
mands (and thus cannot be nested). It follows that none of the new heap-
manipulating commands are instances of the simple assignment command

12 CHAPTER 1. AN OVERVIEW

(var) := (exp) (even though we write the allocation, lookup, and mutation
commands with the familiar operator :=). In fact, these commands will not
obey Hoare’s inference rule for assignment. However, since they alter the
store at the variable v, we will say that the commands v := cons(---) and
v:=le], as well as v:=e (but not [v] := e or dispose v) modify v.

Our strict avoidance of side-effects in expressions will allow us to use them
in assertions with the same freedom as in ordinary mathematics. This will
substantially simplify the logic, at the expense of occasional complications
in programs.

The semantics of the new commands is simple enough to be conveyed by
example. If we begin with a state where the store maps the variables x and
y into three and four, and the heap is empty, then the typical effect of each
kind of heap-manipulating command is:

Store: x:3,y:4

Heap : empty
Allocation x:=cons(1,2) ; [}

Store : x:37,y:4

Heap : 37:1, 38:2
Lookup y:=[x]; [}

Store: x:37,y:1

Heap: 37:1, 38:2
Mutation x+1]:=3; (8

Store : x:37,y:1

Heap: 37:1, 38:3

Deallocation dispose(x + 1) (8
Store: x:37,y:1
Heap : 37:1
The allocation operation cons(ey,...,e,) activates and initializes n cells in

the heap. It is important to notice that, aside from the requirement that the
addresses of these cells be consecutive and previously inactive, the choice of
addresses is indeterminate.

The remaining operations, for mutation, lookup, and deallocation, all
cause memory faults (denoted by the terminal configuration abort) if an

1.4. ASSERTIONS 13

inactive address is dereferenced or deallocated. For example:

Store : x:3,y:4

Heap : empty
Allocation x:=cons(1,2); [}

Store: x:37,y:4

Heap: 37:1, 38:2
Lookup y:=[x]; (!

Store: x:37,y:1

Heap: 37:1, 38:2
Mutation [x+ 2] :=3; J

abort

1.4 Assertions

As in Hoare logic, assertions describe states, but now states contain heaps as
well as stores. Thus, in addition to the usual operations and quantifiers of
predicate logic, we have four new forms of assertion that describe the heap:

e emp (empty heap)
The heap is empty.

o ci—¢ (singleton heap)
The heap contains one cell, at address e with contents €’.

o P x Do (separating conjunction)
The heap can be split into two disjoint parts such that p; holds for one
part and py holds for the other.

® Py —* Do (separating implication)
If the heap is extended with a disjoint part in which p; holds, then p,
holds for the extended heap.

It is also useful to introduce abbreviations for asserting that an address e is
active:
def / / ! ;
er— — = dr'. e— a2 where 2’ not free in e,

that e points to ¢’ somewhere in the heap:

7 def /
e— e = e e *x true,

14 CHAPTER 1. AN OVERVIEW

and that e points to a record with several fields:

def

er>€1,...,6p = €rep x ---xe+n—1m—e,
def
e el,....,p = €€ % - ke+n—1—e,
iff er—eq,...,e, * true.
Notice that assertions of the form e — €, e — —, and e — e,...,¢,
determine the extent (i.e., domain) of the heap they describe, while those
of the form e — ¢’ and e < ey,...,¢, do not. (Technically, the former are

said to be precise assertions. A precise definition of precise assertions will be
given in Section 2.3.3.)

By using —, <, and both separating and ordinary conjunction, it is easy
to describe simple sharing patterns concisely. For instance:

1. x — 3,y asserts that x points to an adjacent pair
of cells containing 3 and y (i.e., the store maps x X— 3
and y into some values o and (3, « is an address, y
and the heap maps a into 3 and « + 1 into f3).

2. y — 3,x asserts that y points to an adjacent pair Yy— 3
of cells containing 3 and x. X

3. x+— 3,y * y— 3,x asserts that situations (1) X b‘ y

and (2) hold for separate parts of the heap. o

4. x — 3,yAy — 3, x asserts that situations (1) and X
(2) hold for the same heap, which can only happen y D
if the values of x and y are the same. E

5. x — 3,y Ay — 3,x asserts that either (3) or (4)
may hold, and that the heap may contain additional
cells.

