Software specification and API definition

Aethra

May 22, 2000

This document presents an overview of the hardware and software platform for Nespole!. The overall architecture has been designed taking into account the geographical distribution of the four Language Specific HLT Servers, and assuming complete structural symmetry of Agents and Clients. Moreover, monitoring tasks have been distributed among four distinct hosts.

Overall architecture

The overall architecture is drawn in the diagram below.

[image: image1.png]Whitehoard

Client

vC
application

Whitehoard

Mediator X Mediator W

Language X
HLT Server

Language W
HLT Server

Global Nespole! Server

S

11]

Wediator ¥
Agent
P
— Audio G711
— Video H261
— DataT.120
—— Linear PCM Audio + Timestamps

IF + Timestamps

Language Y Language Z
HLT Server HLT Server
Mediator Z

Fig.1 Overview of the overall architecture

In the proposed scenario, it is intended that Aethra would be in charge of the software module for the Mediator, as well as of the Whiteboard software module.

The main features of the above platform are:

· Agent and Client are H.323 terminals, namely they are able to make H.323 calls and hence send audio in G.711 format, video in H.261 format, and data in T.120 format. Examples of H.323 terminals are: videoconference systems by various producers (Aethra, ELSAvision, PictureTel, etc.), PCs equipped with an audio-capture card, a video-capture card, and Microsoft NetMeeting software.

· The Global Nespole! Server is drawn as a unique entity, but the various Language Specific HLT Servers can be arbitrarily distributed.

· The Aethra Software Module runs on a Windows platform.

· All the communications among Agent, Client, Mediator and HLT Server are via sockets. This is particularly appropriate for communications between Mediator and HLT Server, since transmission via sockets is independent on the actual operating systems running at the endpoints.

· Communications between Agent and Mediator, and between Client and Mediator are ruled by the H.323 standard. This imposes audio and video packets be transmitted using RTP (Real Time Protocol) over the UDP (User Datagram Protocol) transport layer, and data packets be transmitted using the T.120 protocol.

· As for the communication between Mediator and HLT Server there is a degree of freedom in the choice of the protocol at levels 4 and 5 of the ISO/OSI stack (Fig.2). For analogy to the Agent/Client-Mediator communication, we propose to use RTP over UDP. The TCP protocol could be used instead of UDP. In this case the communication would be reliable but a bit slower. (TCP implements a recovery procedure that triggers the retransmission of those packets which got lost or corrupted. Loss and corruption of packets is not recovered by UDP.)

[image: image2.png]7-- APPLICATION LAYER

6 PRESENTATIONLAYER (GJ71LH.261)
5. SESSIONLAYER ®TP)

4 TRANSPORT LAYER wprrTce)
3_NETWORK LAYER [2)

2-DATALINK LAYER

1- PHYSICAL LAYER

Fig.2 ISO/OSI Stack

Nespole! Call handling

We now describe the functionality of the proposed architecture, assuming, for clarity, that the Client speaks a language X and wants to communicate with an Agent speaking language Y. Notice that some communication streams among Mediators and HLT Servers are missing in Fig.1. We actually drawn there only those streams that are strictly necessary to comment on the example at hand.

In the following we denote by MY and SY the Mediator and HLT Server for language Y, analogous abbreviations do hold for MX, SX, etc.

1. The Client makes a H.323 call to MY. The call mode allows the Mediator to identify the source language X (see below for more details on this issue).

2. The Mediator, which acts as a bridge between Client and Agent, makes a H.323 call to the Agent for language Y.

3. Sockets for audio, video, and data packets are opened between Client and MY, and between MY and Agent, respectively.

4. Each audio packet received by MY contains a unique sequence number, say Nm for the audio packet Am. Suppose that, correspondingly to the reception of Am from the Client, MY receives a certain data packet Dk. Then Dk is enriched with the timestamp Nm. Also, the audio packet Am is transformed into AXm: an audio packet in PCM format which contains the time-stamp Nm. The Mediator MY sends AXm to SX.

5. Packet AXm is analyzed by SX , transformed into IF keeping track of the time-stamp Nm, and then sent back to MY.

6. MY bounces AXm to SY.

7. The HLT Server SY elaborates the IF and returns to MY the PCM audio packet AYm which contains the time-stamp Nm.

8. The Mediator MY receives AYm, fetches from its data buffer the packet Dk, and sends to the Agent the G.711 coding of AYm together with Dk.

9. Audio, data, and video packets sent to MY by the Agent are treated similarly.

General remarks

Some general remarks about the proposed platform follow.

· As highlighted in the above example, one single Mediator is involved in the interaction between Client and Agent. This allows video and data packets to be kept inside the involved Mediator, so avoiding to send them to the Global Server which, on its side, should then forward them to yet another Mediator. Of course future developments of multi-modal features could imply the transmission of data packets to the Global Server. It is quite important, however, that video packets are sent around following a strictly by-need discipline. The video stream, in fact, is by far wider than both data and audio streams.

· Each Mediator is identified by a distinct IP address, so the Client selects the address to call depending on the foreign language he wants to use.

· In the above example MY is called by a Client speaking language X. It is crucial for MY to recognize the source language X. Different strategies can be adopted to achieve this result. One possibility is to take advantage of the fact that H.323 terminals usually allow the definition of an alias, and to require that Clients only use `well-formed’ aliases. For instance, we could impose that the alias of any German Client starts with the string ‘de’, the alias of any French Client starts with ‘fr’, and so on.

