The Inner Works of an Automatic Rule Refiner for MT
	Ariadna Font Llitjós
	William A. Ridmann

	Language Technologies Institute
	Department of Computer Science

	Carnegie Mellon University
	Carnegie Mellon University

	Pittsburgh, 15217
	Pittsburgh, 15217

	aria@cs.cmu.edu
	war@andrew.cmu.edu

	
	

Abstract

Achieving high translation quality remains the biggest challenge Machine Translation (MT) systems currently face. Researchers have explored a variety of methods to include user feedback in the MT loop. However, most MT systems have failed to incorporate post-editing efforts beyond the addition of corrected translations to the parallel training data for Statistical and Example-Based system or to a translation memory database. In this paper, we describe the nuts and bolts of an Automatic Rule Refiner that, given online post-editing information, traces the errors back to responsible lexical and grammar rules responsible for the errors and proposes concrete fixes to such rules. This approach to improving MT output generalizes beyond the input sentences corrected by bilingual speakers, and allows for the correct translation of unseen data.
1 Introduction

In the field of Machine Translation, the most popular trend of recent years has been adding more bilingual data to try to improve output quality. This strategy works reasonably well for Statistical and Example-Based MT systems. For Transfer-Based approaches to MT, however, having more bilingual data is rarely the solution to getting higher quality output.

Traditional solutions to improve Transfer-Based MT systems are costly and time-consuming, since they involve many computational linguists hours to develop new rules and refine old ones. Moreover, in any MT system, out-of-vocabulary words are constantly jeopardizing translation quality.
In this context, finding a way to automatically improve Transfer-Based Machine Translation systems without the need of computational linguistics experts constitutes a new promising research direction that deserves attention. This is particularly relevant for resource-poor scenarios.
In this paper, we present the nuts and bolts of an Automatic Rule Refinement system which can improve the quality of MT output guided by post-editing information given by non-expert, untrained users. The focus is to describe how the Rule Refiner (RR) can automatically add missing lexical entries and detect incomplete or incorrect rules (both manually written and automatically learned (Font-Llitjós et al., 2004)) that applied during the generation of MT output. The refinement process targets bilingual speakers’ corrections gathered through an online tool. These corrections allow the RR to propose modifications that result in direct improvement of the grammar and the lexicon, yielding an improvement on overall translation quality of the MT system, even on unseen data.
First, the RR processes and stores correction instances for specific translation pairs as provided by several bilingual speaker. Next, it proceeds to do blame assignment based on the transfer tree generated by the MT system. At this stage, the system retrieves the error-causing rules and lexical entries and, combining user and error type, it proposes a specific refining operation. In a nutshell, the RR module can decide to add a lexical entry, modify a current lexical entry, bifurcate a rule and modify the copy, usually making it into a more specific rule, or refine a rule that is too general, by adding a missing agreement constraint, for example.

A full-fledged prototype of the Rule Refiner has been implemented in C++ and is currently being tested.

Following similar ideas to our approach, Phaholphinyo and colleagues (2005) proposed adding post-editing rules to their English-Thai MT system with the use of a post-editing tool. However, they use context sensitive pattern-matching rules, which make it impossible to fix errors involving missing words. Unlike our approach, in their system, the rules are created by experienced linguists and their approach requires a large corpus. They mention an experiment with 6,000 bilingual sentences but report no results due to data sparseness.

2 Error Correction Extraction

The first part of the rule refinement process is the extraction of error correction information. Our approach relies on bilingual speaker post-editing information, collected via an online Translation Correction Tool (TCTool) as described by Font-Llitjós and Carbonell (2004).

Each translation pair corrected by a user via the TCTool generates a log file, which can be processed and parsed by the Rule Refiner to extract all the relevant correction and error information, and store it into a correction instance (CI).

CIs store all correction actions taken by a user, with all the related error information, into a vector of Actions, which is processed by the Rule Refiner one at a time. See Figure 1 for an example. It is important to note that the order in which the user corrected errors has an impact on the order in which refinements apply and, consequently, on the resulting refined grammar.
2.1 Correction Instance Handling

It is crucial that the correction actions stored in our system correspond to the “essence” of what the bilingual speaker did to correct a specific translation pair while using the TCTool, but this is actually a rather hard task. Even with just four correction actions (add, modify, delete and change word order), users can choose to correct the same mistake in more than one different way (for example, instead of modifying a word directly by editing it, deleting the incorrect word and adding a correct word would lead to the same final translation, but there would be no automatic way to relate the correction actions to the same error). In addition to intended corrections, users often change their mind and some times even make mistakes.

