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Abstract

Many speakers of minority languages lack the resources to develop machine translation (MT) systems for their language. These speakers cannot afford the human expertise necessary to build a traditional hand-written MT system, nor do they possess the large bilingual text corpora necessary for automatic training of modern corpus-based machine translation systems. Our projects highlight two underutilized means to obtain low-cost MT for minority languages. First, natural language structure drives our machine learning algorithms. Second, bilingual speakers with minimal linguistic training guide key points of our algorithms. We are building experimental systems for multiple Western Hem​i​sphere languages.

Introduction
Speakers of minority languages could benefit from fluent machine translation (MT) between their native tongue and the dominant language of their region. Reliable machine translation could facilitate communication with government leaders, foster economic growth, and aid bilingual education programs, allowing minority speakers to retain their language, but still participate in the larger community.
Developing an MT system for any language pair is expensive. To build a traditional MT system, computational linguists devote years to build a system of translation rules. Modern corpus based MT systems replace human linguistic knowledge with large text corpora—on the order of millions of translated sentences. These non-trivial requirements have largely restricted machine translation to the dominant languages of first world nations. 
To lower the barriers surrounding MT system creation, we must reduce the time and resources needed to develop MT for new language pairs. This paper discusses two underutilized techniques which allow our projects, Avenue and follow-on Letras, to minimize the resource cost of rapid MT system development. First, we incorporate linguistic structure into our MT knowledge induction algorithms. Second, we strategically employ minimally trained bilingual informants during system creation.
Minor Languages
The Avenue project has developed prototype machine translation systems for several minor languages from the Americas. We have worked most extensively with Mapudungun, an indigenous language spoken by more than 900,000 people in central Chile and adjacent Argentina. Our project has produced two prototype Mapudungun-Spanish MT systems: an example-based system and a rule-based system. Successful development of these Ma​pudungun MT systems required a careful division of labor between a team of Mapudungun experts located in Temuco, Chile, and a team of computational linguists in Pittsburgh, PA, USA (Font Llitjós et al., 2005a). Along the way to building an MT system for Mapudungun we also created a morphological analyzer and a spelling checker for this language (Monson et al., 2004).
We have worked less extensively with Quechua, a language spoken by several million people in and around Peru and Bolivia. We have built a prototype Quechua to Spanish rule-based MT system. Currently we are working with the Alaska Native Language Center to build an MT system for Inupiaq the most northern indigenous language of Alaska. And we are collaborating with the Universidade de São Paulo to develop an MT system for indigenous languages of Brazil.
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Structured Learning with Limited      Human Intervention 
Natural language has complex structure. Words combine to form phrases and sentences, while words themselves are composed of yet smaller units of meaning, morphemes. Hand-built machine translation systems laboriously encode the complex structure of natural language into computers. State-of-the-art corpus based MT systems largely ignore the structure of natural language, treating translation instead as merely a string transformation. The price of corpus based MT’s cavalier approach to natural language structure is the large bilingual corpus needed for training such a system. Our approach instead seeks a middle ground. We utilize the structure of natural language to automatically induce MT systems, at times with deliberate input from bilingual informants.
Morphology

