D17
Second showcase documentation
24 January, 2003

Project:
IST-1999-11562

Acronym:
Nespole!

Title:
NEgotiating through SPOken Language in E-commerce

[image: image2.png]Lo 92

LOCAL* REMOTE

Title:
Second showcase documentation

Deliverable:
D17

Author(s):
Loredana Taddei, Laurent Besacier, Roldano Cattoni, Erica Costantini, Alon Lavie, Nadia Mana, Emanuele Pianta

Work Package:
WP3 – Showcase development

WP Participants:
ITC-irst, UKA, CMU, UJF, AETHRA

Date:
24 January 2003

Status:
Deliverable

Security:
Public document

Keywords:
Second showcase, tourism and medical domains

Project Director:
Gianni Lazzari

Second showcase documentation

Index

31.
Introduction

32.
Showcase 2A and 2B scenarios

32.1.
Showcase 2A scenarios

42.2.
Showcase 2B scenario

43.
User Interface: improvements and added features

43.1.
Usability questionnaires

43.2.
Interface improvements

53.2.1.
Nespole! Monitor window

63.2.2.
Dialogue History Window

73.2.3.
AeWhiteboard

73.3.
Connection quality

84.
Nespole! HLT Servers

84.1.
HLT Modules for English and German

84.1.1.
HLT Server Design

84.1.2.
Analysis Chain

124.1.3.
Generation Chain

134.2.
HLT Modules for Italian

144.2.1.
Speech Recognizer

144.2.2.
Analyzer

154.2.3.
XIG: IF-to-Italian generator

164.2.4.
Speech Synthesizer

164.3.
HLT Modules for French

164.3.1.
Update of the HLT modules

164.3.2.
Automatic speech recognition module

174.3.3.
Analysis module

174.3.4.
Generation module

185.
References

1. Introduction

The objective of Nespole! second showcase was to demonstrate project scalability and portability; this has been done using Nespole! system in an extended tourism domain and in a complete different domain, the medical one. In this document we point out the changes the system needed to be able to manage situations and vocabulary very different from that of the first showcase.

Moreover a lot of work was done on the Nespole! system to improve its usability and to increase its performances: this was possible thanks to the great number of suggestions and observations we received from people who used the system during data collections, experiments on multimodality, exhibitions and international events where the system was demonstrated and used by non expert people.

At the end of our work we realized a friendly, pleasant, useful and interactive system that can be used by a variety of users with very different levels of instruction and computer skills. Nespole! system allows users speaking different languages to interact in a natural way, by means of:

· hearing their original voice and their translated speech;

· seeing the face and expression of their partner;

· exchanging data information through gestures on drawings and map selections;

· monitoring the translation process and correcting it if and when something goes wrong.

What is very innovative about Nespole! system is the means by which the user can perform these functions: a light PC with standard free software for video-conferencing (Microsoft(NetMeeting(), a microphone and a camera: common users should be able to use the Nespole! Service from their home PC.

2. Showcase 2A and 2B scenarios

In Showcase 2A the tourism domain of Showcase 1 has been extended. The extension has been accomplished enlarging the domain to "packages" offering different kinds of vacation. On the contrary, Showcase 2B has been dedicated to a new domain, completely different.

2.1. Showcase 2A scenarios

Showcase 2A has been basically addressed to requests of information concerning packages for a vacation, with regard to castles, lakes and folklore.

Five scenarios were defined. All scenarios regarded packages, with a distinction between summer and winter vacation (for more detailed information about scenarios see [5], [6], and the section "Technical Material for the Data Collection 2002" on the Nespole! web site - http://nespole.itc.it/internal/pagine/datacoll2002.htm). Packages were addressed to families (two adults plus one or more children) and individuals (couples or small groups of two-three persons). Packages were referred to one-week or a few-days vacation, with three different possible accommodations (hotel, apartment or campsite). Then they offered different possible activities (several kinds of excursions, visits to museums, natural parks, castles, etc, access to sauna, swimming pool, etc).

Packages, and more specifically the request of information about them by the client and their description by the agent, are a novelty with respect to Showcase 1. Therefore, vocabulary and situations defined during the dialogues between the client and the agent are quite different.

In particular, the extension of the Showcase 1 tourism domain has been accomplished by several elements. First of all, dialogues have been extended from winter to summer vacations. Secondly, the vacation could take place in different locations (not only in mountain, but also on a lake). Then the possibility of different kinds of accommodations (not only in hotel, but also in apartment or campsite) and the possibility of a major number of activities for adults and children have been introduced. Finally, another novelty with respect to the previous showcase is the request of information about directions. Assuming that the client travels by car or campervan, he/she could ask information to reach a specific place.

2.2. Showcase 2B scenario

For Showcase 2B a completely new domain, namely the medical domain, has been chosen. The imaged application is a long-distance medical consultation, between a doctor and a patient. Everyone speaks different languages and uses the Nespole! system to communicate. In this application it is assumed that a person (for example a person on holiday in a foreign country) feels not very well and needs to hear a doctor’s opinion. So, the person (patient) decides to contact a doctor. Given he/she speaks a foreign language (English or German) and cannot speak the local language (Italian), instead of making a phone call, the patient decides to contact a doctor through a speech-to-speech translation service (Nespole!), available in the hotel where he/she stays.

The new domain has been defined by 4 scenarios (for more detailed information about scenario see [5], [6], and the section "Technical Material for the Data Collection 2002" on the Nespole! web site - http://nespole.itc.it/internal/pagine/datacoll2002.htm) referring to two possible health problems (flu-like syndrome and chest pain), one in a more serious situation (e.g. very old person, with a permanent disease and an allergy) and another one less serious (e.g. young person, always been healthily good).

The patient illustrates his/her health status, providing his/her personal data (age, profession, possible risk factors and/or diseases) and describing his/her pain and related symptoms. The doctor formulates his/her advice according to the collected information during the dialogue.