SL: John and Mary fell

TL: juan y maría cayeron

Alignments: ((1,1),(2,2),(3,3),(4,4))

 Action 1: add (se in position 4)

 Temp_CTL: juan y maría se cayeron

 Alignments: ((1,1),(2,2),(3,3),(4,5))

 Action 2: add alignment (fell(se (4,4))

CTL: juan y maría se cayeron

Alignments: ((1,1),(2,2),(3,3),(4,5),(4,4))

Figure 1. Correction Instance for Add Action. CIs store the source language sentence (SL), the target language sentence (TL) and the initial alignments (AL), as well as all the correction actions done by the user. It also provides the corrected translation (CTL) and final alignments.

Thus the goal of this component is to extract all the post-editing actions taken by non-expert users and process them while filtering out as much noise as possible at this early stage, so that the error information can be used effectively by the rest of the system.

2.1.1 Spurious Correction Detection

There are several ways in which users change their mind, the first one being to correct a sentence that is already correct. If at some point during the correction session, the user decides to go back and mark the translation as being correct, the RR ignores any correction actions registered and assumes the translation is correct, effectively filtering out the noise introduced by the users’ hesitation.
2.1.2 Spurious Loop Detection

In other cases, users carry out a correction action and then change their mind. Examples of this are when users decide to add a word, but then realize that it is not needed, or modify a word from form1 into form2, and then decide that it was already correct before, and so changes form2 back to form1.

The RR addresses all this issues with a Spurious Loop Detector. The Spurious Loop Detector operates by iterating over each action (Ai) and searching for an action (Ai’) that will subsequently have had a reverse effect on the translation correction. Both Ai and Ai’ are removed from the list of actions the user performed. Then each action lying in between Ai and Ai’ is updated to reflect the removal of Ai and Ai’. Such updates can result in even more actions removed from the user action history.

More specifically, the following user actions can reverse each other:

· Adding and Deleting the same word (and vice-versa).

· Editing a word more than once (first action deleted if last edit on word reverts back to original word, first action change to last edit otherwise).

· Changing Word Order to previous order.

· Adding and Deleting the same SL-TL word alignment (and vice-versa)

 Spurious Loop Detection runs in O(|A|²) time.

 Given a Source Language (SL) and Target Language (TL) sentence pair, correctly detecting and discarding spurious loops allows for more reliable comparison of CIs that were parsed from log files generated by different users.
2.2 Collection of Correction Instances

Since users of the TCTool are not linguistics or translation experts, the need to compare different correction instances and filter out noise becomes even more relevant.

On the other hand, all posterior blame assignment and refinement decisions made by the system fully depend on the correct extraction and processing of error correction information given by bilingual speakers.

In batch mode, the RR reads in multiple correction instances affecting multiple translation pairs, and stores them in a Collection. This allows the RR to compare all the CI affecting a SL-TL pair and, if they contain equivalent information
, they are stored only once in the Collection with a weight proportional to the number of different CIs that were found to be equivalent. This weight directly indicates how much evidence there is in the data to support a correction action set as being more appropriate than another one with less weight for any given SL-TL pair. Namely, the relevance of a particular CI can be precisely estimated by its weight, which corresponds to the number of log files (and thus different users) that agree with it.

2.2.1 Error Complexity

In addition to taking into account the number of users who agreed on a specific set of correction actions, the RR also scores CIs according the complexity of their set of correction actions, or error complexity.

To estimate the error complexity of a given CI, both the number of errors addressed (approximated by counting different correction actions) as well as whether there is any dependency among the errors (the assumption being that when two different correction actions affect the same word they are targeting the same error, and thus are considered dependent), are factored in.

More specifically, CIs are sorted like polynomials, first by degree of dependency and then by coefficient, namely the amount of clusters with that degree.

