D15
The NESPOLE! Speech-to-Speech Translation Systems
30 January, 2003

	Project:
	IST-1999-11562

	Acronym:
	NESPOLE!

	Title:
	NEgotiating through SPOken Language in E-commerce

[image: image3.png]Audio G.711
Video H.261

Data T.120

Linear PCM Audio +
IF + Timestamp

estamp

Language Language
X specific W specific
HLT Server

application | | gmief)
| Mediator Y
Whitehoard) | fpf) |
Agent ! ; Global NESPOLE Server

	Title:
	The NESPOLE! Speech-to-Speech Translation Systems

	Deliverable:
	D15

	Author(s):
	Alon Lavie, Roldano Cattoni, Herve Blanchon

	Work Package:
	WP5 – HLT Development

	WP Participants:
	ITC-irst, UKA, CMU, UJF

	Date:
	30 January 2003

	Status:
	DRAFT VERSION

	Security:
	Public document

	Keywords:
	HLT modules, Interchange Format, IF

	Project Director:
	Gianni Lazzari

The NESPOLE! Speech-to-Speech Translation Systems

Table of contents

2The NESPOLE! Speech-to-Speech Translation Systems

2Table of contents

31.
Introduction

32.
General Architecture of the System

53.
Italian HLT Server

53.1 Speech Recognizer

53.1.1 Acoustic Modeling

63.1.2 Language Modeling

63.2 Analyzer

73.2.1 Semantic Segmentation

73.2.2 Domain Action Classification

73.2.3 Argument Extraction

83.3 XIG: IF-to-Italian generator

93.4 Speech Synthesizer

94.
French HLT Server

94.1 Data Collection

94.2 Update of the HLT modules

94.3 Automatic speech recognition module

104.4 Analysis and generation modules

125.
HLT Modules for English and German

135.1 HLT Server Design

135.2 Analysis Chain

135.2.1 The JANUS Speech Recognizer

145.2.2 English Language Model:

155.2.3 The Hybrid Statistica/Rule-based Analyzer

175.2.4 English and German Analysis Grammars for Showcase-2A

175.3 Generation Chain

185.3.1 The Generation Module

185.3.2 Generation Knowledge Sources

195.3.3 Speech Synthesis

1. Introduction

This document describes the HLT modules developed for the four languages in the NESPOLE! project, and the underlying approaches and algorithms used in these modules. We begin with a description of the general architecture of the HLT portion of the NESPOLE! system, and continue with descriptions of the HLT servers for each of the languages, and the specific modules in each of these servers.

2. [image: image4.png]

General Architecture of the System

The overall architecture of the NESPOLE! system can be seen in Figure 1. The speech-to-speech translation aspects of the system are handled by a global NESPOLE! translation server.

Figure 1: General Architecture of the NESPOLE! system

The global translation server is composed of four language specific HLT servers, one for each of the languages handled in the project – Italian, English, German and French. The internal architecture of each language-specific HLT server is shown in Figure 2. Each language-specific HLT server consists of an analysis chain and a generation chain. The analysis chain receives an audio stream corresponding to a single utterance and performs speech recognition followed by parsing and analysis of the input utterance into the interlingua representation (IF). The interlingua is then transmitted to a central HLT communication switch (the CS), that forwards it to the HLT servers for the other languages as appropriate. IF messages received from the central communication switch are processed by the generation chain. A generation module first generates text in the target language from the IF. The text utterance is then sent to a speech synthesis module that produces an audio stream for the utterance. The audio is then communicated externally to the mediator, in order to be integrated back into the video-conferencing stream between the two parties.

[image: image1.jpg]Communication with Mediator

e =

]
Speech Speech
Recognizer Synthsizer
Parser/Analysis Generation
Moule Modlule
F F
Generation
Analyss Chaln Shein

Communication with CommSwitch

Language X HLT Server

Figure 2: Architecture of Language-specific HLT Servers

3. Italian HLT Server

Over the 2002 year the Italian HLT Server has been extended along the following directions, taking in account the two principle of robustness and usability:

 1. Communication with HLT modules and Mediator: all the new functionalities of the Nespole! interface requiring interaction with the HLT modules have been implemented (e.g. textual input in addition to pure speech).

 2. Management of different ShowCases: two versions of the Nespole! system have been implemented, operating in two different scenarios, touristic and medical (first aid assistance). Each version of the system requires a different set of HLT modules to run. The operation of launching the ITA HLT server with the appropriate modules of a given scenario has been made fully automated, allowing an easy and configurable start-up of the Nespole! system.