The syntactic-transfer methodology which forms the core of our MT system requires that source words first be analyzed into constituent morphemes. Just as machine translation systems are not available for most minority languages, morphological analysis systems have not been developed for these languages either. For our Ma​pu​dun​gun and Quechua MT systems we hand built morphological analyzers. We are currently developing a language independent morphological analysis system that can learn to segment the word forms of a new language by examining a moderate sized monolingual text corpus of that language. 
Our morphology learning system exploits the inherent organizational structure of natural language morphology: the paradigm (Stump, 2001). A morphological paradigm is a set of mutually exclusive cells. Each word form of a language my realize several paradigms, and for each realized paradigm exactly one cell is filled. Consider Mapudungun. Mapudungun morphology is usually described as a slot system with as many as 35 slots (e.g. Smeets, 1989). Each slot is a paradigm, and either the presence or absence of a morpheme in any given slot fills a cell of the paradigm of that slot. Table 1 organizes the trailing paradigms of Mapudungun in slot order with the suffixes that can fill the cells of each paradigm.
Because our unsupervised morphology induction system relies on the paradigm structure of morphology we christened our system ParaMor. ParaMor discovers the paradigm system of a new language by comparing surface word forms found in a corpus. Most word forms contain no non-trivial substrings in common. ParaMor tallies wordforms which do possess substrings in common on the premise that shared substrings may be stems or morphemes, while the portions of the wordforms which differ may be morphemes filling mutually exclusive cells of a paradigm. 
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ParaMor employs a three stage algorithm to discover the paradigms of a language. In the first stage we greedily and aggressively search for sets of contrastive strings. Many of the initially selected set of contrastive strings do not represent true paradigms. Of those that do represent paradigms most capture only a portion of a complete paradigm. In the second stage we merge candidate paradigm pieces into larger groups covering more of the affixes in a paradigm. In the third step we filter out the poorer candidates. ParaMor removes candidate paradigms which cover only a few wordforms and which were not merged to form larger sets of contrasting strings. ParaMor also removes candidate paradigm clusters which are likely to be incorrect segmentations of the source words. The clusters of candidate paradigms which remain are matched against words we wish to segment. If an affix belonging to a cluster matches a substring of a word, and if we can substitute in a different affix from that cluster to form a new word that also occurred in the corpus, then we segment the original word at that location. 
Recently ParaMor placed competitively in a competition pitting unsupervised morphology induction algorithms head to head. Entrants to Morpho Challenge 2007 (Kurimo, 2007) segmented wordforms from up to four languages and compared their analyses to hand compiled morphological analyses. We competed in the English and the German tracks. In English ParaMor bested a state-of-the-art unsupervised morphology induction algorithm which served as a baseline, Morfessor (Creutz, 2006), placing third among all submitted algorithms. In German a system combining the output of ParaMor with output from Morfessor tied for first place. For additional details on ParaMor’s algorithms and further analysis of ParaMor’s performance in Morpho Challenge 2007 please see Monson et al. (2007a; 2007b). 
Syntax

Just as paradigms organize morphemes into words, syntax forms sentences out of words. Our projects leverage syntactic structure to automatically learn a machine translation system. To fully advantage ourselves of syntactic structure, our MT system is a rule-based syntactic transfer system. An example of the type of syntactic transfer rule our MT engine can interpret is given in Figure 1. Successful linguistic theories such as Lexical Functional Grammar (LFG) and Head-Driven Phrase Structure Grammar (HPSG) treat syntax formally as a context free grammar decorated with sets of feature value pairs. Our machine translation formalism follows suit. Both the source language and the target language in our MT system are modeled with context free rewrite rules and associated feature structures. Each syntactic transfer rule in our formalism specifies how source language constituents reorder and relabel to become target language constituents. Additionally, each rule unifies morphosyntactic features on and between the source and target language context free structures.
For minor languages there is often little if any machine readable text data from which to train an MT system. And human translation is time consuming and expensive. With our syntactic transfer formalism we maximize the usefulness of the relatively few translation examples that a bilingual informant can produce. We have designed a corpus containing sentences targeted to elicit common syntactic structure (Alvarez et al., 2005; Probst et al. 2001). This elicitation corpus contains pairs of sentences differing in a single feature such as subject number. When these minimally different sentences are translated, any difference in the translation is likely marking the single differing feature.
The targeted elicitation corpus, in combination with the syntactic nature of our MT rules, facilitates automatic induction of translation rules. We have developed a multistage algorithm to induce transfer rules that will generalize to translate unseen source language sentences. The first stage is seed generation, during which we produce seed rules that transfer a sequence of parts of speech in the source language to a sequence of parts of speech in the target language. The second phase generalizes from the seed rules hierarchical context free structure. This second phase moves from a part of speech sequence to a constituent phrase structure more closely mirroring traditional linguistic theory. The third phase imposes constraints on the learned context free rules by placing feature constraints on the rules. A detailed description of the learning algorithm appears in Probst et al. (2003)
. 
To develop our syntactic learning algorithms we have applied our syntactic learning algorithm to Hebrew and Hindi. Since both of these are languages with millions of speakers, we artificially restricted the training data to vet our algorithms. Details of our experiments are reported in Lavie et al. (2004 and 2003). We are currently expanding our basic syntactic learning algorithms—focusing on augmenting our transfer rules with robust statistical transfer methods. IS THIS TRUE.
Syntactic Refinement 