3. User Interface: improvements and added features

3.1. Usability questionnaires

Usability assessment with novice users plays a basic role in development of well-designed interfaces, with the goal of developing an interface that provides real users an effective and pleasant interaction experience. Throughout the first two years of the Nespole! project we took advantage of many opportunities to collect data concerning the system (and the interface) usability with actual users - both computer experts and people with little to no computer skills. The interface improvements leading to the current version were mainly based on the comments and suggestions of these users, and on our observation of their behavior.

Most of the interface improvements were suggested directly from the users answers to the usability questionnaires collected during the experiment on multimodality [8], the First User Group Meeting [10], and the monolingual data collection [11, 6]. The questionnaires items were about the most relevant system features: screen and devices, multimedia and multimodality, usefulness and effectiveness of the system. The questionnaires have not been validated, and therefore the scores are not meaningful per se. The purpose was in fact to collect impressions and suggestions, just like in a structured interview, to be used for the aim of interface improvement.

In addition, our observations of the users while they were using the system helped us in understanding which were their main problems, and in finding effective solutions for them.

3.2. Interface improvements

During the last year of the project, we made some changes on the Nespole! user interface and we added new features in order to meet the users’ needs, on the base of the above mentioned observations and questionnaires.

One of the most discussed part of the interface was the Nespole! Monitor, the window containing feedback strings from HLT Server. Different system users have different needs concerning this window. On the one hand, people working on the project use it as a debug tool during internal tests and demos, and so they need the more information about translation process it is possible. On the other hand, novice users uninvolved with Nespole! use it mainly as a feedback window. They need to monitor quickly the translation process to understand if the partner received their message or not or if they had to repeat a sentence. So they need short and clear messages, and they should be able to understand the messages without having a deep knowledge about what the system is actually doing. The messages needed for the debug reasons were therefore not suitable to their needs, because they have not a clear meaning for people who do not know in details how the system works.

For this reason we decided to differentiate between an expert user interface and a novice user one: we realized a simplified Nespole! Monitor window, and an improved Dialog History Window, which is configurable in two different modalities: “normal mode” and “expert mode”.

3.2.1. Nespole! Monitor window

The new Nespole! Monitor window contains two fields, instead of the three which were previously available (Figure 1).
· The ‘System Hears’ field: it displays the recognized text representation of the last utterance spoken by the local user, as recognized by the speech recognizer within the HLT server for the language of the local speaker.
· The ‘System Understands’ field: it displays a textual representation resulting from the translation of the last utterance spoken by the local user back into their own language.
The two displayed strings enable the user to evaluate if the translation process is going on well or not: by monitoring the ‘System Hears’ field, the user can verify the accuracy of recognition of the last spoken utterance; similarly, by monitoring the ‘System Understands’ field, the user can verify that the meaning of the utterance was correctly captured by the analyzer within the translation server (by judging whether the paraphrase back into their own language reflects the same meaning as the originally spoken utterance).

[image: image3.png]

Figure 1: improved interface for showcase 2A

The new Nespole! Monitor contains in addition two buttons that are very useful when a recognition or translation failure is detected:

· the “Cancel Translation” button. When the user realizes that the recognizer or the analyzer output is bad, she can click on this button. In this way, a red, flashing message appears on the monitor of the other party, signaling that the incoming translated message should be ignored. After that, the user can repeat or rephrase the message;

· the “Send” button. If multiple recognition attempts of the same sentence fail, the user can edit the “System Hears” field after having pressed the “Cancel Translation” button, instead of uttering again the sentence. In this way, she can correct the sentence using the keyboard, send the corrected text to the translation server clicking the button “Send”, in order to eliminate the mistake made by the recognizer.

Since recognition and translation processes take some time to produce the speech synthesis output, there could be relevant time delays between a turn utterance and the delivery of its translation to the other party. During that waiting time, a user has no way to know what is happening (e.g. if the remote interlocutor has already received the translated audio) except for the information given by “System hears” and “System Understand” fields. This kind of feedback was not effective in helping to avoid overlapping speeches.

To give to users some additional and ‘easy to read’ information about the status of the translation process, we provided them with a visual feedback: a progress bar was added within the Nespole! Monitor interface to inform about the sending process status and to signal, with a blinking icon, when translated audio arrives to remote interlocutor. The progress bar for the local speech is available in figure 1. In addition, a similar progress bar informs about the remote speech processing and therefore about the arriving audio. This visual feedback was of great help to users to avoid overlapping speeches and bad turn taking.

During the User Group Meeting [10] it was pointed out that the “push-to-talk” button available within the Netmeeting(window is too small and quite difficult to manage, and therefore it may negatively affect the overall interface usability of the interface. Thanks to the NetMeeting(SDK, we managed to implement a larger “push-to-talk” button within the Nespole! Monitor window, which is always available to the user during the interaction.

Moreover considering the difficulties encountered about overlapping windows on the screen we tried to study their disposition in order to have all commands and functionalities available at the same moment without closing or moving windows: the resulting new interface is depicted in figure 1.

3.2.2. Dialogue History Window

More detailed information about the translation and transferring processes is available within the Dialog History Window, where information is ordered on a temporal base: the user could configure the Dialog History window in two different viewing modality:

· the “Expert mode” modality (see figure 1) displays all text strings produced by the two HLT Servers involved in the communication (the local one and the remote one):

IT S.U.: APT informazioni buongiorno

EN R.S.T: APT information,Hallo

EN S.H.: Hallo I would like to take a trip to Trentino

EN S.U.: Hallo I would like to visit Trentino

IT R.S.T.: Buongiorno vorrei fare un viaggio in Trentino

· the “Normal mode” modality displays only the text strings produced by the local HLT Server. For example the Dialog History Window of the English user will display:

EN R.S.T: APT information,Hallo

EN S.H.: Hallo I would like to take a trip to Trentino

EN S.U.: Hallo I would like to visit Trentino

The Dialog History Window is optional and used primarily for system demonstrations and/or debug reasons. It has been found very useful by novice users during the data collection for the user study [8] and during some demos, in particular in case of low quality of the synthesized audio. In this case, in fact, a speaker could check the text corresponding to the bad quality synthesis in the Dialog History Window instead of asking the other speaker to repeat her turn, hence improving the dialogue effectiveness.