· In the above example, the Mediator of the connection between a Client speaking X and an Agent speaking Y was assumed to be MY, i.e. the Mediator of the target language Y. The Consortium could decide that is best to involve MX instead of MY; the software design could be changed accordingly.
· The interaction between the Client speaking X and the Agent speaking Y is monitored by MY and actively involves both SX and SY. It seems reasonable, at least for the first integration, to assume that SX and SY handle one single (bi-directional) data stream at a time, and hence to consider the Mediator MX busy while the interaction goes on. To achieve the desired effect each Mediator accepts a H.323 call only if the following requirements are met:
· the Mediator itself is free from other calls;

· the HLT Servers of the calling and the called language do accept a bi-directional connection with the Mediator;
· the Agent is not involved in another communication.
Communication between Mediator and HLT Server: API definition and general remarks

Mediators and HLT Servers communicate via sockets. Each HLT Server keeps waiting on two bi-directional sockets: one socket, say the port 3000, for the transmission of linear audio; the other port, say 3001, for the transmission of IF data.

Whenever a Client tries to call a certain Agent, two Servers, and hence four sockets, are involved. As we already said, the success of a H.323 call from a Client to a Mediator is intimately related to the possibility to open all the sockets between the Mediator and the relevant HLT Servers. If any of the four attempts to open communications with the Servers fails, the very first H.323 call is rejected and fails.

The following issue is of fundamental importance. Each Server can be either in `Waiting’ or in `Busy’ status. It is in `Waiting’ status if either it did not receive any `Open Socket’ request, or both its sockets have been closed via a `Close Socket’ request. The Server is in `Busy’ status otherwise. Any Server in `Busy’ status must reject `Open Socket’ requests.

Each socket between Mediator and HLT Server is bi-directional and carries two data streams: one stream per direction. The communication protocol between Mediator and HLT Server must respect a few minimal requirements. A possible communication protocol could use packets as depicted below:

[image: image3.png]Length

Timestamp

[Payload Type|

Payload

The Length and the Timestamp fields have obvious meanings. The Payload contains the actual data,

which can be either PCM, or IF, or T.120 Whiteboard data, as specified in the Payload Type field.

The transmission of PCM data deserves a more detailed comment.

· Due to structural constraints given by the definition of the H.323 standard, a PCM payload corresponds to about 20 milliseconds of speech. Then, most likely, one single PCM payload is just a small fraction of the minimal input that the HLT Server needs to start the analysis process. Hence the HLT Server should be able to buffer as many packets as necessary.

· We already mentioned that the generation of IF data from PCM audio should leave timestamps unaffected. Nonetheless, it is not necessary to keep a strict one-to-one correspondence between timestamps and packets. For instance, assume that the HLT Server generates an IF stream corresponding to the analysis of audio payloads time-stamped by t1, .., tn. It is not necessary to split such a stream in n distinct portions; the IF can be returned to the Mediator in a single packet time-stamped by t1.

The Mediator is in charge of organizing the re-synchronization of data and (translated) audio packets. This is obviously a delicate issue, which crucially depends on translation processing times, as well as on network delays and packet jitter. In order to achieve the desired synchronization, the data D corresponding to a certain sentence S need to be buffered by the Mediator till it receives the translation of S. Assuming that the translations of different sentences do take the same time is surely unrealistic. Any kind of information about (mean) translation times would however be extremely useful in appropriately sizing the data buffer of the Mediator.

Multimodality issues: main features of the proposed Whiteboard

The Whiteboard we propose can distinguish three different kinds of gestures/actions:

1. free hand strokes;

2. pointing of an area;

3. loading of an image.

We agree with the partners about the choice of a partial lexical interpretation for free hand strokes (see the documents circulated by Massimo Zancanaro et al. on 20/03/00 and on 04/04/00, and subsequent comments on their contents). We propose to interpret a `reasonably long’ release of the mouse button as a separator between complex graphical objects. In particular, the sequence of strokes drawn while keeping the button down are taken all together as parts of a single object. The actual end of the gesture occurs when releasing the mouse button for more than a suitable amount of seconds, say 10.

As for the pointing gesture, two different area shapes can be defined: a rectangular shape, and an elliptic one. The user would select a certain shape, and then point the chosen area. After that, the rectangle (or ellipse) containing the pointed area could be highlighted.

Correspondingly to the different kinds of gesture, the data packet transmitted by the Whiteboard to the Mediator can be organized as follows:

1. (type = freehand, context = “picture.bmp”, strokes_number = n, line_1 = (…), …., line_n = (…))

2. (type = pointing, context = “picture.bmp”, pointing_type = rectangle/circle, area_data = (…))

3. (type = loading, image_data = (…))
The Mediator is in charge of adding to the above packets a `time-stamp’ field, and to monitor the synchronization of data and translated audio as already described above.

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

1
5

[image: image4.png]7-- APPLICATION LAYER

6 PRESENTATIONLAYER (GJ71LH.261)
5. SESSIONLAYER ®TP)

4 TRANSPORT LAYER wprrTce)
3_NETWORK LAYER [2)

2-DATALINK LAYER

1- PHYSICAL LAYER

[image: image5.png]Whitehoard

Client

vC
application

Whitehoard

Mediator X Mediator W

Language X
HLT Server

Language W
HLT Server

Global Nespole! Server

S

11]

Wediator ¥
Agent
P
— Audio G711
— Video H261
— DataT.120
—— Linear PCM Audio + Timestamps

IF + Timestamps

Language Y Language Z
HLT Server HLT Server
Mediator Z

[image: image6.png]Length

Timestamp

[Payload Type|

Payload

_1020245290

_1020513864

_1020168469