Separating implication is somewhat more subtle, but is illustrated by the
following example (due to O’Hearn): Suppose the assertion p asserts various

1.4. ASSERTIONS 15

conditions about the store and heap, including that the store maps x into
the address of a record containing 3 and 4:

Store: x:a, ... " Rest
Heap : «:3,a+ 1:4, Rest of Heap XAE ° of
4 o}
Heap

-

Then (x — 3,4) — p asserts that, if one were to add to the current heap a
disjoint heap consisting of a record at address x containing 3 and 4, then the
resulting heap would satisfy p. In other words, the current heap is like that
described by p, except that the record is missing:

Store: x:a, ... " Rest
X— -—F0
Heap : Rest of Heap, as above of
~—0
q Heap

Moreover, x — 1,2 % ((x — 3,4) —« p) asserts that the heap consists of a
record at x containing 1 and 2, plus a separate part as above:

Store: x:a, ... 4 Rest

Heap: a:1,a+ 1:2, XAE ° of
Rest of Heap, as above 2 C Heap

This example suggests that x — 1,2 % ((x +— 3,4) — p) describes a state
that would be changed by the mutation operations [x] := 3 and [x + 1] :=4
into a state satisfying p. In fact, we will find that

{x— 1,2 % ((x+—3,4) = p)} [x] :=3; [x+ 1] :=4 {p}

is a valid specification (i.e., Hoare triple) in separation logic — as is the more
general specification

{x— = — % ((x—3,4) = p)} x| :=3;[x+ 1] :=4 {p}.

The inference rules for predicate calculus (not involving the new operators
we have introduced) remain sound in this enriched setting. Additional axiom
schemata for separating conjunction include commutative and associative
laws, the fact that emp is a neutral element, and various distributive and

16 CHAPTER 1. AN OVERVIEW
semidistributive laws:

D1 * P2 < P2 * P1
(p1 * p2) * p3 & p1 * (P2 * p3)
p *x emp < p
(PLVp2) * g (prx @) V(P2 * q)
(prAp2) ¥ g= (p1 x @) A(p2 * q)
(3x. p1) * pe < Jx. (p1 * p2) when x not free in po
(

V. p1) * po = V. (p1 * p) when x not free in py

There is also an inference rule showing that separating conjunction is mono-
tone with respect to implication:

P1 = D2 q1 = q2
P1 * @1 = P2 * @2

(monotonicity)

and two further rules capturing the adjunctive relationship between separat-
ing conjunction and separating implication:

D1 * P2 = P3 . p1 = (p2 —* p3))
(currying) (decurrying)

p1 = (p2 —* p3) P1 * P2 = P3.

On the other hand, there are two rules that one might expect to hold for
an operation called “conjunction” that in fact fail:

p=p*Dp (Contraction — unsound)

p*q=0p (Weakening — unsound)

A counterexample to both of these axiom schemata is provided by taking p
to be x — 1 and ¢ to be y +— 2; then p holds for a certain single-field heap
while p * p holds for no heap, and p * ¢ holds for a certain two-field heap
while p holds for no two-field heap. (Thus separation logic is a substructural
logic.)

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 17

Finally, we give axiom schemata for the predicate —. (Regrettably, these
are far from complete.)
err— el Neyi— el & e el ANep =ex N = ¢
€1 < €] x ey = ey = e # ey
emp &< V. =(x — —)

(e =) Ap= (e) x ((e =€) —p).

1.5 Specifications and their Inference Rules

While assertions describe states, specifications describe commands. In spec-
ification logic, specifications are Hoare triples, which come in two flavors:

(specification) ::=
{(assertion)} (command) {(assertion)} (partial correctness)
| [(assertion) | (command) [(assertion) | (total correctness)

In both flavors, the initial assertion is called the precondition (or sometimes
the precedent), and the final assertion is called the postcondition (or some-
times the consequent).