3.2.3. AeWhiteboard

The main improvements in the AeWhiteboard window were about map’s saving procedure, since the main problem reported by the agents involved in data collection and multimodal experiments was concerning this functionality [11]. The map saving procedure needed in fact too many steps (selecting the saving function, writing the file name, choosing the directory where the map had to be saved, …) and interrupted the dialogue flow. A new quick map saving mechanism was therefore implemented to allow the users to save maps only by clicking a button: by pressing this button, the system saves the map with the gestures performed on it with an appropriate name and a progressive number in a default directory. The old saving mechanism is still available, in case the user needs for some reasons to save the map with a different name or in a different directory.

Moreover, the automatic saving mechanism is activated each time the user loads a new bitmap. In fact, when the agent loads a new bitmap, the previous one would be canceled, unless the agent saves it, and the gestures performed would be lost. The automatic saving procedure reduces the cognitive load of the agent (who does not need anymore to remember to save a map before opening another one), and prevents from the possible loss of information.

Finally, at the end of each dialogue connection, all the maps saved in the default directory were automatically moved in a subdirectory (identified by temporal markers): this feature gives the possibility to produce automatically an archive of maps, grouped on the base of the connection sessions.

3.3. Connection quality

One of the main objectives of the work of this last year of the project was the connection quality improvement. We encountered a lot of difficulties due to the fact that we couldn’t rely on a specific bandwidth (Internet does not guarantees it). We planned some improvements concerning audio, video and data transmission.

One of the most frequent requests from the system users was the addition of live video transmission [11]: the facial movements and expressions of the person we are speaking with convey relevant information in the natural human-to-human communication, and their availability in a speech-to-speech translation system could increase the quality of communication providing with natural and effective feed-back.

In order to send an high quality live video (CIF images) we would need to have at least 128kb/s of bandwidth during the connection; if the bandwidth is lower, the user receives very bad images and the system is not able to reconstruct the video flow. Hence, we decided to send a QCIF video (lower quality than CIF) that requires half bandwidth of that requested by CIF. The difference of the quality between CIF and QCIF is relative to the image definition: considering that the window where the live video is available is very small, the QCIF definition is sufficient to have acceptable video images of the remote user, even in case of low bandwidth.

As to audio, a step forward is made trying to avoid the use of the “push to talk” button. In the first showcase, the user had to push the “Audio Enable/Disable” button before speaking and again immediately after speech to allow the HLT Servers to understand when the user stopped speaking. Since the use of “push to talk” button reduces the naturalness the conversation, we made some efforts to avoid this procedure, at least in quite environments. We implemented, in the Mediator, a silence detection algorithm that recognizes when the user stops speaking even if he does not push the “Audio Disable” button. The algorithm is working well in case of quiet environments, but the “Audio Enable/Disable” button is still necessary when the environment where the user is located is very noisy. That’s why it is still available in the Nespole Monitor Window.

Another problem that the users reported frequently was concerning the too long map transferring time, which was from about half a minute to about two minutes, depending on the bandwidth and on the network conditions [8]. The problem was found even in case the users needed to go back to an already seen map, and brought us to implement a new mechanism of map’s transferring. The bitmap file is now transferred only if the remote system has not already got it; in the other case, only the name of the bitmap is transferred in order to have the remote system loading it locally. In this way the average map transferring time was significantly reduced, and this positively affected the fluency of the conversation.

4. Nespole! HLT Servers

The Nespole! HLT servers are integrated language specific servers that communicate externally with the Nespole! Mediator and perform language specific analysis and generation tasks in support of the speech-to-speech translation in the system. Each server runs on a single workstation and consists of a collection of component modules that are controlled via a blackboard control script written in Tcl/Tk. The current servers are compiled to run on either Sun Ultra workstations or Linux PCs. Internally, the server consists of an Analysis Chain which is responsible for transforming audio input in the language to the IF representation, and a Generation Chain, which is responsible for transforming incoming IF representations into generated audio in the output language. Communication with the global Nespole! CommSwitch is controlled directly by the server blackboard, and is used to send and receive IF representations to/from other HLT servers. Communication with the Nespole! Mediator is controlled by “NESSI” – a dedicated communication module.

4.1. HLT Modules for English and German

The HLT components for both English and German are identical in structure. The components are developed in joint cooperation by the ISL groups at Carnegie Mellon and at the University of Karlsruhe in Germany. The modules differ mainly in the language specific knowledge sources and the training data used. We therefore describe the HLT components for both languages jointly, with explicit details about the language specific information sources and data where appropriate. The language specific parts were developed and evaluated at University of Karlsruhe for the German language and at Carnegie Mellon University for the English language.

4.1.1. HLT Server Design

The overall structure of the HLT servers used for Showcase-2 is similar to the structure used for Showcase-1. Individual modules were modified and updated for improved performance. Knowledge sources such as grammars and lexicons were naturally developed to accommodate the domains of coverage of Showcase-2.

4.1.2. Analysis Chain

The analysis chain includes the Speech Recognizer and the Hybrid Statistical/Rule-based Analyzer. We use the same speech recognition and analyzer components for both English and German, each trained and loaded with the appropriate language-specific sources of information.
4.1.2.1 The JANUS Speech Recognizer

For both German and English speech recognition, we used the JANUS Recognition toolkit (JRTk), which provides a modular platform for the development, training, and evaluation of the speech engines. The recognition engine itself consists four parts: (1) the front-end for preprocessing the audio waveform signal into a stream of feature vectors; (2) an acoustic model that represents the sounds of the languages; (3) a pronunciation dictionary to guide the recognition process; and (4) a language model that provides the recognizer with information about the likelihood of word sequences for a given history. The latter three modules are language dependent. The first module, the front-end, is language independent and is designed to prepare the system for a multilingual speech recognition approach in the future, i.e. to be able to process both languages within one single speech engine. All four parts were described in some detail in the documentation for Showcase-1 [12]. In the following we only describe the details concerning the training of the English and German recognizers for the new Showcase-2.

