
Syntax-driven Learning of Sub-sentential Translation Equivalents and
Translation Rules from Parsed Parallel Sentences

Abstract

We describe a multi-step process for automat-
ically learning reliable sub-sentential syntac-
tic phrases that are translation equivalents of
each other and syntactic translation rules be-
tween two languages. The input to the process
is a corpus of parallel sentences (which are as-
sumed to be translation equivalents). The sen-
tence pairs are assumed to be annotated with
phrase-structure parse trees, and with word
alignments representing translation equiva-
lence at the word-level between the sentences.
Our method consists of three steps. In the first
step, we apply a newly developed algorithm
for aligning parse-tree nodes between the two
parallel trees. Parse trees nodes are aligned
if their constituent yields are likely transla-
tion equivalents of each other. In the second
step, we extract all aligned sub-sentence syn-
tactic constituents from the parallel sentences,
and create a syntax-based phrase-table. In the
third and final step, we treat the node align-
ments as tree decomposition points and ex-
tract from the corpus all possible synchronous
parallel subtrees. The synchronous parallel
subtrees are also converted into synchronous
context-free rules. The extracted syntax-based
phrase tables and translation rules can then
be used as resources for constructing broad-
coverage syntax-based Machine Translation
systems between the two languages. We apply
the approach and evaluate it on both a small
manually word-aligned Chinese-English par-
allel treebank, and on large scale automat-
ically derived Chinese-English parallel cor-
pora.

1 Introduction

Alon
This section is not yet written down.This section

is not yet written down.This section is not yet writ-
ten down.This section is not yet written down.This
section is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not yet
written down.This section is not yet written down.

2 Related Work

(Alon+all)

3 PFA Algorithm for Node Aligment

A phrase table typically used for Machine Transla-
tion, such as one built by the Moses(?) system, is a
list of phrases on the source side, with their equiv-
alent phrases on the target side, and sets of scores
that tells how good the phrases are. What these ta-
bles do not tell us is whether a particular phrase is a
noun-phrase, a verb-phrase, or something else. This
information is very essential for using a phrase ta-
ble in our Statistical Transfer-based MT approach.
We thus wanted to build a phrase table that tells us
the category of each phrase, both on the source side,
and on the target side. We came up with the PFA Al-
gorithm that uses a parsed parallel corpus and infor-
mation about word alignments to build such a phrase
table.



3.1 Objectives of the Algorithm

Given a pair of parallel sentences, and their corre-
sponding parse trees, our goal is to extract contigu-
ous pieces of text that are translation equivalents of
each other. Also, we require that these “phrases”
should belong to constituent structures in their parse
trees. In short, we are looking to find a pair of nodes
between the source and target trees whose yields
carry the same meaning.

For the purpose of extracting constituent struc-
tures with like meaning, we use the word-alignment
information of the underlying sentences. The as-
sumption here is that if two words are aligned to
each other, they carry the same meaning. In prac-
tice however, we know that automatically obtained
word alignments are rather noisy. Hence, the algo-
rithm should be robust to deal with such noisy word
alignments.

3.2 Related Work

Aligning nodes in parallel trees and extraction of
phrasal lexicons has been done by Samuelsson et
al.(?). Their approach involves manual alignment of
the nodes in the tree. The manual approach is very
well suited for generating very reliable treebanks,
however automatic methods of aligning nodes and
extracting lexicons are useful in accumulating re-
sources from large parallel data.

Tinsley et al.(?) have used statistical lexicons to
align nodes between parallel trees. In our approach,
we use word alignment information, which is more
reliable than just a statistical lexicon(?).

Groves et al.(?) have suggested a method of
aligning nodes between parallel trees automatically,
based on word alignments. Along with the word
alignment information, they also use information
of the labels of nodes in the trees, and the gen-
eral structure of the tree. Our approach is different
in the sense that we only look at the word align-
ments, thereby making the system robust to using
any parser, even different parsers on different lan-
guage pairs. However, in general terms, this ap-
proach is the closest to our approach.