The partial correctness specification {p} ¢ {q} is true iff, starting in any
state in which p holds,

e No execution of ¢ aborts, and

e When some execution of ¢ terminates in a final state, then ¢ holds in
the final state.

The total correctness specification [p] ¢ [q] (which we will use much less
often) is true iff, starting in any state in which p holds,

e No execution of ¢ aborts, and
e Every execution of ¢ terminates, and

e When some execution of ¢ terminates in a final state, then ¢ holds in
the final state.

18 CHAPTER 1. AN OVERVIEW

These forms of specification are so similar to those of Hoare logic that it is
important to note the differences. Our specifications are implicitly quantified
over both stores and heaps, and also (since allocation is indeterminate) over
all possible executions. Moreover, any execution (starting in a state satisfying
p) that gives a memory fault falsifies both partial and total specifications.

The last point goes to the heart of separation logic. As O’Hearn [20]
paraphrased Milner, “Well-specified programs don’t go wrong.” As a con-
sequence, during the execution of a program that has been proved to meet
some specification (assuming that the program is only executed in initial
states satisfying the precondition of the specification), it is unnecessary to
check for memory faults, or even to equip heap cells with activity bits.

In fact, it is not the implementor’s responsibility to detect memory faults.
It is the programmer’s responsibility to avoid them — and separation logic
is a tool for this purpose. Indeed, according to the logic, the implementor
is free to implement memory faults however he wishes, since nothing can be
proved that might gainsay him.

Roughly speaking, the fact that specifications preclude memory faults
acts in concert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, during an execution of

co;x:=cons(1,2) ;¢ ; [x+2]:=7,

no allocation performed by the subcommand ¢y or ¢; can be guaranteed to
allocate the location x + 2; thus as long as ¢y and c¢; terminate and ¢; does
not modify x, there is a possibility that the execution will abort. It follows
that there is no postcondition that makes the specification

{true} ¢y ;x:=cons(1,2) ;¢ ; [x+2]:=7{?}

valid.

Sometimes, however, the notion of record boundaries dissolves, as in the
following valid (and provable) specification of a program that tries to form a
two-field record by gluing together two one-field records:

fxm = %y -}
if y = x+ 1 then skip else
if x=y+ 1then x:=y else (1.5)

(dispose x ; dispose y ; x := cons(1, 2))

{x— -, -}

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 19

It is evident that such a program goes well beyond the discipline imposed by
type systems for mutable data structures.

In our new setting, the command-specific inference rules of Hoare logic
remain sound, as do such structural rules as

e Strengthening Precedent

p=>q {q}c{r}

{ptedr}.

e Weakening Consequent
{pyefay g=r
{p}c{r}.
e Existential Quantification (Ghost Variable Elimination)

{p} c{q}
{Fv. p} c{Fv. g},

where v is not free in c.

e Conjunction

{p}ci{a} {p}cie}

{p} c{a N g2}

e Substitution

{r} c{q}
{p/d} (c/6) {q/d},

where ¢§ is the substitution v; — eq,...,v, — e,, v1,...,v, are the

variables occurring free in p, ¢, or ¢, and, if v; is modified by ¢, then e;
is a variable that does not occur free in any other e;.

(All of the inference rules presented in this section are the same for partial
and total correctness.)

An exception is what is sometimes called the “rule of constancy” [27,
Section 3.3.5; 28, Section 3.5]:

{r} c{q}

{pAr}e{gnr},

(unsound)

20 CHAPTER 1. AN OVERVIEW

where no variable occurring free in r is modified by c¢. It has long been
understood that this rule is vital for scalability, since it permits one to extend
a “local” specification of ¢, involving only the variables actually used by
that command, by adding arbitrary predicates about variables that are not
modified by ¢ and will therefore be preserved by its execution.

Surprisingly, however, the rule of constancy becomes unsound when one
moves from traditional Hoare logic to separation logic. For example, the
conclusion of the instance

{x— =} [x]:=4{x— 4}
{x— —-Ay—3} [x:=4{x— 4Ny~ 3}

is not valid, since its precondition does not preclude the case x =y, where
aliasing will falsify y — 3 when the mutation command is executed. (Indeed,
this precondition implies x = vy.)