English Acoustic Model

The initial acoustic model for the English Nespole! Speech engine was derived from a system trained on about 80 hours English Broadcast News data plus about 30 hours data from the English Verbmobil part on the Spontaneous Scheduling task. These training data are very similar to the Nespole! data in terms of the conversational speaking style but rather different in recorded sampling rate and clean channel conditions. In order to adapt the initialized acoustic models to the conditions of the Nespole! requirements the maximum likelihood linear regression (MLLR) approach was performed. For this purpose 1 hour and 40 minutes of client speech collected at 8kHz was upsampled to 16kHz and used for adaptation, with no compensation for possibly lost packets.

In addition to the model adaptation a hand-crafted pronunciation dictionary was developed for about 5k words. The dictionary entries contain 2-3 pronunciation variants carefully chosen to cover the large variations of non-native pronunciations for proper nouns, especially Italian proper names spoken by native American speakers.

German Acoustic Model

Acoustic training was conducted on the 62 hours of transcribed German training data collected for the Verbmobil project. This data was “clean” - it was not degraded by the acoustic channel. The speech data to be recognized in the Nespole! system, however, is first subjected to an H323 compression scheme, then sent across the inter-net via a UDP protocol in which packets can be lost, and finally reconstructed at the receiving end. Hence this transmission process has a pronounced effect on the quality and characteristics of the final speech. To compensate for the mismatch in speech quality between the training and testing conditions, we applied maximum likelihood linear regression (MLLR) to the final model trained on the clean speech. Experiments revealed that the best performance was obtained when a total of 48 MLLR matrices, each of size 32 x 32, were used to transform the clean-speech model. These transformation matrices were estimated in a supervised fashion on the 1.3 hours of transcribed German collected for the Nespole! project during the Summer and Fall of 2000 to provide training material for IF and speech recognizer development. As this data had all been transmitted over the inter-net via the H323 protocol, it was ideal for the estimation of adaptation matrices. Compensation for lost packets was achieved by using a zero-crossing rate threshold to detect frames in which packets had been lost, and then cutting the affected frames and using a linear interpolation scheme to reconstruct them.

English Language Model

The English language model is a tri-gram model which is linearly interpolated between a Nespole! client specific tri-gram model and a broad background tri-gram model. The best suited combination weight factors are derived experimentally and turned out to be 0.66 and 0.34, respectively. The client model consists of 22k words of transcribed Nespole! dialogs (comprising the same 1 hour and 40 minutes of speech used in adapting the acoustic model above), as well as a supplementary 3k word hand-crafted corpus intended to complements the available tri-gram and vocabulary coverage. The background model consists of the 276k word ESST corpus, 42k words from Nespole! agent-side dialogues and 8k word from client-side email transactions with APT. The joint vocabulary is the superset of all models, amounting to 4.8k tokens.

German Language Model

A tri-gram language model was trained on 640k words from the Verbmobil corpus, as well as the 17k words of transcribed Nespole-domain dialogs mentioned above. The 11,000-word Verbmobil dictionary was expanded by the addition of approximately 400 words from the Nespole! dialogs, along with place names, sporting activities, and other vocabulary items as required to support the Nespole! multi-modality experiments undertaken in July-September of this year. The final language model had a test-set perplexity of 98.5 and a test-set out-of-vocabulary (OOV) rate of 1.6%. In many cases, it was necessary to add to the vocabulary words which had never appeared in the training data. This was accomplished by mapping these words to frequently-occuring words for the purpose of recognition, and then recovering the original word from its mapped form before producing a final utterance hypothesis.

4.1.2.2 The Hybrid Statistical/Rule-based Analyzer

The analyzer takes the best hypothesis from speech recognition as input and produces interchange format as output using a combination of grammar-based and machine learning methods. A grammar-based approach is used to extract arguments and their values. Then machine learning methods are used to identify the speech act and concept sequence that compose the domain action. The approach to analysis taken in the English and German translation systems is the same. The only differences between the English analyzer and the German analyzer are the grammars used by the parser and the data used to train the domain action classifiers. The main steps involved in the analysis process are: (1) grammar-based argument parsing; (2) segmentation of the input into semantic dialogue units (SDUs); (3) Domain Action classification; and (4) mapping into the IF representation. While the above process is similar to what was previously developed for the Showcase-1 analyzer, each of the steps was modified and improved in the development of the Showcase-2 analyzer. We focus here only on the modifications. Further details on the analyzer can be found in [12] and our recent publications listed in the references.

Argument parsing is performed using the SOUP parser. Details about the grammars developed for English and German analysis are described in later subsection below.

The second stage of processing in our hybrid analysis approach is segmentation of the input into SDUs. In the IF representation, Domain Actions (Das) are assigned at the level of SDUs. Speech turns, however, often consist of several SDUs, and thus must be segmented before assigning DAs. Figure 1 shows an example of an utterance with four arguments segmented into two SDUs.

SDU1

SDU2

greeting=
disposition=
visit-spec=
location=

hello
i would like to
take a vacation
in val di fiemme

Figure 2. Segmentation of an utterance into SDUs.

Since the input to the analyzer is text produced by an automatic speech recognizer, neither punctuation nor case information are explicitly represented, and speech recognition errors may be present. In addition to the word information surrounding a potential SDU boundary, which may be unreliable, the segmenter also uses information derived from the argument parse.

The argument parse may contain trees for cross-domain DAs, which by definition cover a complete SDU. Thus, there must be an SDU boundary on both sides of a cross-domain tree, and the problem of segmenting an utterance can be divided into subproblems of segmenting the parts of the utterance not covered by a cross-domain tree. Additionally, SDU boundaries cannot occur within parse trees. Thus, potential SDU boundary positions can be hypothesized only between parse trees and/or unparsed words. The segmenter also uses the root labels of argument parses.