For example, CIs with one correction action can be codified as (1); CIs with two independent correction actions, as (2), and with two dependent actions, as (1,0); CIs with three independent correction actions, can be codified as (3), with two dependent actions and one independent action, as (1,1), and with three dependent correction actions, as (1,0,0), and so on.
Lexicographic order of these vectors provides a natural and intuitive way to sort correction instances, since it correctly prioritizing CIs with a larger number of independent errors over CIs with slightly smaller number errors that are dependent among them.

2.2.2 Ranking of CI Collection

Since we want to prioritize correction instances with more user support and tackle simpler errors first, the RR uses the following ranking algorithm:

 Foreach CIcollection:

1. Foreach SL-TL pair, find the CI with the highest weight (more evidence) (BestCI
 2. Foreach BestCI, compute error complexity

3. Rank BestCI with lowest error complexity higher.

This algorithm picks the CI with more user support for each SL-TL pair (BestCI) and then computes their error complexity in order to rank simpler CIs higher. The resulting ranking is used by the Rule Refiner to determine in which order to process correction data stored in a Collection of Correction Instances.

This “Tetris” approach is based on the underlying assumption that once simpler errors are fixed, more complex errors will be simplified (thus moving up in the ranking) and become easier to fix automatically.

3 Rule Blame Assignment

After having correctly stored and processed error correction information, rule blame assignment is executed by the RR. This is a key step of the rule refinement process, and is what differentiates rule-based MT systems form Statistical MT (SMT) or Example-Based MT (EBMT) systems. Namely, for systems that do not have explicit transfer rules, an approach like the one proposed here cannot apply.

Given the error and correction words and the transfer tree output by the transfer engine, the RR can identify the incorrect rules and/or lexical entries, as the case might be, that are responsible for the error.

3.1 Rule handling

In order for the blame assignment algorithm to be effective, the RR pre-processes the lexicon and the grammar and assigns unique Rule IDs to all the entries that do not already have an ID.

To ensure fast look up of rules, red-black trees are used to index all rules by their respective Rule IDs. Additionally, lexical entries are indexed by their SL and TL sides, including exact and partial matches. Red-black trees are a balanced-tree data structure that ensures amortized look-up times of O(log|R|) (Cormen et al., 1996). Logarithmic lookup time is vital as the lexicon could potentially have hundreds of thousands of rules.

When rules are bifurcated, a Refined Rule Hierarchy is created (with each child being a derived rule from its parent). Since refined rules are stored in a text file that needs to be parsed by the transfer engine, hierarchy information is stored as meta data encapsulated by comments that are unparsed by the transfer engine. Such a hierarchy allows reverting back to the grammar and lexicon previous to refinements that did not lead to an improvement of MT quality.

In general, all meta data specific to the Rule Refiner is stored as comments in the grammar and lexicon text files so as not to disturb transfer engine parsing.

3.2 Transfer Trees

The transfer tree that is constructed by the MT system contains a precise trace of what translation rules were applied to what lexical entries in order to generate the target sentence that the user picked and corrected. See Figure 2 below for an example.

 (S,1 (NP,6
(NP,2 (N,2:1 'JUAN'))
(CONJ,1:2 'Y')

(NP,2 (N,3:3 'MARÍA')))

(VP,1 (V,6:4 'CAYERON'))))
Figure 2. Transfer tree output by the MT system for the SL sentence John and Mary fell. In addition to the generation tree, it also contains unique ID for each translation rule and lexical entry (ex: NP,2 and N,3).

In our MT system, translation rules contain analysis (parsing), transfer and generation information, and thus the transfer tree output by the system conveys information at all three levels (via unique Rule IDs), even though only the words generated for the TL side are output. For a description of the transfer rule formalism used by our MT system and Rule Refiner, see Font-Llitjós et al. (2004).

4 Rule Refinement Operations

The core component of the rule refinement process is the one that decides what rule refinement operations need to apply to address a specific error (correction). This is also the component that is most sensitive to the set of correction actions currently allowed by the TCTool, for the kinds of rule refinement operations that are applied crucially depend on what types of correction actions were chosen by users.