O’Hearn realized, however, that the ability to extend local specifications
can be regained at a deeper level by using separating conjunction. In place
of the rule of constancy, he proposed the frame rule:

e Frame Rule

{p} c{q}
{p = r}c{q *r},

where no variable occurring free in r is modified by c.

By using the frame rule, one can extend a local specification, involving only
the variables and heap cells that may actually be used by ¢ (which O’Hearn
calls the footprint of ¢), by adding arbitrary predicates about variables and
heap cells that are not modified or mutated by c¢. Thus, the frame rule is the
key to “local reasoning” about the heap:

To understand how a program works, it should be possible for
reasoning and specification to be confined to the cells that the
program actually accesses. The value of any other cell will auto-
matically remain unchanged [24].

In any valid specification {p} ¢ {q}, p must assert that the heap contains
every cell in the footprint of ¢ (except for cells that are freshly allocated
by ¢); “locality” is the converse implication that every cell asserted to be
contained in the heap belongs to the footprint. The role of the frame rule is

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 21

to infer from a local specification of a command the more global specification
appropriate to the possibly larger footprint of an enclosing command.
Beyond the rules of Hoare logic and the frame rule, there are inference
rules for each of the new heap-manipulating commands. Indeed, for each
of these commands, we can give three kinds of rules: local, global, and
backward-reasoning.
For mutation, for example, the simplest rule is the local rule:

e Mutation (local)

{e— —} [e] =€ {e— €},

which specifies the effect of mutation on the single cell being mutated. From
this, one can use the frame rule to derive a global rule:

e Mutation (global)

{le= =) xr}le]=e{(e—¢) x 1},

which also specifies that anything in the heap beyond the cell being mutated
is left unchanged by the mutation. (One can rederive the local rule from the
global one by taking r to be emp.)

Beyond these forms, there is also:

e Mutation (backwards reasoning)

{le— =) x ((e =€) —xp)} [e] =€ {p},

which is called a backward reasoning rule since, by substituting for p, one can
find a precondition for any postcondition. [20].

A similar development works for deallocation, except that the global form
is itself suitable for backward reasoning:

e Deallocation (local)

{e — —} dispose e {emp}.

e Deallocation (global, backwards reasoning)

{(e — —) = r} dispose e {r}.

22 CHAPTER 1. AN OVERVIEW

In the same way, one can give equivalent local and global rules for alloca-
tion commands in the nonoverwriting case where the old value of the variable
being modified plays no role. Here we abbreviate ey, ..., e, by e.

e Allocation (nonoverwriting, local)

{emp} v :=cons(e) {v — €},

where v is not free in €.

e Allocation (nonoverwriting, global)

{r} v:=cons(e) {(v—e) x r},

where v is not free in € or 7.

Of course, we also need more general rules for allocation commands v :=
cons(€), where v occurs in € or the precondition, as well as a backward-
reasoning rule for allocation, and rules for lookup. Since all of these rules
are more complicated than those given above (largely because most of them
contain quantifiers), we postpone them to Section 3.7 (where we will also
show that the different forms of rules for each command are interderivable).

As a simple illustration of separation logic, the following is an anno-
tated specification of the command (1.5) that tries to glue together adjacent

1.5. SPECIFICATIONS AND THEIR INFERENCE RULES 23

records:

fxim = %y)

if y=x+1then

else if x =y + 1 then
{y———}
X:=y

else
(fcm =%y}
dispose x ;
{y——}
dispose y;
{emp}
x := cons(1, 2))

{X =, _}'

We will make the concept of an annotated specification — as a user-friendly
form for presenting proof of specifications — rigorous in Sections 3.3 and 3.6.
For the present, one can think of the intermediate assertions as comments
that must be true whenever control passes through them (assuming the initial
assertion is true when the program begins execution), and that must also
ensure the correct functioning of the rest of the program being executed.