The segmenter used in the Showcase-2 version of the analyzer is implemented using TiMBL (Daelemans et al., 2002), a memory-based (k-Nearest-Neighbor) learning program. The segmenter first examines the grammar label for the roots of the parse trees on each side of a potential SDU boundary position. If either tree was constructed by the cross-domain grammar, an SDU boundary is inserted. Otherwise, the TiMBL segmentation classifier uses ten features based on the words and arguments surrounding the potential boundary to determine if an SDU boundary is present.

The features used by the TiMBL classifier include the word and argument parse tree label immediately preceding and immediately following the potential boundary (w-1, w1, A-1, and A1). In addition, the probabilities that a boundary follows the preceding word and argument label (P(w-1() and P(A-1()) and precedes the following word and argument (P((w1) and P((A1)) are used as input features. These probabilities are computed based on counts from the training data (i.e., P(w-1() = C(w-1()/C(w-1)). The final two features are the number of words since the last boundary and the number of argument parse trees since the last boundary. The training data for the segmentation classifier consists of utterances that have been annotated with SDU boundaries and parsed using the phrase-level argument parser.

Identification of the domain action is portion of the analysis approach that uses machine learning techniques. A pair of classifiers, one for the speech act and one for the concept sequence, are used to produce the domain action using input features extracted from the argument parses. The classifiers use example-based learning (TiMBL) to determine the domain action. The input features include a set of binary features that indicate the presence or absence of each possible top-level rule from the argument and pseudo-argument grammars. These features are extracted from the roots of the parse trees in the segment under consideration. The input features also include speaker side information (agent or client). The speech act classifier produces a small ranked set of likely speech acts and indicates which one is the closest match. Similarly, the concept classifier produces a small ranked set of likely concept sequences and indicates the best match.

The final interchange format representation for the segment then produced by taking the interchange format specification into account. This step guarantees that only legal interchange format will be produced. First, a ranked set of possible legal domain actions is generated by combining the results from the speech act classifier with the results from the concept classifier and eliminating domain actions in which the concept sequence is not allowed to follow the speech act. Next, the arguments in the segment are checked against the ranked domain actions. If a domain action is found that licenses all of the arguments in the segment, that domain action is selected and all of the arguments are included in the final interchange format. Otherwise, the highest ranked domain action that licensed the most arguments is selected, and all arguments not licensed are removed from the final interchange format for the segment.

The resulting interchange format representation(s) are sent back to the blackboard which is responsible for communication with the Nespole! Global CommSwitch.

4.1.2.3 English and German Analysis Grammars for Showcase-2A

For both English and German, there are four grammars for parsing utterances. The CROSS-DOMAIN GRAMMAR contains full top-level DA-level rules for frequent, non-domain-specific utterances that typically do not contain many arguments. Examples of utterances parsed by the cross-domain grammar would be "Good morning", "This is Donna calling", and "Thank you for your help". The TOP-LEVEL ARGUMENT GRAMMAR contains rules for all the arguments that can be the root of a parse tree, such as <location=>, <accommodation-spec=>, or <time=>. The NON-TERMINAL ARGUMENT GRAMMAR contains top-level rules that cover phrases and expressions that cannot be parsed with a particular argument, but may be helpful for the prediction of a DA for an utterance. For example, a phrase such as "And you said that ..." would be covered by this grammar; it is likely to have request-verification- as part of its speech act. Additionally, the non-terminal argument grammar parses strings as a whole for which the context is important and which are larger than what can be covered by one argument. For example, in "I suggest to you that ...", the "I" should be parsed under <suggestor=>, not under <who=>, but the phrase context containing the word " suggest" is needed to make this distinction.

The SHARED GRAMMAR contains the definitions for all sub-arguments and non-terminals referenced by the other grammars, and all values and their bottom-level token definitions. It also contains those top-level arguments that may be referenced by the cross-domain and non-terminal argument grammars.

Analysis Grammar Development

The analysis grammars for English and German were developed on transcribed speech from the English and German databases respectively, for the Showcase-2 scenarios. We also used the logged data files generated from various demos and tests to check and then correct errors in the analysis grammars. In this case, the speech recognizer output rather than manually transcribed speech was used for development. These logged data files were especially useful in the development and testing of the coverage for multi-modal sentences.
4.1.3. Generation Chain

The generation chain includes the Generation Mapper, the GenKit Generator and the Festival speech synthesis module. Again, we use the same components for both English and German, each trained and loaded with the appropriate language-specific sources of information.

4.1.3.1 The Generation Module

The generation module consists of a generation mapper followed by the GenKit unification-based generator. The generation mapper was developed specifically for the NESPOLE project and is described in more detail below. The GenKit generator is a unification-based generation system that has been used in numerous Machine Translation projects at our institute over the last decade. It uses an LFG-style grammar formalism consisting of context-free rules augmented with unification of feature structures. A top-down control strategy is used to create a generation tree from a given input feature structure. The leaves of the generation tree are then read off as a pre-surface form generation. The pre-surface form is passed through a post-processor which generates the actual surface form word strings of the generated output. GenKit was originally written in Common Lisp. A new C++ implementation of the system was developed and deployed in the Showcase-2 system.
4.1.3.2 Generation Knowledge Sources

English and German generation knowledge consists of lexical, grammatical and morphological knowledge. A lexical look-up program uses lexical entries for associating words with semantic IF concepts and values. Syntactic/semantic grammars are used by the GenKit generator for generating a sentence from an interchange format's feature-structure (see Generation Mapper). Some inflectional morphology is also performed through grammar rules and/or a separate morphology package.

The English and German grammars are semantic grammars with syntactic generalizations made where possible. For each language, there is a general set of semantic and syntactic rules for generating from all domain IFs. For English, these general domain rules include rules for inflectional morphology on verbs, nouns and adjectives. For each language, there is also a grammar containing a specific set of semantic and syntactic rules for the travel domain which is also linked to the general rules.