The two main pieces of information that determine the rule refinement operation that will be applied by the RR are the correction action (taken by the user) and the error information available at refinement time. Given the correction action type (add, edit, delete and change_word_order) and the error and correction words, the RR applies a different refinement algorithm. In general, the Rule Refiner addresses lexical refinements first and then moves on to refinements of the grammar rules, if and only if necessary.
First let’s introduce some notation to describe error and correction information. The RR represents TL sentences as vectors of words from 1 to n (sentence length), indexed from 1 to m (corpus length)
[image: image1.wmf])

,...

,...

(

1

n

i

m

W

W

W

TL

=

 and the corrected sentences (CTL) as follows:

[image: image2.wmf])

,...

,...

'

,...

(

'

1

n

clue

i

m

W

W

W

W

CTL

=

where Wi represents the error, namely the word that needs to be modified, deleted or dragged into a different position by the user in order for the sentence to be correct; and Wi’ represents the correction, namely the user modification of Wi or the word that needs to be added by the user in order for the sentence to be correct.

Wclue, or clue word, represents a word that provides a clue with respect to what triggered the correction, namely the cause of the error. For example, in the case of lack of agreement between a noun and the adjective that modifies it, as in *el coche roja (the red car), Wclue should be instantiated to coche, namely the word that gives us the clue about what the gender agreement feature value of Wi should be, namely masculine (rojo). Wclue can also be a phrase or constituent like a plural subject (eg. *[Juan y Maria] cayó, where the plural is implied by the conjoined NP).

Wclue is not always present and it can be before or after Wi. They can be contiguous or separated by one or more words.
For more information about the theoretical framework of the Rule Refiner, refer to Font-Llitjós et al. (2005a).
The following subsections describe a simplified version of algorithm underlying the Rule Refiner illustrated by a few examples.

4.1 Add Word

When users add a word (by clicking on the [New Word] button on the TCTool interface and then writing the word in the newly created box), there is no error word per se, however the RR can reliably identify a correction word (Wi’). See Figure 3.
[image: image3.jpg]Sentence Translation

John
and
Mary ?‘ mria

fell cayeron

LOL

Figure 3. TCTool snapshot after having created a new word (se).
Having instantiated Wi’ with a word in the CTL vector, the next step is to check if the user added any alignments from the word in the SL sentence to this Wi’, and if so, to retrieve them. Alignment information, however, can only be extracted after later correction actions are processed by the RR, and thus at this point a look ahead in the Action vector is required.

 [image: image4.jpg]([ma P

fell

LLLU

Figure 4. TCTool snapshot after having added the newly created word into the right position (Action 1).

In the John and Mary fell example, when the user adds the word se between María and cayeron (Juan y María se cayeron), there is no alignment information available for Wi’ (Figure 4), and so the algorithm looks ahead in the Action vector trying to find an alignment added to position i. In this case, it finds that se is aligned to fell by the user later on, and thus it extracts the corresponding alignment (4,4). Figure 5.

However, the SL word aligned to Wi’ could also be aligned to other TL words, in this case fell also happens to be aligned to cayeron. And so next, the RR algorithm extracts all the alignments from SL word to other TL words (in this case (4,5)).

 [image: image5.jpg]o (el
mi Pl
Mary maria

fell

Figure 5. TCTool snapshot showing Action 2: Adding manual alignment.
Alignment information is required in order to retrieve the relevant lexical entries and determine the necessary refinements accordingly.

First, the entry for [SLW(Wi’] is sought in the lexicon, if it’s not there, [SLW(OtherTLWord] and [SL(Wi’+OtherTLWord] are looked up.

In our example, [fell(se] and [fell(se cayeron] are not in the lexicon, however [fell(cayeron] is there (V,6).
 At this point, the RR BIFURCATES the lexical entry [fell(cayeron] creating a copy of it (V,11), and REFINES it by replacing the TL side with Wi’ + OtherTLWord (aligned to SL word): [fell(se cayeron]. The resulting refined entry is displayed below:

{V,11}

V::V |: [fell] -> ["se cayeron"]

(;(P:{V,6})
 (X1::Y1)

 ((x0 form) = fall)

 ((x0 actform) = fell)

 ((x0 tense) = past)

 ((y0 agr pers) = 3)

 ((y0 agr num) = pl)
The new lexical entry is added to the Lexicon and the Refined Lexicon is loaded to the transfer engine in order to assess the effect of the rule refinement.

