Nespole! HLT Architecture Proposal

Introduction
The following outlines our revised proposal for the technical design and implementation of the HLT core system of the Nespole! Project. This proposal is the result of detailed discussions between the CMU and UKA groups. We have attempted to integrate in this proposal the key ideas of the proposals from CLIPS and Aethra, each of which addressed only sub-portions of the design. We also attempted to address comments and concerns received from IRST.

The focus here is on the design of the architecture of the HLT modules. However, this design has bearings on the other aspects of the system, such as multimodal integration, sharing of web pages and shared whiteboards. The main considerations taken into account in the proposed design are:

1. The desire to have a flexible architecture that on the one hand appears as a central Nespole! server to external users, and on the other hand allows each of the partners to develop their own HLT modules locally and with high levels of freedom

2. To support the goal of having "thin customers", but have an overall architecture that can easily support less thin customers if necessary.

3. The desire to be compatible with alternative possible options with respect to the communication standards used between the customer and the Nespole! server (i.e. HTTP based vs. H323 based).

4. The desire to base the design where possible on components from the existing C-STAR-II framework, to allow the reuse of existing components and software.

The Nespole! Global HLT Server
[image: image1.jpg]GLOBAL NESPOLE! SERVER

M M
T E Bl
CUSTOMERS I D| LANGUAGE LANGUAGE |J Dfs._ @ CUSTOMES
A1 SPECTFIC SPECIFIC A1
P
vV A| HLTSERVER HLTSERVER |V A
siovoes 0 JAE (English) e (Ttalian) A Tl
: [Timestamp-+ ol i rrovisrs
0 VC'+ W8 Data Ol

e

CHSTOMER LANGUAGE Wil LANGUAGE SHTIOMERS
SPECIFIC SPECIFIC
HLT SERVER | HLT SERVER
(German) (Freach)

PROVIDERS PROVIDERS

Vv
7’.?\: i/;_%\z

The above diagram shows the proposed architecture of the general Nespole! HLT core system. The proposed Nespole! Global HLT server design consists of a collection of language-specific (local) HLT servers. The idea is to have a single HLT server per language. All customer and/or provider stations that use language X will be connected to the HLT server for language X. The language-specific HLT servers will be configured to directly communicate with each of the other language-specific servers. Alternatively, we may consider the possibility of maintaining a central communication message router between the language-specific HLT servers. However, in either case, we envision communication messages being delivered only between the two relevant HLT servers, and not broadcast to all servers. During the course of the project, the language-specific HLT servers would physically reside locally at each partner’s home location. However, in an actual commercial system they would most likely all reside on a local network of the e-commerce provider. The HLT servers will communicate with each other (or with the central message router) via IP using socket connections. The communication data types will include IF (for translation), Audio/Video (for VC), White-Board data and control messages. The exact communication protocol will need to be designed in detail, but we believe it can be heavily based on the C-STAR-II communication protocol.

Each language-specific HLT server will be designed to allow connections from both e-commerce customers and e-commerce providers. While the actual Nespole! showcases will involve only Italian e-commerce providers (with customers in all other supported languages), the architecture we propose will support the possibility of provider stations in the other languages as well, connecting via their language-specific servers. This will allow migrating the role of the provider to any of the other languages supported, and also the possibility of conducting “local” demos. However, as explained in greater detail below, the communication between a customer station and a provider station will be one-on-one, with no “broadcasting” to third parties. The architecture can also support connections between one provider station and multiple customer stations, but with no communication between the customers (for example, in the case of a help-desk demonstration – see detailed scenario described below). To both customer and provider, even the fact that they are communicating via language-specific HLT servers will be completely transparent, as they will see the Nespole! server as one global “black box”.

Language-Specific HLT Server Architecture

[image: image2.jpg]LANGUAGE SPECIFIC HLT SERVER

cusToMBRPROVIDER
seamret amdon -~ . | T e
o . 5 » T
- e g 1| % i
w s
€
'R
RV E— 1 N
— i
ir
sy o
[" s - ’ T oo
" s B £ | T e
DS R ve-ul D (R 7
RS o, i ersan veowes | 0 i
H s

The above diagram shows the proposed design of each of the language-specific HLT servers. The assumption in this diagram is that we will be implementing the concept of "thin customers", where very little hardware and software will reside on the actual customer station. However, the design of the HLT servers could easily be modified to "less thin" customer stations by modifying the Java mediator module and the applets on the customer/provider side. For each language we will have a single language-specific HLT server and Java mediator. The Java mediator module is responsible for all communication between the HLT server and all customer (or provider) stations that are connected to the HLT server.

The Language-Specific HLT Server

The language-specific HLT server consists of an analysis chain and a generation/synthesis chain. The internal structure of these chains is intentionally left unspecified, to allow each of the partner groups to follow their own approach and implementation strategies. The Analysis chain includes speech recognition, followed by analysis into IF. The generation/synthesis chain includes generation from IF to text, followed by speech synthesis. IF produced by the analysis chain may be sent back to the synthesis chain to produce a paraphrase that can be sent back to the originating customer/provider for verification. Communication between the HLT chains and the Java Mediator will be via socket connections. The exact protocol and types of messages still need to be defined, but we believe that this too can be greatly based on the C-STAR communication protocol. The HLT server will be directly connected to all other HLT servers via socket connections. Each local HLT server will have MUX and DEMUX modules that will control the communication of the various message types (IF, Video/Audio, WB data) to/from the other language-specific HLT servers.