Once we have an initial set of syntactic rules, either manually hand-crafted or automatically learned, our MT approach applies a mechanism to automatically expand and improve the original grammar and lexicon, guided by bilingual speaker feedback. This section will illustrate our syntactic refinement module with refinements to a hand-written Mapudungun-Spanish grammar discussed in Font Llitjós et al. (2005a) and Aranovich (2007).
Bilingual speakers who are not linguists or MT experts are often the only source of knowledge readily available in resource-poor contexts. We have designed and implemented a user-friendly online graphical user interface called the Translation Correction Tool (TCTool), shown in Figure 2. The TCTool allows non-experts to detect and remediate errors in MT output. The tool graphically presents the source language sentence and a target language automatic translation that needs corrections to become an acceptable translation of the input. For the Mapudungun sentence: pu püchükeche awkantuy kiñe awkantun (children played a game), a prototype hand-written translation grammar for our MT system outputs the Spanish translation: *niños jugaron un juego (top snapshot in Figure 2). To make this translation acceptable in Spanish, a bilingual speaker clicked on the [New Word] button on the top right corner of the TCTool and typed in the missing determiner (los). The bilingual speaker then dragged the newly inserted word los into the right position in the translation, namely at the beginning of the sentence, as shown in the bottom snapshot of Figure 2. The resulting corrected translation is thus: los niños jugaron un juego.

Previous research shows that non-expert bilingual speakers can reliably correct MT errors 90% of the time (Font Llitjós and Carbonell, 2003). The TCTool outputs correction instances, such as that shown in Figure 3. Correction instances are fed to the next stage of syntactic refinement, an automatic rule refiner (ARR). The ARR modifies the original grammar to account for each correction instance. The Automatic Rule ARR can automatically add missing lexical entries, perform structural modifications of existing grammar rules, and fix incomplete or incorrect rules that applied during the generation of MT output.
The steps within the ARR are first, the ARR parses and stores Correction Instances for specific translation pairs as provided by several bilingual speakers (Font Llitjós and Ridmann, 2007). Next, it proceeds to do blame assignment based on the translation tree produced by the MT system. At this stage, the system retrieves the error-causing rules and lexical entries and it proposes specific refinement operations. Continuing our example from Figure 2, the ARR will determine that a noun phrase rule (NP,5) has to be refined so that the grammar can insert a determiner in front of an NP on the Spanish side. The update to rule (NP,5) is explicitly given in Figure 4. This grammar refinement generalizes to all definite NPs that are plural masculine. Given other corrected examples (las NP, el NP, la NP), the ARR would initially add separate specific grammar rules for all of the different number and gender combinations. In future work we intend to merge separate specific rules, here producing a single rule handling all determiner-NP sequences. For a detailed description of the automatic rule refinement approach, see (Font Llitjós et al. 2005b).
Initial experiments with our Mapudungun-Spanish system allowed us to show the generality of the automatic rule refinement approach, which was initially developed and tested on English-Spanish. In terms of translating between Mapu​dun​gun and Spanish, the most important divergences are morphosyntactic in nature, where a morphosyntactic divergence is a systematic divergence in the degree of morphological synthesis (Comrie, 1989). Roberto Aranovich (2007) focuses on describing such divergences between Mapudungun and Spanish and how they are handled in our Mapudungun-Spanish MT system.
 Experiments with our English-Spanish MT system have shown statistically significant improvements on unseen data, as measured by standard evaluation metrics (Font Llitjós et al. 2007b). 
Conclusions