The lattice output by the transfer engine when translating the SL sentence is checked against the CTL sentence as corrected by the user.

If the RR finds that CTL is being generated by the MT system, it stops, otherwise, it proceeds to grammar refinements. For this example, the algorithm described above successfully refined the lexicon and the lattice output by the refined MT system, and so the Rule Refiner would now move on to the next best CI in the Collection ranking.

If the word added (Wi’) is not aligned to any word in the SL sentence, then there is nothing to be done at the lexical level and the algorithm skips to grammar refinements.

The first step is to search the grammar for rules with TL sides that contain the new Word/POS sequence. If the sequence suggested by the user’s refinement is not in the grammar, the RR adds Wi’ in the position indicated by the user to the incorrect rule’s RHS.

For example, given the translation pair you saw the woman − viste la mujer and the user correction of adding the word “a” in front of mujer, the RR will detect that “a” is not aligned to any words in the SL sentence and will proceed to look for the following sequences [“a” NP] and [“a” DET N] in the RHS of all the rules in the grammar. Since such a sequence does not exist, the refiner has three candidate rules for refinement, namely V,4, NP,3 and VP,46: (S,0 (VP,46 (V,4:2 'VISTE')
(“a”

 (NP,3 (DET,2:3 'LA')

 (N,4:4 'MUJER'))))
Adding an “a” in the right position to all three rules ([“viste a”], [“a” NP] and [V “a” NP]) would result into the desired result, and even though from a linguistics perspective the second and third are better options for this example, there will be cases, when adding a specific preposition to the preceding verb is the linguistically motivated thing to do (eg. “preocupado por”).

Therefore, to handle these cases in batch mode (when there is no option for further user interaction), the algorithm will take the first candidate rule first and refine it. If automatic evaluation metrics (Section 6.2) indicate that the overall translation quality decreased, the RR will revert back to the unrefined rule candidate 1 and will pick the next candidate rule from the vector.

In some cases, the desired refinement might be at the POS level, instead of the word level. In order to generalize beyond the word level, Wi has to be in the lexicon (as a translation of a different SL word), so that the RR can extract the POS from the lexical entry.

In order to determine the right level of granularity, however, an implementation of the system with interactive mode as well as Active Learning techniques would be required. Only then could the RR present the user with relevant minimal pairs, which would allow the system to determine the right level of the refinement.
4.2 Edit Word

When users modify a word (Wi) into a related form or sense (Wi’), there are two possible scenarios. The one most favorable to generalization, is that the lexicon already discriminates between these two forms, usually by giving them a different value for the same feature attribute (example: [red-roja] and [red-rojo]). The one with less immediate impact is that the two senses are identically defined in the lexicon, namely they have the same POS and the same feature attributes and values (ex: [women-mujer] and [guitar-guitarra] are both singular feminine nouns in Spanish).

If the lexicon already discriminates between the two lexical entries, the RR extracts the grammar rule for the immediate common parent of Wi and Wclue (as identified by the user or guessed by the system) and adds an agreement constraint with the triggering feature
 between the constituents corresponding to Wi and Wclue.

SL: I see the red car

TL: veo el auto roja

Alignments: ((2,1),(3,2),(4,4),(5,3))

 Action 1: edit (Wi=roja (Wi’=rojo; Wclue=auto)

CTL: veo el auto rojo

Alignments: ((2,1),(3,2),(4,4),(5,3))

Figure 6. Correction Instance for edit action.

For the CI represented in Figure 6 (I see the red car), the user edits roja into rojo (by clicking on the word and changing ‘a’ into ‘o’), and the system finds that the difference (delta set) between the lexical entry for roja and rojo is [agr gen].