 3. Restarting of a single HLT module: a new mechanism for the restarting of a single HLT module during a Nespole! session has been implemented. In this way a potentially problematic event (that of the crashing or blocking of a module at run time) has been addressed without the need of restarting the whole system.

 4. Additional Italian HLT server: an additional HLT server supporting the (out of requirements) Italian client-side has been implemented in order to allow local testing and debugging of the whole system -- IF-based Italian-to-Italian translation.

 5. Dumping of log files: the mechanism of dumping log file has been improved, allowing for a selection (at start-up time) of the information to be saved (audio, textual logs of the various modules, etc).

 6. Web-base interface: all the functionalities and operations outlined above can be operated by means of an appropriate Web-base interface, only for internal access. This allow the local Nespole! people (even if not expert) to startup and use the Nespole! system for the various cases: demonstrations, tests, data collections, etc.

The ITA HLT server(s) have been intensively used through the whole year for several public demostrations (in addition to a huge number of tests), showing a good degree of robustness.

3.1 Speech Recognizer

The Italian speech recognition system uses the same technology described in deliverable D8 (a single-step time-synchronous HMM-based Viterbi decoder [1] extended to deal with recurrent transition networks [2]).

3.1.1 Acoustic Modeling

As far as the acoustic modeling is concerned, the same approach used for the 2001 version has been used for both the 2002 ShowCases. The C-STAR corpus has been filtered through the G.711 protocol (PCM ulow format), actually used in Nespole!. The corpus includes 9672 sentences for a total of almost 11 hours of speech. The acoustic models consist of 2859 context dependent units, with a total of 6973 Gaussian densities (including models of extra-linguistic phenomena).

3.1.2 Language Modeling

The development of the two different versions of the recognition system for the two ShowCases of the 2002 year (touristic and medical domain) presented different issues, concerning the Language Modeling (LM). In facts, in the touristic domain, the availability of a sufficient number of data (taking in account also the C-STAR corpus) did not arise particular problems in terms of performance of the developed recognizer. With respect to the ShowCase of 2001 (also in the touristic domain), 9 lexical classes have been added, all domain dependent, in order to cover the domain extension (packages, events, etc).

As far as the Language Modeling for the medical domain is concerned, the data collected on the field appeared to be few with respect to the linguistic size of the domain: the Nespole! corpus for medical domain includes 497 sentences, for a total of 10228 words, with a vocabulary of

993 different words. To overcome the problem of poor performance (high perplexity and OOV percentage), other corpora (e.g. the Broadcast News corpus) have been utilized to produce the final Language Model: on the best case, a 118 perplexity and 0.6 out-of-vocabulary rate were measured.

3.2 Analyzer

The Italian analyzer is the modules that maps the automatic transcription of an utterance provided by the Italian acoustic recognizer into its IF representation. The Italian analyzer for the

second ShowCases has been implemented with the same functional architecture employed for the first ShowCase: (1) the utterance is segmented into semantic segments called Semantic Dialogue Units (SDUs); then for each SDU (2) the Domain Action (DA), consisting of a speech act and a sequence of concepts, is estimated and (3) the arguments, consisting of feature-value information, are extracted.

The speaker tag of each IF is easily determined: in both ShowCases of the second year it is assigned a-priori to be the agent -- in the touristic domain his/her role is that of an agent of the local touristic board, while in the medical domain is that of a physician of a first aid station. The other IF components (speech-act, concepts and arguments) are determined by analysis of the SDU.

The same algorithm developed during the first year of the project for the production of legal IFs [3] has been adopted in order to improve the analysis in terms of robustness and performance.

3.2.1 Semantic Segmentation

The semantic segmentation of automatic transcription into SDUs uses the same approach for both the ShowCases: first a segmentation is performed using a statistical algorithm based on Language Models, and second this segmentation is further refined using a Knowledge-based technique. To reduce the problem of data sparseness, a labeling pre-processing is performed on the transcription substituing words with class labels (hotel names, locations, etc for the touristic domain; medicines, sympthoms, etc for the medical domain).

The statistical segmentation based on a trigrams Language Model generates different hypotheses of segmentation inserting Segment Boundaries (SBs) into the original transcription at each SDU ending. The hypothesis that maximizes the probability according to the Language Model is returned as the best segmentation.

Two different trigrams Language Models (one for each ShowCase) have been trained: for the touristic domain the training corpus includes 11691 SDUs (7087 from the C-STAR corpus), while for the medical domain the size of the corpus is sensibly lower: 972 SDUs, all from the Nespole! dialogues.