With the paired aids of linguistic structure and strategic use of bilingual informants we hope to produce machine translation for minor languages; overcoming the significant challenges of resource scarcity that minor languages pose.
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	(X1 lexicalaspect)	=c	(X2 myVerbLexAsp)


	(X2 voice)	=	*UNDEFINED*


	(X1 morph)	=c	deadv


	(X0 morph)	=	(X1 morph)


	(X0 person)	=	(X2 person)


	(X0 number)	=	(X2 number)


	(X0 mood)	=	(X2 mood)


	(X0 tense)	=	(X2 tense)


	(X0 reportative)	=	(X2 reportative)


	(X0 negation)	=	(X2 negation)


	(X0 subcat)	=	(X2 subcat)


	(Y0 person)	=	(X0 person)


	(Y0 number)	=	(X0 number)


	(Y0 mood)	=	(X0 mood)


	(Y0 tense)	=	(X0 tense)


	(Y0 person)	=	(Y1 person)


	(Y0 number)	=	(Y1 number)


	(Y0 mood)	=	(Y1 mood)


	(Y0 tense)	=	(Y1 tense)


	(Y1 form)	=c	(Y2 AUX form)








 �
Locative�
Aspect�
Habitual�
Possible�
Reportative�
Polarity   and Mood�
Tense�
Object Agreement�
Subject Agreement and Mood�
�
Stem�
…�
-pa-�
-tu-�
-ke-�
-pe-�
-(ü)rke-�
-la-�
-a-�
-fi-�
-(ü)n�
�
�
�
�
�
�
�
�
�
�
�
-li�
�
�
�
�
�
�
�
�
-ki-�
-fu-�
�
�
�
�
�
-pu-�
-ka-�
�
�
�
�
�
�
-chi�
�
�
�
�
�
-Ø-�
-Ø-�
-Ø-�
-nu-�
-afu-�
-Ø-�
-yu�
�
�
�
-Ø-�
-Ø-�
�
�
�
�
�
�
-liu�
�
�
�
�
�
�
�
�
-Ø-�
-Ø-�
�
�
�
�
�
�
�
�
�
�
�
�
�
…�
�






Table 1: A portion of the verbal morphology of Mapudungun. Each column headed by one or more morphosyntactic feature categories is a paradigm. Each paradigm consists of at least two cells, the boxes beneath the feature heading. Each cell marks a verb for a specific value of the feature category heading that paradigm. For example, to mark a Mapudungun verb for the locative feature ‘nearby’, a speaker fills in the top cell of the locative verbal paradigm by marking the verb with the morpheme ‘-pa-’. In Mapudungun, paradigms always occur in the order given in this table. Cross-linguistically, a strictly ordered paradigm system is common, and is traditionally referred to as slot morphology.  This figure is adapted from Smeets (1989) with personal experience.





Figure 1: A syntactic transfer rule written for the Avenue machine translation engine. This rule translates Mapudungun deadjectival verbs into Spanish adverbial constructions. After morphological analysis, this rule could translate the Mapudungun single word sentence kümelen into the Spanish equivalent estoy bien meaning I'm fine.
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Figure 4: Automatic refinement adds plural determiner los to NP,5 (top), yielding the refined rule NP,20 (bottom).
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Figure 3: Correction Instance extracted from TCTool log file corresponding to user interaction shown in Figure 3.








Figure 2: Snapshots of the Translation Correction Tool, before and in after correcting an automatic translation.
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SL: pu püchükeche awkantu y kiñe awkantun


TL: niños jugaron un juego 	    


AL: ((1,1),(2,1)),(3,2),(4,2),(5,3),(6,4))


	Action 1: add (W1=los)





C_TL: los niños jugaron un juego    


CAL: ((1,2),(2,2)),(3,3),(4,3),(5,4),(6,5))











�Might want to relabel the Xs and Ys so that they correspond to the syntactic components (VBar, V, etc.) for clarity


�I’d probably cite Kathrin’s thesis instead (Probst 2005).


�In case we have not said this anywhere before, and have enough space…