With the GenKit generator, a grammar can be written such that the semantic rules are specific for a given DA concept or concept list or generalized to work with many DA concept combinations. Specific grammar rules are written for a given DA with high frequency so that the generated output is highly fluent and stylistically easier to read. General DA rules are written so that many DAs can be covered with a few general rules sacrificing style in some cases. In order to cover many new and ever expanding types of travel concepts that have a similar form to the above, we write general rules that lump all NPs together which in turn require a modal verb to generate a sentence in order to avoid the need for agreement in English within existential sentences.

Morphology

In generation of both English and German, only inflectional morphology is required.

Inflectional morphology in English is quite simple. Inflectional rules are written in the grammar formalism and exceptions (irregular forms) are stored in the lexical entries.

German morphological endings are generated via a separate morphology component called Morphe. Morphe generates the correct form from based on information coming from both the grammar and the lexicon. For nouns, for example, case, number, and person information come from the grammar rules, while the word stem and the inflectional classes come from the lexical entry. In the current version of the system, inflected forms produced by Morphe are stored in an expanded lexicon which is accessed during runtime.

Generation Grammar Development

The generation grammars were developed on data from a variety of sources. The IF tags from all of the Scenario A databases for English, German and Italian and some Scenario C data were used for developing and debugging the grammars. The tagged database that we used is described in greater detail in the report on "Interchange Format". We also used the logged data files generated from various demos and tests to check and then correct errors in the generation grammars. These logged data files were especially useful in the development and testing of the coverage for multi-modal sentences.

4.1.3.3 Speech Synthesis

For both English and German, we use a version of the Festival speech synthesis system, originally developed by Alan Black and Paul Taylor at the University of Edinburgh. The version used in our system was updated and maintained by Alan Black at CMU.

4.2. HLT Modules for Italian

Over the 2002 year the Italian HLT Servers have been extended along the following directions, taking in account the two principle of robustness and usability:

1. Communication with HLT modules and Mediator:

new functionalities of the Nespole! interface requiring interaction with the HLT modules have been implemented (e.g. textual input in addition to pure speech).

2. Management of different Showcases:

two versions of the Nespole! system have been implemented, operating in two different scenarios, tourism and medical (first aid assistance). Each version of the system requires a different set of HLT modules to run. The operation of launching the ITA HLT server with the appropriate modules of a given scenario is now completely automatic, allowing an easy and configurable start-up of the Nespole! system.

3. Restarting of a single HLT module:

a new mechanism for the restarting of a single HLT module during a Nespole! session has been implemented. In this way a potentially problematic event (that of the crashing or blocking of a module at run time) has been addressed without the need of restarting the whole system.

4. Additional Italian HLT server:
an additional HLT server supporting the (out of requirements) Italian client-side has been implemented in order to allow local testing and debugging of the whole system -- IF-based Italian-to-Italian translation.

5. Dumping of log files:

the mechanism of dumping log file has been improved, allowing for a selection (at start-up time) of the information to be saved (audio, textual logs of the various modules, etc).

6. Web-base interface:

all the functionalities and operations outlined above can be operated by means of an appropriate Web-base interface, only for internal access. This allow the local Nespole! people (even if not experts) to startup and use the Nespole! system for the various cases: demonstrations, tests, data collections, etc.

The ITA HLT servers have been intensively used through the whole year for several public demonstrations (in addition to a huge number of tests), showing a good degree of robustness.

4.2.1. Speech Recognizer

The Italian speech recognition system uses the same technology described in deliverable D8 (a single-step time-synchronous HMM-based Viterbi decoder [1] extended to deal with recurrent transition networks [2]).

4.2.1.1 Acoustic Modeling

As far as the acoustic modeling is concerned, the same approach used for the 2001 version has been used for both the second Showcases. The C-STAR corpus has been filtered through the G.711 protocol (PCM ulow format), actually used in Nespole!. The corpus includes 9672 sentences for a total of almost 11 hours of speech. The acoustic models consist of 2859 context dependent units, with a total of 6973 Gaussian densities (including models of extra-linguistic phenomena).

4.2.1.2 Language Modeling

The development of the two different versions of the recognition system for the two Showcases of the 2002 year (tourism and medical domain) presented different issues, concerning the Language Modeling (LM). In facts, in the tourism domain the availability of a sufficient number of data (taking in account also the C-STAR corpus) did not arise particular problems in terms of performance of the developed recognizer. With respect to the first Showcase (also in the tourism domain), 9 lexical classes have been added, all domain dependent, in order to cover the domain extension (packages, events, etc).

As far as the Language Modeling for the medical domain is concerned, the data collected on the field appeared to be few with respect to the linguistic size of the domain: the Nespole! corpus for medical domain includes 497 sentences, for a total of 10228 words, with a vocabulary of 993 different words. To overcome the problem of poor performance (high perplexity and Out Of Vocabulary – OOV - percentage), other corpora (e.g. the Broadcast News corpus) have been utilized to produce the final Language Model: at best, a 118 perplexity and 0.6 out-of-vocabulary rate were measured.

4.2.2. Analyzer

The Italian analyzer is the module that maps the automatic transcription of an utterance provided by the Italian acoustic recognizer into its IF representation. The Italian analyzer for the second Showcases has been implemented with the same functional architecture employed for the first Showcase: (1) the utterance is segmented into semantic segments called Semantic Dialogue Units (SDUs); then, for each SDU (2) the Domain Action (DA), consisting of a speech act and a sequence of concepts, is estimated and (3) the arguments, consisting of feature-value information, are extracted.

The speaker tag of each IF is easily determined: in both Showcases of the second year it is assigned a-priori to be the agent -- in the tourism domain his/her role is that of an operator of the local tourism board, while in the medical domain is that of a physician of a first aid station. The other IF components (speech-act, concepts and arguments) are determined by analysis of the SDU.

The same algorithm developed during the first year of the project for the production of legal IFs [3] has been adopted in order to improve the analysis in terms of robustness and performance.