3.2.2 Domain Action Classification

The most challanging problem for Domain Action classification is that the annotated data are few (problem particularly difficult for statistical methods): in the touristic there are 550 different Domain Action in 4189 examples (less than 8 examples for each DA). In the medical domain the percentage is even lower: 121 Das in 474 examples, about 4 examples for each DA. In this respect several tecniques and methods have been used, in order to maximize the performance, with respect to:

 (1) the labels to be classified: speech acts as labels separated by the concepts versus speech act together with concepts;

 (2) the classification tools: trigrams, bigrams or unigrams LMs, Bayesian Belief Networks, Knowledge-base methods like pattern matching;

 (3) the observable data: words versus characters, class labels versus pure text.

In the tecnique that shows the best results, speech act and concepts are treated together: the string obtained by concatenating the speech act and the (possibly empty) sequence of concepts is considered as a single label corresponding to the Domain Action (DA). A bigram language model operating at the word level with class labels was trained for each DA. For a given SDU, the selected DA is the one corresponding to the Language Model that provides the highest likelihood and maximize the extracted arguments.

3.2.3 Argument Extraction

For argument extraction, the same tecniques adopted for the first ShowCase has been utilized for both the second ShowCases: a knowledge-based approach in two steps. First a recursive transition network (RTN) parser is applied on the pure text; it produces a sequence of parse trees, semantically corresponding to different IF arguments. In the second stage, the parse trees are converted into their appropriate IF syntax.

Parsing is performed by applying the ITC-irst HMM decoder [2] on the input text (rather than on an acoustic signal). Arguments are thus modeled with recursive finite state networks, which represent, according to the case, word lists (e.g locations, digits), regular expressions (e.g simple temporal expression, integers), or bigram language models (e.g complex temporal expressions). In particular, complex expressions can be expressed in terms of more simple ones using recursion. For the current Nespole! domain we have developed about 407 grammars. Although most of arguments are domain-dependent (e.g room and hotel) there are also cross-domain arguments (e.g numbers, price or temporal expressions). The output of the HMM decoder is a sequence of parse trees corresponding to the most probable path trough the recursive finite state networks defined by the grammars and language models. A rule-based procedure written in Perl is then used to map the parse trees into IF-compliant arguments.

Obviously the grammars differ in the two domains, although some cross-domain grammars written for the touristic ShowCase were directly imported into the medical ShowCase (e.g. temporal expressions, numbers).

3.3 XIG: IF-to-Italian generator

The IF-to-Italian generator (XIG) used for the 2002 showcases is an extension of the one used for the 2001 showcase. The overall architecture of the generation system has not been changed. It is a rule-based generator implemented in Prolog and composed of two main modules: a sentence planner that maps an IF into a functional representation of the sentence and a linguistic realizer that maps the functional representation into a sequence of words. The sentence planner incrementally builds the functional representation by trying different layers of rules (from the most specific to the most general, from the sentence level to the lexical level), which guarantees a robust behavior to the system. The functional representation that constitutes the interface between the sentence planner and the linguistic realizer is in fact a mixed representation, that is it can include representations of lower linguistic level such as strings and parameterized morphological bundles (Pianta and Tovena 1999). The three components included in the linguistic realizer- coping with syntax, morphology, and phonological adjustment respectively- are enabled to process mixed representation, which can be conceived of as a sort of a very flexible kind of templates that guarantee a good level of efficiency to the generator.

The XIG system is clearly divided in two parts: a procedural part (planning engine and mixed representation solver) and a declarative part that includes planning rules, syntax context free rules, and morphological data. To cover the 2002 scenarios only marginal updates have been made to the procedural part, mainly to optimize the system from a software engineering point of view.

Instead, almost all of the work has been done to extend the declarative part of the system. Interestingly enough, extending the system from the touristic to the medical domain determined an increase of the total number of rules of only 18%, mostly at the lexical level. This means that a great number of non lexical rules that were written for the touristic domain could be reused within the medical domain.

3.4 Speech Synthesizer

The text-to-speech system used for Italian speech synthesis is the Eloquens system provide by the Loquendo Company (ex CSELT).

4. French HLT Server

CLIPS is only involved in showcase 2A dedicated to the extended tourism domain. Thus, update of the HLT modules for this is only related to scalability: increase of vocabulary and domain coverage, improvements in the systems robustness. No work has been done on portability (showcase 2B) to a new domain (medical domain) since CLIPS is not financed for this.

The changes and updates of the HLT modules are mainly related to a new IF definition, Automatic Speech Recognition (ASR) and Speech-to-Speech Translation (STST) modules update.

4.1 Data Collection

In preparation for Showcase 2A (castles and lakes in Val di Fiemme), the following tasks have been completed to contribute to the new Interchange Format (IF) and the preparation of the new HLT modules.

-17 dialogs in French were collected and transcribed with the methodology described in D6.