At this point, the RR moves to the Grammar Refinement.
[image: image6.jpg]Please edit the word "roja’so that it is correct:
rojo

And, if any, select the cluz word from the drop doven mems 2]

EIE

[Ta select multiple words in the drop dovn bog, hold CTEL ar
click on the word you wish to add]

Figure 7. Edit Word window eliciting for Clue word Information.
Since the user identified “auto” as being the clue word as shown in Figure 7, the RR algorithm can now instantiate what variables do Wi and Wclue correspond to in the relevant rule (NP,8), namely y3 and y2. This is called Rule Variable Instantiation, and can be derived from the NP rule:
{NP,8}

 ;; y1 y2 y3
NP::NP : [DET ADJ N] -> [DET N ADJ]

((X1::Y1) (X2::Y3) (X3::Y2)

 ((x0 det) = x1)

 ((x0 mod) = x2)

 (x0 = x3)

 (y0 = x0)

 (y1 == (y0 det))

 (y3 == (y0 mod))

 (y2 = y0))

Next, the Rule Refiner adds an [agr gen] constraint to rule NP,8 between y2 and y3:

{NP,9}

NP::NP : [DET ADJ N] -> [DET N ADJ]

(;(P:{NP,8})

 (X1::Y1) (X2::Y3) (X3::Y2)

 ((x0 det) = x1)

 ((x0 mod) = x2)

 (x0 = x3)

 (y0 = x0)

 (y1 == (y0 det))

 (y3 == (y0 mod))

 (y2 = y0)

 ((y2 agr gen) = (y3 agr gen)))
Figure 8. Refined Rule with gender agreement constraint between the noun (y2) and the adjective (y3).
However, if the lexicon does not already discriminate between the two lexical entries (Wi and Wi’), the RR postulates a new feature attribute and adds a binary value constraint to each lexical entry, in order to allow the grammar to distinguish between the two senses of the same SL word.

For example, given the sentence Mary plays guitar and its translation as produced by our MT system, *María juega guitarra, the user will edit juega into toca and since these new sense is not listed in the lexicon, the RR will BIFURCATE the original lexical entry [play(juega] and REFINE it by replacing the TL side (as in 4.1. Add above). Since in this case [play(toca] is otherwise an exact copy of [play(juega] (with the same POS and features), the system postulates a new feature (feat_0) to distinguish between the two and adds the following constraints to the lexical entries: [play(toca] ((y0 feat_0) = +) and [play(juega] ((y0 feat_0) = −).

In this particular case, since Wclue is instantiated with guitarra, Rule Variable Instantiation requires to project the words up to the constituents of the immediate common parent rule, namely VP and NP ({VP,2} [VP NP] ([VP NP]):

(S,1 (NP,2 (N,3:1 'MARÍA'))

(VP,2
(VP,1 (V,5:2 'JUEGA'))

(NP,3 (DET,2:3'LA')
 (N,5:4 'GUITARRA')))))

4.3 Delete Word

If a user deletes a word (by dragging it to the trash), it could be that the user really meant to delete this word or that s/he just wanted to modify the incorrect word and thus deleted it and then added a new word with the correct word in it.

In order to detect this, the RR algorithm makes sure that the deleted word (Wi) is not in the lexicon
 and then checks if there were any alignments from it to one or more SL words, and if so, it looks ahead to see if there was any other word in the TL sentence that was aligned to it at a later point in the session. If there is a TL word aligned to the SL word, then the RR algorithm checks if it’s already in the lexicon, and if it isn’t, it adds it.
If Wi’ is in the lexicon, the RR algorithm adds a new lexical entry for the SL word aligned to it with an empty TL side ([SL word (“”]), which results into the MT system not translating the SL word.
4.4 Word Order Change

In order to change the order of the TL words, users can drag and drop words into a different position in the TL sentence.

The Rule Refiner detects which word(s) were moved to a different position and extracts what were their initial (i) and final (i’) positions. The Rule Refiner can only reliably execute refinement operations iff, given a word that has moved (Wi), both the initial and final positions fall inside the scope of one of the rules in the grammar. If a word undergoes a long-distance move and thus is placed at the beginning or the end of the sentence far from its original position, automatic refinements become less reliable.

If the initial and final positions are subsumed by a rule in the grammar, then the RR algorithm can extract the rule that immediately subsumes the constituents in both positions and BIFURCATE it in order to change the constituents on the right hand side of the rule copy.
For example, if the grammar already contains a general NP rule that reverses the order of the adjectives and nouns in Spanish, but is lacking a specific rule for pre-nominal adjectives, given relevant correction feedback, the RR can extract the general NP rule and flip the order of N and ADJ on the RHS (TL side) of the rule. This also requires updating the alignment information as well as affected indices in the value and agreement constraints.