A second example describes a command that uses allocation and mutation

24 CHAPTER 1. AN OVERVIEW
to construct a two-element cyclic structure containing relative addresses:

femp}
x:=cons(a,a) ;

{x+ a,a}

y :=cons(b,b);
{(x—a,a) * (y = b,b)}
{(x—a,-) * (y— b,—)}

x+ 1] ==y —x;
{(x»—>a,y—x) * (y'_)ba_)}
y+1]:=x—y;

{(x—=a,y =x) * (y = b,x—y)}
{Jo. (x+—a,0) * (x+0+—b, —0)}.

1.6 Lists

To specify a program adequately, it is usually necessary to describe more than
the form of its structures or the sharing patterns between them; one must
relate the states of the program to the abstract values that they denote. For
instance, to specify the list-reversal program in Section 1.1, it would hardly
be enough to say that “If i is a list before execution, then j will be a list
afterwards”. One needs to say that “If i is a list representing the sequence
a before execution, then afterwards j will be a list representing the sequence
that is the reflection of «.”

To do so in general, it is necessary to define the set of abstract values
(sequences, in this case), along with their primitive operations, and then to
define predicates on the abstract values by structural induction. Since these
kinds of definition are standard, we will treat them less formally than the
novel aspects of our logic.

Sequences and their primitive operations are an easy first example since
they are a standard and well-understood mathematical concept, so that we
can omit their definition. To denote the primitive operations, we write € for
the empty sequence, o - 3 for the composition of a followed by 3, af for the
reflection of «, and «; for the ith component of «.

1.6. LISTS 25

The simplest list structure for representing sequences is the singly-linked
list. To describe this representation, we write list «i when i is a list repre-

senting the sequence a:

i — 5]
4

It is straightforward to define this predicate by induction on the structure

of a:

list ei emp A i = nil

list (a-a)i % Jj. i a,] * lista

(where € denotes the empty sequence and a-(denotes the concatenation of
a followed by [3), and to derive a test whether the list represents an empty

sequence:

listai= (i=mnil < a=c¢).

Then the following is an annotated specification of the program for reversing

26 CHAPTER 1. AN OVERVIEW

a list:

{list g i}
{list apgi * (emp A nil = nil)}
j:=mnil;
{listapi * (emp Aj=nil)}
{listagi = list €j}
{Ja, B. (list i * list 3)) A of = -8}
while i # nil do

({3a, @, 8. (list (a-0) i * list B)) A = (a-00) 18}

{Fa,a, B, k. (i— a,k * listak * list 3j) A of = (a-a)"-B}

k:=1[i+1];

{Ja,a, 5. (i— a,k « listak * list 3)) A of) = (a-a)f-3}

[+1]:=];

{Ja,0, 8. (i a,j * listak * list 3)) Aa} = (a-a)-5}

{Ja, o, 8. (list ak * list (a-3)i) A o)) = af-a-}

{3a, B. (list ack * list 3i) A af = of-5}

ji=i:i:=k

{(3a, 8. (list ai * list 3)) Ao = al-B})
{3, 5. list Bj A b =alBra= €}
{list o j}

Within the assertions here, Greek letters are used as variables denoting se-

quences. More formally, we have extended the state to map Greek variables
into sequences as well as sans serif variables into integers.

1.7 'Trees and Dags

When we move from list to tree structures, the possible patterns of sharing
within the structures become richer.

At the outset, we face a problem of nomenclature: Words such as “tree”
and “graph” are often used to describe a variety of abstract structures, as

1.8. ARRAYS AND THE ITERATED SEPARATING CONJUNCTION27

well as particular ways of representing such structures. Here we will focus
on a particular kind of abstract value called an “S-expression” in the LISP
community. The set S-exps of these values is the least set such that

T € S-exps iff 7 € Atoms
or 7 = (71 - 7o) where 71, 75 € S-exps.

(Of course, this is just a particular, and very simple, initial algebra — as
is “sequence”. We could take carriers of any lawless many-sorted initial
algebra to be our abstract data, but this would complicate our exposition
while adding little of interest.)

For clarity, it is vital to maintain the distinction between abstract values
and their representations. Thus, we will call abstract values “S-expressions”,
while calling representations without sharing “trees”, and representations
with sharing but no cycles “dags” (for “directed acyclic graphs”).