-The client's turns of the data were annotated with their corresponding IF.

-4 dialogues were set aside for evaluation purposes and 13 dialogues were used for the HLT modules development.
4.2 Update of the HLT modules

The overall architecture of our HLT servers from showcase-1 was maintained during the development of showcase 2A. Most of the development work was done within the individual modules that reside within each of the HLT servers.

4.3 Automatic speech recognition module

The update of the French speech recognizer concerns mainly two issues: (1) vocabulary, (2) language models. No change in the acoustic models has been done. For the vocabulary and language models updating the new data collected (12 French dialogs extracted from the 17 dialogs collected) was used. The new vocabulary was merged with the one build for the first Showcase (same domain) and 3164 words specific vocabulary was obtained. Figure 1 describes the differences between the vocabulary extracted from showcase 1 data (SC1) and the vocabulary extracted from showcase 2A data (SC2a), the number of words common to both (SC1.SC2) and the merging results (SC1+SC2) for client and agent turns (A+C) or client only turns (C).

[image: image2.wmf]
Figure 1: statistics on showcase 1 and showcase 2A vocabularies

For the language model training, a Web-based approach, which has also demonstrated scalability, was used. More precisely, the new task based vocabulary was extended with the most frequent words issued from a word count made on a collection of web pages. A final vocabulary of 22k words was obtained. Then, language model training with minimal block filtering technique was performed on Web data too.

4.4 Analysis modules

The new analysis module is using the same pattern-based approach used for the analyzer developed for the first showcase. The overall architecture has not really changed, but all the Speech Act and most of the argument are handled, it is the same for the arguments.

Each speech turn is first split into SDUs using a slightly more fine-grained approach allowing for better segmentation. We are using simple sentences, coordination and subordination patterns. We added patterns to handle the simple concatenation of several sentences.

A domain is the associated to each SDU. The defined domains cover all the terminal Speech Acts (i.e. the SA with no continuation), and all the focus concepts (i.e. concepts without continuation).

The treatment of each terminal Speech Act is proper to the Speech Act itself. The arguments of the Speech acts are instantiated (e.g.: manner for thank).

The focus concepts are all handled the same way. The Dialog Act is first built by finding out the Speech Act, the Rhetorical Relations, the Attitudes, the Actions. Our Actions are marked by some predicates that may represent to a concept (i.e. +clarify, +click, +confirmation, +connection, +display, +explain, +goto, +indicate, +inform, +read, +rent, +view, +explain, +write), or by some predicates that represent a value of the *actions* value set. In this process each concept instantiate its proper arguments. This step delivers a prefix of the final DA and a first list of arguments.

The Arguments of the focus concept are then built by trying to instantiate the potential arguments of the focus concept. During this process, the DA may be completed (e.g.: if the SDU is talking about the price of the focus concept +price is added to the DA). Finally the IF is produced by concatenating the current DA with the focus concept and adding the arguments IF resprentations.

Example:

Input:

okay et je voudrais une chambre simple à 100 euros à cavalese du 10 au 15 septembre

Splitting:

"okay", "et je voudrais une chambre à 100 euros du 10 au 15 septembre"

"OK", "and I would like a room at 100 euros form the 10th to the 15th of December"

SDU 1:

Step1.
Domain=acknowledge,

Step2.
IF= c:acknowledge
SDU 2:

Step 1.
Domain=room,

Step 2.
DA: give-information

Step 3.
Rhetorical: conjunction=discourse

Step 4.
Attitude: disposition=(desire, who=i)

Step 5.
Preferred Argument:

room-spec=(identifiability=no, single_room), +room in the DA

Step 6.
Other Arguments:

price=(quantity=100, currency=euro), +price in the DA

location=name-cavalese

time=(start-time=(md=10), end-time=(md=15, month=9))

Step 7.
IF:
c:give-information+disposition+price+room
conjunction=discourse, disposition=(desire, who=i), room-spec=(identifiability=no, single_room), price=(quantity=100, currency=euro), location=name-cavalese, time=(start-time=(md=10), end-time=(md=15, month=9)))
4.5 Generation module

The new generation module is using a different technique than the fill-in the blanks approach used for the first showcase.

With the fill-in the blanks approach the actual generation procedure was reached after a walk thru the DA. It was then necessary to develop a generation procedure for each possible DA. This technique's lack of generality was too important.

For the non-terminal speech acts, the generation is actually performed during a walk thru of the Dialogue Act whatever it may consist of. Each Dialog Act is thus covered giving a far better coverage. The process is a 5 steps one.

The rhetoricals are first generated. Then DA may give a prefix formula for the sentence to be produced (e.g.: "can you recommend" for the request-suggestion DA). Next, if present, the attitudes are generated.