The next step is to further constrain the newly created rule so that it only applies in the right context. Again this can be done in a general way if the lexicon already distinguishes between the lexical entries that are affected by this change and the general cases. A constraint with the appropriate feature attribute is added to the specific rule and a blocking constraint is added to the general rule.

If there is no current feature attribute to distinguish between the special case and the general case, the RR will postulate a new binary feature and add a value constraint to the appropriate lexical entries as well as to the specific and general grammar rules.

To see a concrete example of this (Gaudi was a great artist (*Gaudí era un artista grande (Gaudí era un gran artista), see Font-Llitjós et al. (2005a).
5 Generalization Power

The main difference between this approach and mere post-editing is that the resulting refinements affect not only the translation instances corrected by the user, but also other similar sentences where the same error would manifest. After the refinements described in Section 4 have been applied to the grammar and lexicon, sentences like “I worry about the country” and “the yellow house is mine” will now correctly be translated as “yo me preocupo por el país” (instead of “yo preocupo por el país”) and “la casa amarilla es mía” (instead of “la casa amarillo es mía”), to name just two examples.

6 Automatic Evaluation of Refined Output

The ultimate goal of the refinement algorithm is to improve MT output accuracy and quality. Below, we enumerate a few methods to measure the effects of the refinement process just described.

6.1 Lattice Precision

After refinement takes place, the first question we want the Rule Refiner to answer is whether the translation proposed by the user is now being generated by the refined MT system.

If it is, the RR achieved its main goal of successfully extending the lexicon and grammar in order to produce a correct translation that was not being produced by the system before. This is can be easily tested by checking the final lattice output of the refined MT system and looking for an exact match.

Precision:
[image: image7.wmf]ce

TLsInLatti

fp

tp

tp

#

}

1

,

0

{

=

+

Where tp stands for true positive, namely whether the translation as corrected by the user is in the lattice (1) or not (0), and fp stands for false positives, i.e. all the alternative translations produced by the system that do not exactly match with the reference translation provided by the user.

This is clearly a harsh measure of precision, since a sentence can have multiple correct translations (which could be manually labeled as false negatives). However, in order to carry out this evaluation automatically, the definition of precision can not consider as valid any alternative correct translation that does not exactly match with the user’s translation.

This measure of precision also addresses the secondary goal of the Rule Refiner not to increase grammar ambiguity beyond what is reasonable. Since the larger the size of the lattice, the lower the precision. If the lattice size increments significantly after refinement, the number of false positives (and thus the denominator of the formula above) will increase proportionally, indicating that refinements have introduced ambiguity.

A specific case of ambiguity reduction that the RR can target is to prevent the refined system from generating the incorrect translation sentence corrected by the user (a real fp). Hence, in addition to looking at precision, the RR also specifically checks for the presence or absence of the incorrect translation in the final lattice.

If it is not there, this indicates that the refinement process efficiently made the grammar tighter preventing the generation of the incorrect TL sentence.

6.2 Standard MT Evaluation Metrics

Lattice precision does not allow for approximations, however when the refined MT output does not exactly match the reference translation provided by the user, we would still like to automatically detect whether the refinements made by the system have a positive or a negative impact on translation quality. This requires identifying sensible evaluation metrics.
Initial experiments have shown that both modified BLEU and METEOR [Lavie et al., 2004] can automatically distinguish between raw MT output and corrected MT output, even for a small set of sentences. Therefore, in addition to lattice precision, we plan to incorporate more standard MT evaluation metrics that can automatically calculate the ngram overlap between the output generated by the refined MT system and the user-corrected translation, namely the reference translation.

For each new translation produced by the refined MT system (hypothesis1), we would like the Rule Refiner to obtain the modified BLUE, NIST and METEOR scores and compare them with the initial translation produced by the original MT system (hypothesis0).

Standard MT evaluation metrics will also be used to assess refinement impact on a regression and test sets.
By adding a final evaluation component to the refining process, all refinements conducted by the Rule Refiner can immediately be evaluated with specific scores that indicate whether the new translation produced by the refined system is better or worse
 than the previous incorrect translation produced by the MT system before refinement took place.