We write tree 7 (i) (or dag 7 (i)) to indicate that i is the root of a tree
(or dag) representing the S-expression 7. Both predicates are defined by
induction on the structure of 7:

treea (i) iff emp A i = a

tree (71 - 7o) (7) iff Jiy,da. @ — 11,19 * tree Ty (i1) * tree 7 (iz)

(i
daga (i) iffi=a
(i

dag (71 - 7o) (¢) iff k3iy,d9. i+ dy,ip * (dag T (i1) A dag 7 (iz)).

(In Sections 5.1 and 5.2, we will see that tree 7 (i) is a precise assertion, so
that it describes a heap containing a tree-representation of 7 and nothing
else, while dag 7 (i) is an intuitionistic assertion, describing sa heap that may
contain extra space as well as a tree-representation of 7.)

1.8 Arrays and the Iterated Separating Con-
junction

It is straightforward to extend our programming language to include heap-
allocated one-dimensional arrays, by introducing an allocation command
where the number of consecutive heap cells to be allocated is specified by
an operand. It is simplest to leave the initial values of these cells indetermi-
nate.

28 CHAPTER 1. AN OVERVIEW

We will use the syntax
(comm) ::= --- | (var) := allocate (exp)

where v:=allocate e will be a command that allocates e consecutive locations
and makes the first of these locations the value of the variable v. For instance:
Store : x:3,y:4
Heap : empty
x := allocate y (X
Store : x:37,y:4
Heap: 37:—, 38: —,39: —, 40: —

To describe such arrays, it is helpful to extend the concept of separating
conjunction to a construct that iterates over a finite contiguous set of integers.
We use the syntax

(assert) = - | Qgexm (assert)

var)=(exp)

Roughly speaking, O°_, p bears the same relation to * that V_, p bears to
A. More precisely, let I be the contiguous set {v | e < v < €'} of integers
between the values of e and ¢/. Then O°_, p(v) is true iff the heap can be
partitioned into a family of disjoint subheaps, indexed by I, such that p(v)
is true for the vth subheap.

Then array allocation is described by the following inference rule:

{r} v:=allocate e {(Q/*¢ i —) x 1},

where v does not occur free in r or e.

A simple illustration of the iterated separating conjunction is the use of
an array as a cyclic buffer. We assume that an n-element array has been
allocated at address I, e.g., by | := allocate n, and we use the variables

m number of active elements
i address of first active element
j address of first inactive element.

Then when the buffer contains a sequence «, it should satisfy the assertion
0<m<n AI<i<I+n AI<j<Il4+n A
j=idmA m=#a A
(O i@k i) * (OF=F @ k= —)),

where r @y =2 +y modulon, and | <xHy <+ n.

1.9. PROVING THE SCHORR-WAITE ALGORITHM 29

1.9 Proving the Schorr-Waite Algorithm

One of the most ambitious applications of separation logic has been Yang’s
proof [28, 29] of the Schorr-Waite algorithm [27] for marking structures that
contain sharing and cycles. This proof uses the older form of classical sepa-
ration logic [20] in which address arithmetic is forbidden and the heap maps
addresses into multifield records — each containing, in this case, two address
fields and two boolean fields.

Since addresses refer to entire records with identical number and types of
fields, it is easy to assert that the record at x has been allocated:

def
allocated(x) = x — —, —, —, —,

that all records in the heap are marked:

markedR % vx. allocated(x) = x — —, —, — true,

that x is not a dangling address:

noDangling(x) & (x = nil) V allocated(x),

or that no record in the heap contains a dangling address:

noDanglingR aef W, r (x = lLr,— =)=
noDangling(l) A noDangling(r).
The heap described by the main invariant of the program is the footprint

of the entire algorithm, which is exactly the structure that is reachable from
the address root. The invariant itself is:

noDanglingR A noDangling(t) A noDangling(p) A
(Iistl\/larkedNodesR(stack, p) *
(restoredListR(stack, t) — spansR(STree, root))) A
(markedR * (unmarkedR A (Vx. allocated(x) =
(reach(t,x) V reachRightChildInList(stack, x)))))

At the point in the computation described by this invariant, the value of the
variable t indicates the current subheap that is about to be scanned. At the

30 CHAPTER 1. AN OVERVIEW

beginning of the computation, there is a path called the spine from root to

this value:
root

The assertion restoredListR(stack, t) describes this state of the spine; the ab-
stract variable stack encodes the information contained in the spine.
At the instant described by the invariant, however, the links in the spine

are reversed:
root

This reversed state of the spine, again containing the information encoded
by stack, is described by the assertion listMarkedNodesR(stack, p).