Then, there is a walk thru of the remaining concepts present in the DA (the SA and the +attitude have been removed). For each concept, the "essential" arguments are generated (e.g.: accommodation-spec= for +accommodation, price-spec= and price= for +price). During the walk thru, some look ahead may be necessary when the current concept applies to the following one (e.g.: the +price concept applies to the following argument if there is one).

When the walk thru is finished, the remaining arguments are finally generated in the order they appear in the instantiated arguments list.

The generation of the arguments has been revised and it giving better results.

Exemple:

Input:

{c:acknowledge}
{c:give-information+disposition+price+room
conjunction=discourse, disposition=(desire, who=i),
room-spec=(identifiability=no, single_room), price=(quantity=100, currency=euro), location=name-cavalese, time=(start-time=(md=10), end-time=(md=15, month=9)))}

IF1: (terminal speech act)

D'accord !
IF2: (complex DA)

Step1.
Rhetorical: et

Step2.
Attitude: je désire

Step3.
+price+room

Step1.
+price : à 100 euros

Step2.
+room: une chambre simple

Step3.
+walk thru remaining arguments:

à Cavalese à partir du 10 jusqu'au 15 septembre

Step4.
Putting phrases together:

une chambre simple à Cavalese à partir du 10 jusqu'au 15 septembre à 100 euros

Step4.
Putting phases together:

Et je désire une chambre simple à Cavalese à partir du 10 jusqu'au 15 septembre à 100 euros.

5. HLT Modules for English and German

The HLT components for both English and German are identical in structure. The components are developed in joint cooperation by the ISL groups at Carnegie Mellon and at the University of Karlsruhe in Germany. The modules differ mainly in the language specific knowledge sources and the training data used. We therefore describe the HLT components for both languages jointly, with explicit details about the language specific information sources and data where appropriate. The language specific parts were developed and evaluated at University of Karlsruhe for the German language and at Carnegie Mellon University for the English language.

5.1 HLT Server Design

The overall structure of the HLT servers used for Showcase-2 is similar to the structure used for Showcase-1. Individual modules were modified and updated for improved performance. Knowledge sources such as grammars and lexicons were naturally developed to accommodate the domains of coverage of Showcase-2.

The English and German NESPOLE! HLT servers are integrated language specific servers that communicate externally with the NESPOLE! Mediator and perform language specific analysis and generation tasks in support of the speech-to-speech translation in the system. Each server runs on a single workstation and consists of a collection of component modules that are controlled via a blackboard control script written in Tcl/Tk. The current servers are compiled to run on either Sun Ultra workstations or Linux PCs. Internally, the server consists of an Analysis Chain which is responsible for transforming audio input in the language to the IF representation, and a Generation Chain, which is responsible for transforming incoming IF representations into generated audio in the output language. Communication with the global NESPOLE! CommSwitch is controlled directly by the server blackboard, and is used to send and receive IF representations to/from other HLT servers. Communication with the NESPOLE! Mediator is controlled by “NESSI” – a dedicated communication module.

5.2 Analysis Chain

The analysis chain includes the Speech Recognizer and the Hybrid Statistical/Rule-based Analyzer. We use the same speech recognition and analyzer components for both English and German, each trained and loaded with the appropriate language-specific sources of information.

5.2.1 The JANUS Speech Recognizer

For both German and English speech recognition, we used the JANUS Recognition toolkit (JRTk), which provides a modular platform for the development, training, and evaluation of the speech engines. The recognition engine itself consists four parts: (1) the front-end for preprocessing the audio waveform signal into a stream of feature vectors; (2) an acoustic model that represents the sounds of the languages; (3) a pronunciation dictionary to guide the recognition process; and (4) a language model that provides the recognizer with information about the likelihood of word sequences for a given history. The latter three modules are language dependent. The first module, the front-end, is language independent and is designed to prepare the system for a multilingual speech recognition approach in the future, i.e. to be able to process both languages within one single speech engine. All four parts were described in some detail in the documentation for Showcase-1 (deliverable D8). In the following we only describe the details concerning the training of the English and German recognizers for the new Showcase-2.

English Acoustic Model:

The initial acoustic model for the English Nespole! Speech engine was derived from a system trained on about 80 hours English Broadcast News data plus about 30 hours data from the English Verbmobil part on the Spontaneous Scheduling task. These training data are very similar to the Nespole! data in terms of the conversational speaking style but rather different in recorded sampling rate and clean channel conditions. In order to adapt the initialized acoustic models to the conditions of the Nespole! requirements the maximum linear regression (MLLR) approach was performed. For this purpose 1 hour and 40 minutes of client speech collected at 8kHz was upsampled to 16kHz and used for adaptation, with no compensation for possibly lost packets.