3.3 Wellformedness constraints

The PFA node alignment algorithm produces as out-
put node-pairs (Si, Tj). Each of this pair tells us

which node in the source tree was aligned to which
node in the target tree. The alignments are required
to satisfy these wellformedness criteria:

• If a node Si is linked to a node Tj , then any
node in the sub-tree of node Si can be linked
only to nodes in the subtree of node Tj .

• If a node Si is linked to a node Tj , then any
node that dominates the node Si can be linked
only to nodes that dominate the node Tj .

• If a node Si is linked to a node Tj , then the fol-
lowing must hold good for the word-alignments
of the underlying sentences:

– Every word in the yield of the node Si

should either be aligned to one or more
words in the yield of the node Tj , or it
should be unaligned.

– Every word in the yield of the node Tj

should either be aligned to one or more
words in the yield of the node Si, or it
should be unaligned.

– There should be at least one alignment be-
tween the yields of nodes Si and Tj . Thus,
the words in the yields can not all be un-
aligned.

3.4 Unaligned Words and Contiguity

If we consider a phrase in one language, and its
translation equivalent in another language, we often
find that there are a few unaligned words. One com-
mon example is: some languages use determiners,
while others don’t. In cases like this, we could have
a pair of constituents between parallel trees that con-
tain unaligned words, but still carry the same mean-
ing. The PFA node-alignment algorithm allows for
such “extra words” to be matched.

Different languages have different word orders. In
English, an adjective always comes before a noun,
while in French, in most cases, the adjective follows
its noun. The node-alignment algorithm should be
robust to different word orders. As long as one piece
of contiguous text dominated by a node carries the
same meaning as the yield of a node in the parallel
tree, the two nodes must be aligned. The PFA algo-
rithm satisfies this property.



3.5 Mathematics and Meaning

Assuming that natural language is infinite, there
could be infinite sentences, and thus infinite possi-
ble ‘meanings’ conveyed in text. In our approach,
we have mapped all these meanings onto the set of
natural numbers. One number represents one mean-
ing.

Number theory classifies the set of natural num-
bers into {unity, primes, and composites}. Because
each number carries a meaning, we have the follow-
ing:

1. Prime Numbers: They represent a unique
meaning. In a particular context, the word
‘house’ could mean just one thing. That mean-
ing would be captured by a prime number.

2. Composite Numbers: They can be written as
the product of prime numbers. A compos-
ite number represents the composite meaning
of the meaning of its prime factors. Thus, a
number that represents the phrase ‘blue house’
would be represented by a number that is a
product of the numbers assigned to ‘blue’ and
to ‘house’.

3. Unity: A number does not change when mul-
tiplied with unity. Hence, the number 1 repre-
sents a “don’t care” meaning.

In a parse tree, the yields of all nodes are different
texts. Thus, each node can be supposed to carry a
different meaning. Since we can represent meaning
as a number, we can store that number in the node.

3.6 Description of the PFA Algorithm

The PFA algorithm uses the concept of ‘composite
meaning as prime factorization’, and hence the name
(Prime Factorization and Alignments). The princi-
pal idea of the algorithm can be summarized in three
points:

1. If we have a node in the tree P → C1C2 . . . Ck,
then we assume that the meaning captured by
the node P is the composite meaning that is
captured by its children. Thus, the value that
node P would get would be the product of val-
ues of its child nodes.

2. Leaf nodes can be assumed to carry unique
meaning, hence they would be assigned distinct
prime numbers, based on the word stored at the
leaf.

3. Consider that a node Si in the source tree gets
the same value as the node Tj in the target tree.
We have defined that every number carries a
distinct meaning of its own. Since the values
are same, the yields of the two nodes must be
translation equivalents of each other, and hence
the nodes must be aligned. (Sometimes, the
parse trees contain unit productions. In that
case, the values of both the nodes in that pro-
duction come out to be the same, and for pur-
poses of alignment, we break the tie by taking
the node closer to the bottom of the tree.)

The PFA algorithm thus assigns values to the leaf
nodes, propogates the values up the tree, and fi-
nally compares the values across trees to align the
nodes. To assign the values to the leaf nodes, we
take the help of word-alignment information. Ear-
lier, we stated the assumption that two aligned words
are said to carry the same meaning. Thus, those two
words would be represented by the same prime num-
ber. In general, we would use as many distinct prime
numbers as the number of alignments. Leaves repre-
senting aligned words would be assigned the prime
number corresponding to that alignment. There are
two exceptions to consider:

1. Leaf nodes corresponding to unaligned words
are assigned the value 1, and these words are
considered to be “don’t cares” of meaning.