4.2.2.1 Semantic Segmentation

The semantic segmentation of automatic transcription into SDUs uses the same approach for both the Showcases: first a segmentation is performed using a statistical algorithm based on Language Models, and second this segmentation is further refined using a knowledge-based technique. To reduce the problem of data sparseness, a labeling pre-processing is performed on the transcription substituting words with class labels (hotel names, locations, etc for the tourism domain; medicines, symptoms, etc for the medical domain).

The statistical segmentation, based on a trigrams Language Model, generates different hypotheses of segmentation inserting Segment Boundaries (SBs) into the original transcription at each SDU ending. The hypothesis that maximizes the probability according to the Language Model is returned as the best segmentation.

Two different trigrams Language Models (one for each Showcase) have been trained: for the tourism domain the training corpus includes 11691 SDUs (7087 from the C-STAR corpus), while for the medical domain the size of the corpus is sensibly lower: 972 SDUs, all from the Nespole! dialogues.

4.2.2.2 Domain Action Classification

The most challenging problem for Domain Action classification is that the annotated data are few (crucial problem when statistical methods are used): in the tourism there are 550 different Domain Action in 4189 examples (less than 8 examples per DA). In the medical domain the percentage is even lower: 121 DAs in 474 examples (about 4 examples per DA). Several techniques and methods have been used in order to maximize the performance, with respect to:

1. the labels to be classified: speech acts as labels separated by the concepts versus speech act together with concepts;

2. the classification tools: trigrams, bigrams or unigrams LMs, Bayesian Belief Networks, Knowledge-base methods like pattern matching;

3. the observable data: words versus characters, class labels versus pure text.

The technique where speech act and concepts are treated together shows the best results: the string obtained by concatenating the speech act and the (possibly empty) sequence of concepts is considered as a single label corresponding to the Domain Action (DA). A bigram language model operating at the word level with class labels was trained for each DA. For a given SDU, the selected DA is the one corresponding to the Language Model that provides the highest likelihood and maximize the extracted arguments.

4.2.2.3 Argument Extraction

For argument extraction, the same techniques adopted for the first Showcase has been utilized for both the second Showcases: a knowledge-based approach in two steps. First a recursive transition network (RTN) parser is applied on the pure text; it produces a sequence of parse trees, semantically corresponding to different IF arguments. In the second stage, the parse trees are converted into their appropriate IF syntax.

Parsing is performed by applying the ITC-irst HMM decoder [2] on the input text (rather than on an acoustic signal). Arguments are thus modeled with recursive finite state networks, which represent, according to the case, word lists (e.g locations, digits), regular expressions (e.g. simple temporal expression, integers), or bigram language models (e.g. complex temporal expressions). In particular, complex expressions can be expressed in terms of more simple ones using recursion. For the current Nespole! domain we have developed about 407 grammars. Although most of arguments are domain-dependent (e.g. room and hotel) there are also cross-domain arguments (e.g. numbers, price or temporal expressions). The output of the HMM decoder is a sequence of parse trees corresponding to the most probable path trough the recursive finite state networks defined by the grammars and language models. A rule-based procedure written in Perl is then used to map the parse trees into IF-compliant arguments.

Obviously the grammars differ in the two domains, although some cross-domain grammars written for the tourism Showcase were directly imported into the medical Showcase (e.g. temporal expressions, numbers).

4.2.3. XIG: IF-to-Italian generator

The IF-to-Italian generator (XIG) used for the 2002 showcases is an extension of the one used for the 2001 showcase (see [12]). The overall architecture of the generation system has not been changed. It is a rule-based generator implemented in Prolog and composed of two main modules: a sentence planner that maps an IF into an LFG-like functional representation of a phrase (sentence or part of it) and a linguistic realizer that maps the functional representation into a sequence of words.

The sentence planner incrementally builds the functional representation of the phrase by trying different layers of rules. Such representation guarantees a robust behavior to the system. The rules are ordered from the most specific to the most general, from the sentence level to the lexical level,

The functional representation that constitutes the interface between the sentence planner and the linguistic realizer is in fact a mixed representation. This can include representations of lower linguistic level such as strings and parameterized morphological bundles [9]. The three components included in the linguistic realizer - coping with syntax, morphology, and phonological adjustment respectively - are enabled to process mixed representation, which can be conceived of as a sort of a very flexible kind of templates that guarantee a good level of efficiency to the generator.

The XIG system is clearly divided in two parts: a procedural part (planning engine and mixed representation solver) and a declarative part that includes planning rules, syntax context free rules, and morphological data. To cover the 2002 scenarios only marginal updates have been made to the procedural part, mainly to optimize the system from a software engineering point of view.

Instead, almost all of the work has been done to extend the declarative part of the system. Interestingly enough, extending the system from the tourism to the medical domain determined an increase of the total number of rules of only 18%, mostly at the lexical level. This means that a great number of non lexical rules that were written for the tourism domain could be reused within the medical domain.

4.2.4. Speech Synthesizer

The text-to-speech system used for Italian speech synthesis is the Eloquens system provided by the Loquendo Company (ex CSELT).

4.3. HLT Modules for French

CLIPS is only involved in showcase 2A dedicated to the extended tourism domain. Thus, update of the HLT modules for this is only related to scalability: increase of vocabulary, extension of the domain coverage, and improvements in the systems robustness. No work has been done on portability (showcase 2B) to a new domain (medical domain) since CLIPS is not financed for this.

The changes and updates of the HLT modules are mainly related to a new IF definition, Automatic Speech Recognition (ASR) and Speech-to-Speech Translation (STST) modules update.

4.3.1. Update of the HLT modules

The overall architecture of our HLT servers from showcase-1 was maintained during the development of showcase 2A. Most of the development work was done within the individual modules that reside within each of the HLT servers.

4.3.2. Automatic speech recognition module

The update of the French speech recognizer concerns mainly two issues: (1) vocabulary, (2) language models. No change in the acoustic models has been done. The vocabulary and language models have been updated according to the new data collected. The new vocabulary was merged with the one build for the first Showcase (same domain) and 3164 words specific vocabulary was obtained. Figure 1 describes the differences between the vocabulary extracted from showcase 1 data (SC1) and the vocabulary extracted from showcase 2A data (SC2a), the number of words common to both (SC1.SC2) and the merging results (SC1+SC2) for client and agent turns (A+C) or client only turns (C).