In addition to the model adaptation a hand-crafted pronunciation dictionary was developed for about 5k words. The dictionary entries contain 2-3 pronunciation variants carefully chosen to cover the large variations of non-native pronunciations for proper nouns, especially Italian proper names spoken by native American speakers.

German Acoustic Model:

Acoustic training was conducted on the 62 hours of transcribed German training data collected for the Verbmobil project. This data was “clean” - it was not degraded by the acoustic channel. The speech data to be recognized in the Nespole! system, however, is first subjected to an H323 compression scheme, then sent across the inter-net via a UDP protocol in which packets can be lost, and finally reconstructed at the receiving end. Hence this transmission process has a pronounced effect on the quality and characteristics of the final speech. To compensate for the mismatch in speech quality between the training and testing conditions, we applied maximum likelihood linear regression (MLLR) to the final model trained on the clean speech. Experiments revealed that the best performance was obtained when a total of 48 MLLR matrices, each of size 32 x 32, were used to transform the clean-speech model. These transformation matrices were estimated in a supervised fashion on the 1.3 hours of transcribed German collected for the Nespole! project during the Summer and Fall of 2000 to provide training material for IF and speech recognizer development. As this data had all been transmitted over the inter-net via the H323 protocol, it was ideal for the estimation of adaptation matrices. Compensation for lost packets was achieved by using a zero-crossing rate threshold to detect frames in which packets had been lost, and then cutting the affected frames and using a linear interpolation scheme to reconstruct them.

5.2.2 English Language Model:

The English language model is a tri-gram model which is linearly interpolated between a Nespole! client specific tri-gram model and a broad background tri-gram model. The best suited combination weight factors are derived experimentally and turned out to be 0.66 and 0.34, respectively. The client model consists of 22k words of transcribed Nespole! dialogs (comprising the same 1 hour and 40 minutes of speech used in adapting the acoustic model above), as well as a supplementary 3k word hand-crafted corpus intended to complements the available tri-gram and vocabulary coverage. The background model consists of the 276k word ESST corpus, 42k words from Nespole! agent-side dialogues and 8k word from client-side email transactions with APT. The joint vocabulary is the superset of all models, amounting to 4.8k tokens.

German Language Model:

A tri-gram language model was trained on 640k words from the Verbmobil corpus, as well as the 17k words of transcribed Nespole-domain dialogs mentioned above. The 11,000-word Verbmobil dictionary was expanded by the addition of approximately 400 words from the Nespole! dialogs, along with place names, sporting activities, and other vocabulary items as required to support the Nespole! multi-modality experiments undertaken in July-September of this year. The final language model had a test-set perplexity of 98.5 and a test-set out-of-vocabulary (OOV) rate of 1.6%. In many cases, it was necessary to add to the vocabulary words which had never appeared in the training data. This was accomplished by mapping these words to frequently-occuring words for the purpose of recognition, and then recovering the original word from its mapped form before producing a final utterance hypothesis.

5.2.3 The Hybrid Statistica/Rule-based Analyzer

The analyzer takes the best hypothesis from speech recognition as input and produces interchange format as output using a combination of grammar-based and machine learning methods. A grammar-based approach is used to extract arguments and their values. Then machine learning methods are used to identify the speech act and concept sequence that compose the domain action. The approach to analysis taken in the English and German translation systems is the same. The only differences between the English analyzer and the German analyzer are the grammars used by the parser and the data used to train the domain action classifiers. The main steps involved in the analysis process are: (1) grammar-based argument parsing; (2) segmentation of the input into semantic dialogue units (SDUs); (3) Domain Action classification; and (4) mapping into the IF representation. While the above process is similar to what was previously developed for the Showcase-1 analyzer, each of the steps was modified and improved in the development of the Showcase-2 analyzer. We focus here only on the modifications. Further details on the analyzer can be found in deliverable D8 and our recent publications listed in the references.

Argument parsing is performed using the SOUP parser. Details about the grammars developed for

English and German analysis are described in later subsection below.

The second stage of processing in our hybrid analysis approach is segmentation of the input into SDUs. In the IF representation, Domain Actions (Das) are assigned at the level of SDUs. Speech turns, however, often consist of several SDUs, and thus must be segmented before assigning DAs. Figure 1 shows an example of an utterance with four arguments segmented into two SDUs.

	SDU1
	
	SDU2
	

	greeting=
	disposition=
	visit-spec=
	location=

	hello
	i would like to
	take a vacation
	in val di fiemme

Figure 1. Segmentation of an utterance into SDUs.