7 Conclusions and Future Work

The main goal of the Rule Refiner is to extend the lexicon and the grammar to account for exceptions not originally encoded in the translation rules. A secondary goal is to make overly general rules more specific to reduce grammar ambiguity.

Besides increasing lexical coverage, the main types of errors most efficiently corrected by the RR are syntactic in nature. The reason for this is that the generalization power of the RR is greatest when refinements involve existing feature constraints. Since our lexicon contains purely morpho-syntactic features (such as gender, number and person), grammar refinements affecting those features will generalize well on unseen data.

Semantic errors, however, usually require the system to postulate a new binary feature to distinguish between the two senses of the word.
 And since the RR cannot populate other lexical entries with this newly hypothesized feature automatically, in the absence of a generalization mechanism, this process represents just a first step towards semantic correction.

The Rule Refinement process is not invariable. It depends on the order in which refinement operations are applied. In batch mode, the RR module can rank Correction Instances in such a way as to maximize translation accuracy. Suppose that the first CI triggers a bifurcation of a grammar rule. After that, any CI that affects the same rule that got bifurcated, will only modify the original rule (R) and not the copy (R’). However, if we can detect such rule dependencies before the refinement process, then we can try to find an optimal ranking, given the current set of CIs, which should result in higher translation accuracy, as measured on a test set.

An interesting future direction is enhancing the Rule Refinement system to allow for further user interaction. In an interactive mode, the system can use Active Learning to produce minimal pairs to further investigate which refinement operations are more robust, treating the bilingual speaker as an oracle. We hope to explore the space between batch mode and a fully interactive system to discover the optimal setting which allows the system to only ask the user for further interaction when it cannot determine the appropriate refinement operation or when it would be impossible to correctly refine the grammar and the lexicon automatically.
8 Acknowledgements

We would like to thank Jaime Carbonell and Alon Lavie for fruitful discussion about the theoretical aspects of this work, and Stephan Vogel for implementation discussion and for his support. This research was funded in part by NSF grant number IIS-0121-631.

References

Alon Lavie, Kenji Sagae and Shyamsundar Jayaraman. 2004. The Significance of Recall in Automatic Metrics for MT Evaluation. AMTA, Washington, DC.

Ariadna Font Llitjós, Jaime Carbonell and Alon Lavie. 2005a. A Framework for Interactive and Automatic Refinement of Transfer-based Machine Translation. EAMT, Budapest, Hungary.

Ariadna Font Llitjós, Roberto Aranovich and Lori Levin 2005b. Building Machine translation systems for indigenous languages. Second Conference on the Indigenous Languages of Latin America (CILLA II), Texas, USA.
Ariadna Font Llitjós, Katharina Probst and Jaime Carbonell. 2004. Error Analysis of Two Types of Grammar for the Purpose of Automatic Rule Refinement. AMTA, Washington, USA.

 Ariadna Font Llitjós and Jaime Carbonell. 2004. The Translation Correction Tool: English-Spanish user studies. LREC, Lisbon, Portugal.

Sitthaa Phaholphinyo, Teerapong Modhiran, Nattapol Kritsuthikul and Thepchai Supnithi. 2005. A Practical of Memory-based Approach for Improving Accuracy of MT. MT Summit X. Phuket Island, Thailand.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. 1996. Introduction to Algorithms. The MIT Press.
� For a more detailed discussion of related work, see Font Llitjós et al. (2005a)

� Equivalent CIs are CIs that in addition to having the same SL-TL and Corrected TL, once the spurious loops have been detected and removed, they also have the same set of correction actions affecting the same words.

� Currently, the implementation of error complexity does not take alignment correction actions into account.

� The triggering feature is the attribute name for which the two lexical entries have a different value.

� roja is the feminine form of red in Spanish and rojo is the masculine form (auto rojo vs casa roja).

� Frequently because it is an untranslated word, for which our system outputs the original source language word

� As in closer to or farther from the translation proposed by the user.

� This is because our lexicon is not annotated with semantic features such as animate, instrument, etc.

_1208032162.unknown

_1208184126.unknown

_1173534920.unknown