[image: image1.wmf]SC1

SC2a

SC1 . SC2a

SC1 + SC2a

A+C

2057

2068

953

3164

C

1281

1173

577

1876

Table 1: statistics on showcase 1 and showcase 2A vocabularies

For the language model training, a Web-based approach, which has also demonstrated scalability, was used. More precisely, the new task based vocabulary was extended with the most frequent words issued from a word count made on a collection of web pages. A final vocabulary of 22k words was obtained. Then, language model training with minimal block filtering technique was performed on Web data too.

4.3.3. Analysis module

The new analysis module is using the same pattern-based approach used for the analyzer developed for the first showcase.

The turn is first split into SDUs using a slightly more fine-grained approach allowing for better segmentation. A domain is associated to each SDU. The defined domains cover all the terminal Speech Acts (i.e. the SA with no continuation), and all the focus concepts (i.e. concepts without continuation).

The treatment of each terminal Speech Act is proper to the Speech Act itself. The focus concepts are all handled the same way. For the focus concepts the Dialog Act is first built by finding out the Speech Act, the Rhetorical Relations, the Attitudes, the Actions. Our Actions are marked by action predicates that correspond to a concept (i.e. +clarify, +click, +confirmation, +connection, +display, +explain, +goto, +indicate, +inform, +read, +rent, +view, +explain, +write), or they represent a predicate defined as a value of the *actions* value set. In this process each concept instantiate its proper arguments. The Arguments of the focus concept are built by trying to instantiate the potential arguments. Finally an IF is produced.

4.3.4. Generation module

The new generation module is using the fill-in the blank approach developed for the generator used for the first showcase evaluation. The technique has been improved. In the first generator, the possible concepts sequences defined a tree, whereas the actual generation procedure was reached at the leaves. In the new module, the generation is actually performed during a walk through of the Dialogue Act knowing the focus concepts to be reached. Each Dialog Act should thus be covered giving a far better coverage than the coverage of the first generator. The decoding of the arguments has been revised and it has been improved.

5. References

[1] M. Federico, M. Cettolo, F. Brugnara and G. Antoniol, “Language Modelling for Efficient Beam-Search”. Computer Speech and Language, 9:353-379, 1995.

[2] F. Brugnara and M. Federico, “Dynamic language models for interactive speech applications”. Proceedings of the 5th European Conference on Speech Communication and Technology, Rhodes, Greece, 1997.

[3] R. Cattoni, M. Federico and A. Lavie, “Robust Analysis of Spoken Input combining Statistical and Knowledge-based Information Sources''. Proceedings of the 2001 IEEE Workshop on Automatic Speech Recognition and Understanding, Madonna di Campiglio (Trento), Italy, 2001.

[4] L.Taddei, E.Costantini and A.Lavie. “The Nespole! Multimodal Interface for Cross-lingual Communication - Experience and Lessons Learned”. In Proceedings of ICMI 2002 International Conference on Multimodal Interfaces, Pittsburgh, USA, 14-16 October 2002.

[5] Nespole! Deliverable D11 - "Requirements for the Second Showcase", 2002. In Nespole! Project web site: http://nespole.itc.it

.

[6] Nespole! Deliverable D14 - "Annotated Data for the Second Showcase", 2002. In Nespole! Project web site: http://nespole.itc.it.

[7] "Technical Material for the Data Collection 2002", 2002. In Nespole! Project web site: http://nespole.itc.it/internal/pagine/datacoll2002.htm
[8] Nespole! Deliverable D5 – “Study on Multimodality – Part 1”, March 2002. In Nespole! Project web site: http://nespole.itc.it
[9] Emanuele Pianta and Lucia M. Tovena, "Mixing representation levels: The hybrid approach to automatic text generation", in: Proceedings of the AISB'99 Workshop on Reference Architectures and Data Standards for NLP, Edinburgh, 6th-9th April 1999, 8-13.

[10] Nespole! Report of the First User Group Meeting, 2001. Project web site: http://nespole.itc.it

.

[11] Nespole! Deliverable D16 - Synchronisation + multimodal environment, 2003. In Nespole! Project web site: http://nespole.itc.it

.

[12] Nespole! Deliverable D8 - First Showcase documentation. In Nespole! Project web site: http://nespole.itc.it

.

� EMBED PBrush ���

IT S.U.: APT informazioni buongiorno

EN R.S.T:APT information,Hallo

EN S.H.: Hallo I would like to take a trip to Trentino

EN S.U.: Hallo I would like to visit Trentino

IT R.S.T.: Buongiorno vorrei fare un viaggio in Trentino

Hallo I would like to

 visit Trentino

Hallo I would like to take

a trip to Trentino

� EMBED PBrush ���

� EMBED PBrush ���

[image: image4.png]Whiteboard - Aethra T elecomunicazioni s.1.I.
Took 2

DzrEZK el 2

Syster hears

L]
Cancel Translation

Syster understands;

Audio

Enable ‘ %
!

[image: image5.png]

[image: image6.png]Whiteboard - Aethra T elecomunicazioni s.1.I.
Took 2

DzrEZK el 2

Syster hears

L]
Cancel Translation

Syster understands;

Audio

Enable ‘ %
!

[image: image7.png]

[image: image8.png]Lo 92

LOCAL* REMOTE

[image: image9.png]

PAGE
3
NESPOLE! Project IST - 1999 – 11562

 Page

[image: image10.png]Carnegic
Mellon

[image: image11.png]o Universitit Karlsruhe

[image: image12.jpg]

[image: image13.png]

[image: image14.png]TRIH%O

_1101886092

_1101886093

_1100602995.xls
Feuil1

				SC1		SC2a		SC1 . SC2a		SC1 + SC2a

		A+C		2057		2068		953		3164

		C		1281		1173		577		1876

_1101886090