Since the input to the analyzer is text produced by an automatic speech recognizer, neither punctuation nor case information are explicitly represented, and speech recognition errors may be present. In addition to the word information surrounding a potential SDU boundary, which may be unreliable, the segmenter also uses information derived from the argument parse.

The argument parse may contain trees for cross-domain DAs, which by definition cover a complete SDU. Thus, there must be an SDU boundary on both sides of a cross-domain tree, and the problem of segmenting an utterance can be divided into subproblems of segmenting the parts of the utterance not covered by a cross-domain tree. Additionally, SDU boundaries cannot occur within parse trees. Thus, potential SDU boundary positions can be hypothesized only between parse trees and/or unparsed words. The segmenter also uses the root labels of argument parses.

The segmenter used in the Showcase-2 version of the analyzer is implemented using TiMBL (Daelemans et al., 2002), a memory-based (k-Nearest-Neighbor) learning program. The segmenter first examines the grammar label for the roots of the parse trees on each side of a potential SDU boundary position. If either tree was constructed by the cross-domain grammar, an SDU boundary is inserted. Otherwise, the TiMBL segmentation classifier uses ten features based on the words and arguments surrounding the potential boundary to determine if an SDU boundary is present.

The features used by the TiMBL classifier include the word and argument parse tree label immediately preceding and immediately following the potential boundary (w-1, w1, A-1, and A1). In addition, the probabilities that a boundary follows the preceding word and argument label (P(w-1() and P(A-1()) and precedes the following word and argument (P((w1) and P((A1)) are used as input features. These probabilities are computed based on counts from the training data (i.e., P(w-1() = C(w-1()/C(w-1)). The final two features are the number of words since the last boundary and the number of argument parse trees since the last boundary. The training data for the segmentation classifier consists of utterances that have been annotated with SDU boundaries and parsed using the phrase-level argument parser.

Identification of the domain action is portion of the analysis approach that uses machine learning techniques. A pair of classifiers, one for the speech act and one for the concept sequence, are used to produce the domain action using input features extracted from the argument parses. The classifiers use example-based learning (TiMBL) to determine the domain action. The input features include a set of binary features that indicate the presence or absence of each possible top-level rule from the argument and pseudo-argument grammars. These features are extracted from the roots of the parse trees in the segment under consideration. The input features also include speaker side information (agent or client). The speech act classifier produces a small ranked set of likely speech acts and indicates which one is the closest match. Similarly, the concept classifier produces a small ranked set of likely concept sequences and indicates the best match.

The final interchange format representation for the segment then produced by taking the interchange format specification into account. This step guarantees that only legal interchange format will be produced. First, a ranked set of possible legal domain actions is generated by combining the results from the speech act classifier with the results from the concept classifier and eliminating domain actions in which the concept sequence is not allowed to follow the speech act. Next, the arguments in the segment are checked against the ranked domain actions. If a domain action is found that licenses all of the arguments in the segment, that domain action is selected and all of the arguments are included in the final interchange format. Otherwise, the highest ranked domain action that licensed the most arguments is selected, and all arguments not licensed are removed from the final interchange format for the segment.

The resulting interchange format representation(s) are sent back to the blackboard which is responsible for communication with the NESPOLE! Global CommSwitch.

5.2.4 English and German Analysis Grammars for Showcase-2A

For both English and German, there are four grammars for parsing utterances. The CROSS-DOMAIN GRAMMAR contains full top-level DA-level rules for frequent, non-domain-specific utterances that typically do not contain many arguments. Examples of utterances parsed by the cross-domain grammar would be "Good morning", "This is Donna calling", and "Thank you for your help". The TOP-LEVEL ARGUMENT GRAMMAR contains rules for all the arguments that can be the root of a parse tree, such as <location=>, <accommodation-spec=>, or <time=>. The NON-TERMINAL ARGUMENT GRAMMAR contains top-level rules that cover phrases and expressions that cannot be parsed with a particular argument, but may be helpful for the prediction of a DA for an utterance. For example, a phrase such as "And you said that ..." would be covered by this grammar; it is likely to have request-verification- as part of its speech act. Additionally, the non-terminal argument grammar parses strings as a whole for which the context is important and which are larger than what can be covered by one argument. For example, in "I suggest to you that ...", the "I" should be parsed under <suggestor=>, not under <who=>, but the phrase context containing the word " suggest" is needed to make this distinction.

The SHARED GRAMMAR contains the definitions for all sub-arguments and non-terminals referenced by the other grammars, and all values and their bottom-level token definitions. It also contains those top-level arguments that may be referenced by the cross-domain and non-terminal argument grammars.