The Java Mediator

The role of the Java Mediator is to interface between the language-specific HLT server and the multiple e-commerce customer (and provider) stations that are connected to it. For customers, the mediator will: (1) establish a connection with the customer station upon the initiative of the customer; (2) accept the various forms of data from the customer and channel them appropriately to the language-specific HLT server; (3) accept the various forms of data designated to the customer from the HLT server and distribute them to the appropriate customer station. For a provider station, the mediator will perform similar tasks with the following additional roles: the provider first establishes a connection with the mediator and enters a "standby and available" status. When the mediator receives a connection request from a remote customer (via the HLT server), it assigns this request to an "available" locally connected provider station. This establishes a one-on-one connection between the customer and provider stations, such that all further messages originating from the customer are channeled to the appropriate provider station.

The detailed design of the Java Mediator module is not included here. The UKA group (specifically John) is preparing a detailed proposal for the design and implementation of the "thin client" concept using the Java Media Framework. This should include further details on the design of the Java Mediator as outlined above.

The Customer/Provider Stations

In the case of a truly "thin" client implementation, the customer station will require to have only an appropriate web browser, microphone, speaker, sound-card and possibly support for video conferencing. The aspects related to the Java applets and their interface with the customer/provider stations will be detailed in UKAs proposal.

Two Possible Scenarios of System Functionality

In order to gain a better perspective of how the above proposed architecture would functionally work, we include two possible scenarios of how an e-commerce connection between customer and provider would occur using the proposed system.

Showcase-1 Scenario: One-on-one Connection for Online E-commerce

1. The e-commerce customer accesses the general web-site for the e-commerce provider (i.e. APT), at a global URL (i.e. www.provincia.tn.it/apt/). The customer selects web pages for his/her language of interest and browses initial information of his/her interest.

2. The customer initiates an online connection to a live provider representative by clicking on an appropriate link on the language specific web page. This links the client to a web address associated with the Java Mediator for his/her language.

3. The Java Mediator responds by downloading the appropriate Java Applets onto the client, enabling the speech, VC and whiteboard displays on the clients web browser.

4. A connection request for a provider representative is sent by the Java Mediator via the local HLT server to the local HLT server on the provider side (i.e. Italian), which forwards it to its Java Mediator.

5. The remote Java Mediator assigns the request to an existing “available” provider station, and responds with an acknowledge message containing both customer and provider station IDs.

6. One-on-one connection between customer and provider is established. The unique customer/provider station pair of IDs allows the Java Mediators and HLT servers to forward messages between the customer and provider appropriately. Message types that require HLT processing (for translation) are passed through the appropriate chains inside the HLT servers.

7. At the end of the session, either customer or provider stations may send a termination message that disconnects the one-on-one connection.

From the provider’s perspective, connecting as an provider station can be performed via a restricted area of the e-commerce web site. Through this area, the representative can click on a link that connects them as a provider station to the local Java Mediator, downloading the agent required Java Applets, and putting the provider station in a “standby and available” mode where they are ready to receive customer connections. When the Java Mediator receives a connection request from a remote customer, it will assign this request to an available provider station, associate the provider station ID with the customer station ID and establish the one-on-one connection between them.

Showcase-2 Scenario: Help-Desk Demonstration to Multiple Customers

The main difference in this scenario is that multiple customers wish to connect to the same provider station to watch a help topic demonstration. The communication in this case is between the provider station and each and all of the connected customers, but with no direct communication between the customers (no “broadcasting”).

1. The e-commerce customer accesses the general web-site for the e-commerce provider (i.e. APT), at a global URL (i.e. www.aethra.com/). The customer selects web pages for his/her language of interest and browses initial information of his/her interest.

2. The customer initiates an online connection to a scheduled live demonstration on a specific provider station by clicking on an appropriate link on the language specific web page. This links the client to a web address associated with the Java Mediator for his/her language.

3. The Java Mediator responds by downloading the appropriate Java Applets onto the client, enabling the speech, VC and whiteboard displays on the clients web browser.

4. A connection request for the specific provider station is sent by the Java Mediator via the local HLT server to the local HLT server on the provider side (i.e. Italian), which forwards it to its Java Mediator.

5. The remote Java Mediator connects the new customer to the designated provider station, and responds with an acknowledge message containing both customer and provider station IDs.

6. One-on-one connection between customer and provider is established. The unique customer/provider station pair of IDs allows the Java Mediators and HLT servers to forward messages between the customer and provider appropriately. Message types that require HLT processing (for translation) are passed through the appropriate chains inside the HLT servers.

7. At the end of the session, either customer or provider stations may send a termination message that disconnects the one-on-one connection.