2. There could be one-to-many word alignments.
Each of these alignments is considered to carry
the same meaning, and is assigned the same
value. However, if a word has two alignments,
the alignment is simply considered to be taken
twice, and thus the corresponding leaf node
would store the square of the alignment’s prime
value.

Algorithm 1 describes a way to implement the
PFA strategy. We implemented the algorithm in
C++, and one small issue that came up when deal-
ing with products of prime numbers is that for large
trees, the value of the root node becomes a large



product, and can no longer be stored as a built-in C
data type. Using the GMP library solved this prob-
lem.

Algorithm 1 PFA Algorithm for Node-Alignment
Require: Source-Tree, Target-Tree,

Word-Alignments

1: for all nodes n in source, target trees do
2: Value(n)← 1
3: end for
4: Initialize Prime-number generator with 2.
5: for all A in Word-Alignments do
6: Value(A)← next prime number.
7: for all word w that alignment A refers to do
8: L← Leaf node corresponding to w.
9: Value(L)← Value(L) ∗ Value(A).

10: end for
11: end for
12: for all node n in source tree, traversed bottom

up do
13: Value(n)←

∏
Value(Child(n)).

14: end for
15: for all node n in target tree, traversed bottom up

do
16: Value(n)←

∏
Value(Child(n)).

17: end for
18: Find unaligned nodes n in source tree and m

in target tree with matching values, but not the
value 1. If multiple nodes in the same tree have
the same value, choose the node closer to the
bottom of the tree. Align the node n to node m.
Repeat this step.

It can be verified that the PFA algorithm satis-
fies the wellformedness constraints. Also, since the
product of numbers is commutative, the algorithm
is robust to differing word orders within parallel
constituent structures. Since unaligned words act
as don’t cares, the system allows for extra words
(such as determiners) to be included in the con-
stituent phrase, thereby finding the closest transla-
tion equivalence between the given sentences. We
said that in case of a tie between values of two nodes,
we choose the node closer to the bottom. Earlier,
we claimed that this happens in case of unit pro-
ductions. However, this could also happen if there
was a set of unaligned words attached directly to the

top-node, which is why its value was the same as
the bottom-node. In that case, we do not align the
top node, thereby making the system robust against
noisy alignments.

The PFA algorithm run on a sample Chinese-
English parallel sentence is shown in Figure 1. The
value of each node as shown as a part of its label.
The aligned nodes are marked by shapes. A triangle
aligns to a triangle, and squares to squares.

4 Syntax-based Sub-sentential Phrase
Extraction

The alignment of nodes as described in the previous
section allows us to build a comprehensive phrasal
lexicon out of the parallel corpus. As previously de-
scribed, nodes are aligned only if the meaning that
the carry under them in the trees is nearly identi-
cal. Clearly, if two nodes S and T are aligned to
each other, the yield y1 of node S must be same in
meaning as the yield y2 of node T . We could add
an entry to our lexicon, where y1 maps onto y2. The
syntactic category of the source-phrase would be the
label on the node S, and similarly the category of the
target-phrase would be the label on the node T . By
considering all aligned pairs generated from a paral-
lel corpus, we can extract many such entries for our
lexicon.

The set of phrases extracted from the sentence
from Figure 1 is shown in Figure 2.

Figure 2: Phrases extracted from Aligned Nodes

The approach of building such a phrase table from
large corpora of data is quite similar to the phrase ta-
bles traditionally built for phrase-based SMT meth-
ods. There, one starts with parallel corpus, aligns the
words, extracts the phrase table and assigns scores to
each phrase. In our approach too, we start with a par-
allel corpus, align the words, and then use the parse



Figure 1: Node-Aligned parallel sentences

trees to extract a syntax based phrase table. In our
initial experiments for using this phrase table in the
Statistical Transfer-based decoder, we have naı̈vely
used the relative frequency of the phrases as a scor-
ing function. We are considering using more soph-
esticated scoring strategies in our upcoming experi-
ments.