Analysis Grammar Development:

The analysis grammars for English and German were developed on transcribed speech from the English and German databases respectively, for the Showcase-2 scenarios. We also used the logged data files generated from various demos and tests to check and then correct errors in the analysis grammars. In this case, the speech recognizer output rather than manually transcribed speech was used for development. These logged data files were especially useful in the development and testing of the coverage for multi-modal sentences.

5.3 Generation Chain

The generation chain includes the Generation Mapper, the GenKit Generator and the Festival speech synthesis module. Again, we use the same components for both English and German, each trained and loaded with the appropriate language-specific sources of information.

5.3.1 The Generation Module

The generation module consists of a generation mapper followed by the GenKit unification-based generator. The generation mapper was developed specifically for the NESPOLE project and is described in more detail below. The GenKit generator is a unification-based generation system that has been used in numerous Machine Translation projects at our institute over the last decade. It uses an LFG-style grammar formalism consisting of context-free rules augmented with unification of feature structures. A top-down control strategy is used to create a generation tree from a given input feature structure. The leaves of the generation tree are then read off as a pre-surface form generation. The pre-surface form is passed through a post-processor which generates the actual surface form word strings of the generated output. GenKit was originally written in Common Lisp. A new C++ implementation of the system was developed and deployed in the Showcase-2 system.

5.3.2 Generation Knowledge Sources

English and German generation knowledge consists of lexical, grammatical and morphological knowledge. A lexical look-up program uses lexical entries for associating words with semantic IF concepts and values. Syntactic/semantic grammars are used by the GenKit generator for generating a sentence from an interchange format's feature-structure (see Generation Mapper). Some inflectional morphology is also performed through grammar rules and/or a separate morphology package.

The English and German grammars are semantic grammars with syntactic generalizations made where possible. For each language, there is a general set of semantic and syntactic rules for generating from all domain IFs. For English, these general domain rules include rules for inflectional morphology on verbs, nouns and adjectives. For each language, there is also a grammar containing a specific set of semantic and syntactic rules for the travel domain which is also linked to the general rules.

With the GenKit generator, a grammar can be written such that the semantic rules are specific for a given DA concept or concept list or generalized to work with many DA concept combinations. Specific grammar rules are written for a given DA with high frequency so that the generated output is highly fluent and stylistically easier to read. General DA rules are written so that many DAs can be covered with a few general rules sacrificing style in some cases. In order to cover many new and ever expanding types of travel concepts that have a similar form to the above, we write general rules that lump all NPs together which in turn require a modal verb to generate a sentence in order to avoid the need for agreement in English within existential sentences.

Morphology:

In generation of both English and German, only inflectional morphology is required.

Inflectional morphology in English is quite simple. Inflectional rules are written in the grammar formalism and exceptions (irregular forms) are stored in the lexical entries.

German morphological endings are generated via a separate morphology component called Morphe. Morphe generates the correct form from based on information coming from both the grammar and the lexicon. For nouns, for example, case, number, and person information come from the grammar rules, while the word stem and the inflectional classes come from the lexical entry. In the current version of the system, inflected forms produced by Morphe are stored in an expanded lexicon which is accessed during runtime.

Generation Grammar Development:

The generation grammars were developed on data from a variety of sources. The IF tags from all of the Scenario A databases for English, German and Italian and some Scenario C data were used for developing and debugging the grammars. The tagged database that we used is described in greater detail in the report on "Interchange Format". We also used the logged data files generated from various demos and tests to check and then correct errors in the generation grammars. These logged data files were especially useful in the development and testing of the coverage for multi-modal sentences.

5.3.3 Speech Synthesis

For both English and German, we use a version of the Festival speech synthesis system, originally developed by Alan Black and Paul Taylor at the University of Edinburgh. The version used in our system was updated and maintained by Alan Black at CMU.

� EMBED PBrush ���

[image: image5.png]

[image: image6.png]Carnegic
Mellon

[image: image7.png]o Universitit Karlsruhe

[image: image8.jpg]

[image: image9.png]

[image: image10.png]TRIH%O

PAGE
2
NESPOLE! Project IST - 1999 – 11562

[image: image11.png]Audio G.711
Video H.261

Data T.120

Linear PCM Audio +
IF + Timestamp

estamp

Language Language
X specific W specific
HLT Server

application | | gmief)
| Mediator Y
Whitehoard) | fpf) |
Agent ! ; Global NESPOLE Server

_1100602995.xls
Feuil1

				SC1		SC2a		SC1 . SC2a		SC1 + SC2a

		A+C		2057		2068		953		3164

		C		1281		1173		577		1876

_1061908820