The assertion spansR(STree, root), which also occurs in the precondition
of the algorithm, asserts that the abstract structure STree is a spanning tree
of the heap. Thus, the second and third lines of the invariant use separating
implication elegantly to assert that, if the spine is correctly restored, then
the heap will have the same spanning tree as it had initially. (In fact, the
proof goes through if spansR(STree, root) is any predicate about the heap

1.10. COMPUTABILITY AND COMPLEXITY RESULTS 31

that is independent of the boolean fields in the records; spanning trees are
used only because they are sufficent to determine the heap, except for the
boolean fields.) To the author’s knowledge, this part of the invariant is the
earliest conceptual use of separating implication in a real proof of a program
(as opposed to its formal use in expressing backward-reasoning rules and
weakest preconditions).

In the rest of the invariant, the heap is partitioned into marked and
unmarked records, and it is asserted that every active unmarked record can
be reached from the variable t or from certain fields in the spine. However,
since this assertion lies within the right operand of the separating conjunction
that separates marked and unmarked notes, the paths by which the unmarked
records are reached must consist of unmarked records. Anyone (such as the
author [101, Section 5.1]) who has tried to verify this kind of graph traversal,
even informally, will appreciate the extraordinary succinctness of the last two
lines of Yang’s invariant.

1.10 Computability and Complexity Results

The central questions of computability and complexity for separation logic
concern the validity of assertions.

Yang [33, 29] has examined the decidability of classical separation logic
without arithmetic (where expressions are variables, values are addresses or
nil, and the heap maps addresses into two-field records). He showed that,
even when the characteristic operations of separation logic (emp, +—, *,
and —«, but not <) are prohibited, deciding the validity of an assertion
is not recursively enumerable. (As a consequence, we cannot hope to find
an axiomatic description of +.) On the other hand, Yang and Calcagno
showed that if the characteristic operations are permitted but quantifiers are
prohibited, then the validity of assertions is algorithmically decidable.

For the latter case, Calcagno and Yang [33] have investigated complexity.
Specifically, for the languages tabulated below they considered

MC The model checking problem: Does [p],sh hold for a specified state
(s,h)?

VAL The validity problem: Does [p]....sh hold for all states (s, h)?

asrt

32 CHAPTER 1. AN OVERVIEW

In each case, they determined that the problem was complete for the indi-
cated complexity class:

Language MC VAL
L P:=FE— FEE|-FE<— — — P coNP

| E=FE | E # E | false

| PNP| PV P|emp

L P:=L|P x P NP I}
L% Pu=L|-P|P %P PSPACE
L+ Pu=L|P—=P PSPACE

L** Pu=L|-P|P % P|P—P PSPACE

1.11 Shared-Variable Concurrency

O’Hearn has extended separation logic to reason about shared-variable con-
currency, drawing upon early ideas of Hoare [102] and Owicki and Gries
[103].

For the simplest case, where concurrency is unconstrained by any kind of
synchronization mechanism, Hoare had given the straightforward rule:

{p1} C1 {Q1} {p2} Co {Q2}

{p1 Ap2} 1|l 2 {an A o},

when the free variables of py, ¢;, and ¢; are not modified by ¢o, and vice-versa.