5 Evaluation of the PFA algorithm

THIS SECTION IS UNDER CONSTRUCTION!
The PFA algorithm uses only the parse trees and

word alignment information. We ran the algorithm
over a corpus of about 3000 sentences from the
Chinese-English Treebank. For this set of parallel
sentences, we have manually verified parse trees as
well as manually generated word alignment infor-
mation. We generated node alignments for the cor-
pus, and used these alignments to extract a phrasal
lexicon. Chinese-English bilingual speakers veri-
fied the lexicon, and attested that the entries are ex-
tremely precise.

The PFA algorithm does not require that the word
alignments be highly accurate, or manually gener-
ated. This allows us to run the algorithm on large
corpora that are automatically parsed and automati-
cally word aligned. In order to study the effect of
noisy alignments on the phrasal lexicon extracted

from the output of PFA algorithm, we conducted
tests on the Treebank corpus mentioned above.

The node alignments extracted from “Manually
Parsed, Manually Aligned” Treebank corpus were
taken as a gold standard for comparison, especially
since bilingual speakers had attested about its preci-
sion. This gold standard was compared to the node
alignments extracted from “Automatically Parsed’
Automatically Aligned” version of the corpus. The
Stanford parser(?) was used to parse the Chinese
and English text. GIZA was used to align the words
in both the Chinese-English and English-Chinese di-
rections. Different strategies of combining Viterbi
alignments were used, and a set of node-alignments
was generated from each of these alignments and the
parse trees. We evaluated the precision and recall
of the entries in these node-alignments against the
gold standard. The results of the tests are summa-
rized in Table 1. We observe that for purposes of
node-alignment, the sym2-algorithm for combining
bidirectional alignments (from the Thot toolkit(?))
performed best.

6 Synchronous Sub-tree and CFG Rule
Extraction

Synchronous reordering rules have been used to im-
prove Machine Translation quality. Recent success



Viterbi Combination Strategy Precision Recall
Intersection 0.6278 0.5525

Union 0.8054 0.2778
Sym1 0.7182 0.4525
Sym2 0.7170 0.4602

Grow-Diag-Final 0.4040 0.2500

Table 1: Evaluation of Node Alignment on Treebank Cor-
pus

of syntactic and hierarchical machine translation
systems have inspired the research in the learning
of transfer rules automatically from corpus. While
on one end we have grammar formalisms like ITG
that enforce a particular reordering constraint to in-
duce reordering rules from corpus, some more syn-
tactic formalisms like Lexical Functional Grammar
has also been used. In almost all the methods syn-
tactic information is used on one side of the paral-
lel corpus, typically the target side, in the form of
a syntactic parsed tree. Then using word alignment
information, a target side reordering rule is induced,
that is typically hierarchical in nature. Andy Way
(?) also discuss using syntactic information on the
source side. Our work is closest in nature to that
of Michael Galley (?; ?), in that they extract rules
for a Syntactic MT system using only information
only on the target side of the language pair. We use
syntactic information from both the languages in the
form of syntactic parses, and extract much precise
rules at the cost of some recall.

In this section we discuss our syntactic rule ex-
traction process. We treat the node alignments ex-
tracted in the previous section as tree decomposition
points and extract from the corpus all possible syn-
chronous parallel subtrees. The synchronous par-
allel subtrees are also converted into synchronous
context-free rules.

6.1 Parallel sub-tree pair extraction
The tree pair extraction is driven by the source side
syntactic tree. We traverse the source tree in a top
down fashion from the root to the leaf. At each node
we check to see if there exists a parallel node align-
ment in the target syntactic tree. If a parallel node
alignment exists then the node pair forms a syn-
chronous decomposition point. The sub-tree at the
node in the source parse tree and the corresponding

subtree at the aligned node in the target parse tree
form a synchronous subtree pair. All sub subtree
pairs are initially extracted to form a parallel subtree
database. The subtree pairs are similar in formalism
to the Synchronous Tree Insertion Grammar ??

As can be seen in the example in ?? the two points
act as decomposition points.

