March 10, 2006

TRANSLATION RULES
The next task requires to efficiently store Grammar Rules and Lexical Entries, and their collections, Grammar and Lexicon, stored in text files. Then, methods to access and manipulate rules will also need to be implemented.

First, take look at Chapter 3 (page 27) of Erik Peterson’s Masters Thesis for a detailed description of the Rule formalism used by both the Grammar and the Lexicon and the transfer (Xfer) engine.
As a summary, X is used to denote the source language (SL) side and Y is used to denote the target language (TL) side. Indices are used to denote all the X and Y constituents in the rule. I added the XY notation as a comment for each constituent in the example rule below:

{NP,8}

NP::NP : [DET ADJ N] -> [DET N ADJ]

;; x0:: y0 : [x1 x2 x3]->[y1 y2 y3]

(

;; alignments

 (X1::Y1)

 (X2::Y3)

 (X3::Y2)

;; x-side constraints (parsing)

 ((x0 det) = x1)

 ((x0 mod) = x2)

;; x-side agreement constraint (parsing)

 (x0 = x3)
;; xy constraint (transfer)
 (y0 = x0)
;; y-side constraints (generation)
 (y1 == (y0 det))

 (y3 == (y0 mod))

 (y2 = y0)

)

The formalism to write Grammar Rules and Lexical Entries is the same, however, there are some differences between them, since they express slightly different things, and most importantly, the types of refinements that can be done to a rule are not necessarily the same that can be done to a lexical entry, so we also need a way to distinguish between them. My current implementation of this has one class for both rules and lexical entries, and then one class for the collection of rules, Grammar, and one for the collection of lexical entries, Lexicon.

Instead of a Part-of-speech (POS) sequence mapping, lexical entries express a word mapping, and lexical entries can only have value constraints which typically affect either x0 or y0, whereas grammar rules can have value and agreement constraints affecting all the constituents in the rule.

In general, refining a lexical entry is easier, since there is only one type of constraint that can be added to it and there is no need to deal with index adjustments after there as been an addition, deletion or order change.

Here is one example of each:

{ADJ,1}

ADJ::ADJ |: ["red"] -> ["roja"]

((X1::Y1)

((x0 form) = red)

((y0 agr num) = sg)

((y0 agr gen) = fem))

{S,0}

S::S : [NP VP] -> [VP]

((X2::Y1)

 ((y1 agr pers) = (*OR* 1 2))

 ((y1 agr num) = sg)

 (x0 = x2)

 ((y1 agr) = (x1 agr))

 ((y1 tense) = (x2 tense)))

You should take a look at different instances and then think about what is the best way to implement this. Maybe having a basic rule class that is then used by both grammar rules and lexical entries and which is made more specific by each subclass, would be the right thing to do there.

I was in the middle of implementing the Rule class when I got side-tracked a while ago, but you can take a look at it, as well as at the TrRule class that was implemented by another PhD student working on Automatic Rule Learning and the code I wrote to test the methods to manipulate rules in TrRule class (TestRuleManipulation.cpp).

Specifically, there is a couple of related data members that still need to be correctly implemented and to some extent designed, for which I would be interested in your input.

One is the TimeStamp. Since rules will change over time, I need to have a good mechanism to know how the grammar and the lexicon were at any give time in the past.

In order to do that, I was thinking that original rules in the manual or learned grammar would have TimeStamp = 0, and then every time a rule got modified, a new TimeStamp would be created and the rule would be labeled with that stamp.

Then it would be possible to call a method such as BuildGrammar(TimeStamp), that would effectively create a file with all the grammar rules that were current at the time indicated by the TimeStamp.

For such a method to do the right thing, TimeStamp actually needs to be combined with the History of the Rule, which is the second data member that needs to be efficiently implemented and designed (maybe having something like vector<Rule*> History). Even though some rules get modified, we do not want to loose the information about what the original rules were. So, I think the best way to not loose any information, is to have each rule store all the older versions of itself in some way, maybe by just storing pointers to the different previous Rule versions of it.

This would of course require storing all the rules that ever existed in some sort of Master Grammar/Lexicon.

This way, the BuildGrammar method can search through the Master Grammar and only extract those rules that were the active, namely most current at time TimeStamp.

So for example, if the TimeStamp=Oct52005-01-05-34, and I wanted to know how the grammar (and the lexicon) looked at that time, the BuildGrammar and BuildLexicon methods would go through every rule in the Master G and L and, for each rule, they would extract the LAST rule in the History that was generated precisely in Oct52005-01-05-34 or earlier.

So essentially, if you could think about this, and come up with a good way to implement these two data members as well as the BuildG and BuildL methods efficiently, that would be great!
CONSTRAINT CLASS

Another thing that will require either an implementation from scratch or a debugging of the current implementation is the Constraint Class.

Currently Kathrin’s class does several of the things we need, but it has plenty of bugs and so it would need to be debugged and expanded, or you could implement it from scratch if this is what you’d prefer. Since I have fully tested the current Constraint class, I already know what some of the bugs are, and most of them I think I documented in TestRuleManipulation.cpp (“==” become just “=” when the rule is read by the current implementation of the Constraint class (called by TrRule), for example).
For now, maybe it would be enough if you look at Erik’s masters thesis to see what type of constraints are there and how would you design a class to store and access the different parts of the constraints.

Given a rule, like NP,8 above, the RR module will need to know what are the constraints between to Y indices (constituents) and it will also need to add or delete constraints for a particular index. For example, if the RR module needs to add a constraint between the target side N and the ADJ, first it will have to find out what constraints already exist between N (y2) and ADJ (y3), and then it might need to add a an agreement constraint, if not already there ((y2 agr) = (y3 agr)).
It could also be, that given just one y-index, the RR module needs to add a value constraint ((y3 feat1) = +).

Since the RR module needs to access constraints by their indices, probably the most useful way to store constraints would be in a matrix: vector<vector<vector<Constraint*>>>

y-pos1 y-pos2 set of constraints

and have methods like:

vector<Constraint*> GetConstraintSet(int Ypos1, int Ypos2); // given two indexes, it checks all the constraints between them, so that if I want to add a constraint between y1 and y2, say, first I make sure such constraint does not exist

Here is the Constraint class data members I think we'll need:

int ConstraintType;
int EquationType;
int FeatureName;
int ValueName;
int Pos1; // redundant since I want to store them according to the 2 indices, however, it might be useful to have this…
int Pos2;

where

ConstraintType = {agr, value}

EquationType = { =, ==, =c, etc.}

FeatureName = {tense, gender, feat_1, feat_2...} // problem: this is an infinite list...

ValueName = {sg, pl, masc, fem, past, +, -...} // these depend on the FeatureName

But values might be preceded by logical operators (*NOT* and *OR*), so need to think what would be the best way to store that information.
The Constraint class will be used not only to store constraints, but also to access constraints given indices and perhaps also given an index and a specific FeatureType, as well as to build constraints, defining what each part of the constraint needs to be (type, equation type, feature and value names).

I think that is plenty for now, hopefully you have time to take a look at all this before our next meeting so that we can discuss implementation issues.