Unfortunately, this rule fails in separation logic since, even though the
side condition prohibits the processes from interfering via assignments to
variables, they permit interference via mutations in the heap. O’Hearn real-
ized that the rule could be saved by replacing the ordinary conjunctions by
separating conjunctions, which separated the heap into parts that can only
be mutated by a single process:

{p1} C1 {fh} {pz} Ca {QQ}

{pl * P2} C1 || Ca {fh * Q2}

(with the same side condition as above).
Things became far less straightforward, however, when synchronization
was introduced. Hoare had investigated conditional critical regions, keyed to

1.11. SHARED-VARIABLE CONCURRENCY 33

“resources”, which were disjoint collections of variables. His crucial idea was
that there should be an invariant associated with each resource, such that
when one entered a critical region keyed to a resource, one could assume that
the invariant was true, but when one left the region, the invariant must be
restored.

O’Hearn was able to generalize these ideas so that both processes and
resources could “own” portions of the heap, and this ownership could move
among processes and resources dynamically as the processes entered and left
critical regions.

As a simple example, consider two processes that share a buffer consisting
of a single cons-cell. At the level of the processes, there are simply two
procedures: put(x), which accepts a cons-cell and makes it disappear, and
get(y), which makes a cons-cell appear. The first process allocates a cons-
cell and gives it to put(x); the second process obtains a cons-cell from get(y),
uses it, and deallocates it:

{emp}
{emp * emp}
{emp} {emp}
x:=cons(...,...); get(y) ;
{x— - -} | {y—— -}
put(x) ; “Use y” ;
{emp} {y—— -}
disposey ;
{emp}
{emp * emp}
{emp}

Behind the scenes, however, there is a resource buf that implements a
small buffer that can hold a single cons-cell. Associated with this resource
are a boolean variable full, which indicates whether the buffer currently holds
a cell, and an integer variable c that points to the cell when full is true. Then
put(x) is implemented by a critical region that checks the buffer is empty
and then fills it with x, and get(y) is implemented by a conditional critical

34 CHAPTER 1. AN OVERVIEW

regions that checks the buffer is full and then empties it into y:
put(x) = with buf when —full do (c:=x; full := true)
get(y) = with buf when full do (y := c; full := false)

Associated with the resource buf is an invariant:
RY (full Ac— —,—) V (—full A emp).

The effect of O’Hearn’s inference rule for critical regions is that the resource
invariant is used explicitly to reason about the body of a critical region, but
is hidden outside of the critical region:

{X = _}
put(x) = with buf when —full do (
{(R * x+— —, —) A~ full}

{emp * x — — —}
{X'_) _’_}
c:=x; full := true

{ful Acr— —, —}

{R}

{R x emp})
{emp}

{emp}
get(y) = with buf when full do (
{(R * emp) A full}

{c— —, — x emp}
{C = - _}
y :=c; full := false

{=full Ay +— — -}

{(=full ANemp) * y+— — —}

)
{y———}

1.12. FRACTIONAL PERMISSIONS 35

On the other hand, the resource invariant reappears outside the declaration
of the resource, indicating that it must be initialized beforehand, and will
remain true afterwards:

{R * emp}

resource buf in
{emp}
{emp * emp}

I
{emp * emp}
{emp}
{R * emp}

1.12 Fractional Permissions

Especially in concurrent programming, one would like to extend separation
logic to permit passivity, i.e., to allow processes or other subprograms that are
otherwise restricted to separate storage to share access to read-only variables.
R. Bornat [86] has opened this possibility by introducing the concept of
permissions, originally devised by John Boyland [85].

The basic idea is to associate a fractional real number called a permission
with the — relation. We write e = ¢/, where z is a real number such that
0 < z < 1, to indicate that e points to ¢’ with permission z. Then e s ¢ has
the same meaning as e — €', so that a permission of one allows all operations,
but when z < 1 only lookup operations are allowed.

This idea is formalized by a conservation law for permissions:

! /
z / z /- 24z
er—re x e e iff e /> €,

along with local axiom schemata for each of the heap-manipulating opera-
tions:
{emp}v:=cons(ey,...,ex){e > er,... e,

{e 5 —}dispose(e){emp}
{er> —}e]=e{er e}

{e s tvi=[e[{e s e Av=¢},

36 CHAPTER 1. AN OVERVIEW

with appropriate restrictions on variable occurrences.