6.2 Synchronous Transfer Rule Creation

The transfer rules in our system are extracted out
of the synchronous sub-tree pairs. Each of the ex-
tracted sub-tree pairs is flattened into a synchronous
context free style rule. The parent label of the source
sub-tree becomes the source side parent category of
the rule and the parent label of the target sub-tree
becomes the target side parent category. A decom-
position point in the sub-tree pair is flattened to form
a node label in the rule. Our transfer rule formalism
can be seen below.

VP::VP[NP "the" VP]->[NP VP]
(
(*score* 0.054)
(X1::X2)
)

Our transfer rule formalism is similar in spirit to
the Lexicalized functional grammar. It was designed
to capture not only the structural reordering but also
the feature based constraints that can be used in the
parsing stage of the Transfer Based MT.

In brief, each rule has a unique identifier followed
by the context-free form of the production rules for
both source and target sides. The source side pro-
duction is used in the analysis phase of the transfer
engine and the target side production is used in the
transfer phase. The alignments information that de-
cides the ordering of the constituents in the produc-
tion rule is provided with ’X’ followed by index for
source side and ’Y’ followed by an index for the tar-
get side. The rule can also have lexicalized items
on either sides, in which case no alignment infor-
mation is required for those index position. Finally
the rules also can have an under-specified feature
structure that has both ’x’ side constraints that get
used in the analysis phase and ’y’ side constraints
that get used in the generation phase. There are also
agreement constraints that involve both ’x’ side and
’y’ side, which help in resolving ambiguity during



the transfer phase. In this work we do not consider
the learning of feature constraints as part of the rule
learning framework. We only concentrate on pro-
ducing context-free style synchronous transfer rules.

Our approach to learning synchronous transfer
rules is to obtain precise rules that are generic in na-
ture. Rule induction is quite error prone and requires
highly accurate word alignments and parse struc-
tures. We therefore only learning rules from con-
trolled data with manual alignments. However, such
data is quite scarce and difficult to create. Therefore,
in our rule learning process, we generalize as much
as possible on top of the rules learnt. Apart from
generalizing to the constituent level, we also gener-
alize to part-of-speech category, any lexical item in
the source side of the rule that is one-to-one aligned
with a lexical item in the target side of the rule.
Since in this scenario, we have access to the part-of-
speech information of both source and target side,
we retain the information in the process of gener-
alization. Any lexical item, that is unaligned is re-
tained as lexicalized in the final rule.

The phrase table extracted from the corpus and
the rules are scored together. The scores are source
conditioned probabilities and the final synchronous
probabilistic context free rules are used in our Trans-
fer based MT. The rule scores are calculated as be-
low.

P (s/t) =
count(sourcetype, targettype, source, target)

count(source)
(1)

As part of our experiments we ran the rule learn-
ing on 10K corpus that was released as part of the
LDC English Chinese parallel tree bank. The corpus
was node aligned as described in Section 3. Rules
were then extracted and flattened out to form syn-
chronous context free rules. An example of the syn-
chronous tree pairs extracted from example in Fig-
ure 4 is shown below in Figure 1. After general-
ization and flattening, we obtain rules as shown in
Figure 4.

7 Analysis of Chinese-English System

We used the pipeline of node-alignment followed
by rule-extraction to build resources for the Sta-
tistical Transfer-based translation system from Chi-

Figure 3: Sample sub-tree pairs extracted from aligned
nodes

nese to English. The syntax-based phrase table was
constructed from two large corpora. One of them
was a corpus of about 1.2M sentences. Using these
sentences, we built a syntax-based phrase table of
about 9.2M entries. The other data source was about
2.6M sentences, but many of its entries were from
a Chinese-English lexicon. For this corpus, we ex-
tracted 8.75M entries in the phrase-table.

This section is not yet written down.This section
is not yet written down.This section is not yet writ-
ten down.This section is not yet written down.This
section is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not yet
written down.This section is not yet written down.

8 Conclusions

?
This section is not yet written down.This section

is not yet written down.This section is not yet writ-
ten down.This section is not yet written down.This
section is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not
yet written down.This section is not yet written
down.This section is not yet written down.This sec-
tion is not yet written down.This section is not yet
written down.This section is not yet written down.



Figure 4: Rules extracted from the Treepairs

Figure 5: Rule statistics extracted from Chinese-English
Corpora


