
Stamp Applications electronic version, vol. 1

This document is a collection of the first seven installments of the Stamp Applications
column published in Nuts & Volts magazine starting in March 1995. The column provides
hints, tips, and techniques for users of the popular Parallax BASIC Stamp® single-board
computer and its kit equivalent, the Counterfeit. The Counterfeit uses a genuine Parallax
BASIC (PBASIC) interpreter chip and software licensed from Parallax. It’s 100-percent
compatible with the original BASIC Stamp.

I prepared this electronic version of Stamp Applications in response to many requests from
Stamp users on Compuserve and the Internet. I plan to post additional volumes every six
issues/months. Don’t bother petitioning me to post more frequently; that would defeat one
of the purposes of this document, which is to encourage Stamp users to subscribe to
Nuts & Volts.

Contacting Us
Scott Edwards Electronics
964 Cactus Wren Lane
Sierra Vista, AZ 85635 USA
ph: 520-459-4802; fax 520-459-0623
e-mail: 72037.2612@compuserve.com

Contacting Nuts & Volts magazine
T&L Publications Inc.
430 Princeland Court
Corona, CA 91719
ph: 909-371-8497; fax: 909-371-3052
subscription order line: 800-783-4624

Contacting Parallax
Parallax, Inc.
3805 Atherton Road, #102
Rocklin, CA 95765 USA
ph: 916-624-8333; fax 916-624-8003; BBS: 916-624-7101
e-mail: info@parallaxinc.com; file transfer via Internet: ftp.parallaxinc.com

Topics in Volume 1
First Look at the New BS1-IC Stamp-on-a SIP... 1
Using the DS1620 Digital Thermometer .. 2
Hacking a Commercial Keypad for Pro-Quality Data Entry .. 3
Using the LTC1298 12-bit Analog-to-Digital Converter .. 4
Two Mini Applications: Checking Battery Condition and Multiplexing I/O............................... 5
Using Switching Transistors for Big Loads ... 6
Working with the CM8880 DTMF Transceiver .. 7

Stamp Applications no. 1 (March ’95):

New Column Puts the Spotlight on
BASIC Stamp Projects, Hints, and Tips

First Look at the New BS1-IC Stamp-on-a-SIP, by Scott Edwards

WELCOME to the first installment of Stamp
Applications, a forum for users of BASIC Stamp
single-board computers. Every month we’ll
introduce new ideas in hardware and software
for the Stamp, answer questions, and keep up
with news about the Stamp and related
products.

To kick things off, let’s look at the newest
member of the Stamp product line, the BS1-IC,
also known as “Stamp on a SIP.” SIP stands for
single-inline package, and it describes the
diminuitive new Stamp’s printed-circuit board
design. The entire Stamp circuit plugs right into

a 14-pin SIP socket. This makes it easier to
breadboard with the Stamp, or to incorporate it
into your own circuit designs.

Figure 1 shows the layout and important
dimensions of the BS1-IC. I elected to sketch the
unit rather than photograph it because its small
size makes it a real challenge to get a decent
picture.

The BS1-IC has four advantages over the
regular, full-sized Stamp. The first is size. The
BS1-IC is small enough to be treated as a
component that can be integrated into ultra-
small designs.

1.40"

0.39"

0.10"
between
pins

voltage
regulator

93LC56
serial
EEPROM

reset
circuit

PIC16C56
micro-
controller

4-MHz
resonator

22-µF
cap

Vin

Gro
un

d

PC o
ut

PC in

+5
 V

 (r
eg

ula
te

d)

Res
et P0 P1 P2 P3 P4 P5 P6 P7

PC Parallel Port
(programming cable)

25
11

2

Figure 1. The new BS1-IC.

Stamp Applications no. 1, March 1995

2

The second advantage is price. At $29, the
BS1-IC has everything the original $39 Stamp
had, except for the battery clips and prototyping
area. If your power supply is something other
than a 9V battery, you won’t miss the clips. And
if you’re not a fan of wire-wrapping (I detest it!
Crocheting for engineers!), you’d probably never
use the grid-of-holes proto area anyway. The
BS1-IC plugs right into socket-type proto
boards, like the ones sold by Radio Shack and
Jameco, allowing rapid circuit testing. If you
want to add the clips and proto grid later, you
can buy a “carrier board” for $10 to turn the
BS1-IC in a normal-form-factor Stamp.

The third, least tangible benefit of the
component-style package is professional appear-
ance. You can integrate a factory-assembled and
tested Stamp into a product without having a
messy jumble of printed circuit boards under the
hood. Put the BS1-IC right on the circuit board
with your application-specific components.

The fourth advantage over the original Stamp
design is not very glamorous, but nonetheless
important: The BS1-IC has a reset input that’s

accessible to your circuitry. You can add a
button between reset and ground. This allows
you to reset a runaway program to the
beginning. You can also treat the reset
connection as an output, using it to reset other
logic in your circuit.

In my first application for the BS1-IC, I wasn’t
too worried about looking good. I just wanted to
reduce the jumble of jumper wires that was
accumulating as I interfaced Stamps to different
projects and test jigs around the shop. My
Stamp Stretchers and LCD Serial Backpacks
both borrow power from the Stamp and use a
standard connector layout: +5V, ground, serial
data. I decided to make a bunch of three-wire
jumpers with female header sockets at each end.
I then designed my own carrier board with
eight, three-conductor male headers--one for
each input/output pin.

Figure 2 shows the resulting board layout. I
present it not as a finished product, but as an
example of how simply you can turn Parallax’
newest Stamp into Scott’s Stamp or Mary’s
Stamp or Acme Industries’ Stamp.

3-conductor header
to match Stretcher,
LCD Backpack

Socket for pullup/
pulldown resistors

BS1-IC

Reset
button

Programming
connector

Power input
(7 to 15 Vdc)

Figure 2. Example of a simple, homemade carrier board for the BS1-IC.

Stamp Applications no. 1, March 1995

3

That wraps up this month’s installment of
Stamp Applications. Future columns will dig
into Stamp hardware and software issues,
generally presenting at least one schematic and
one program listing each month. Initially, I’ll
take the topics from Parallax’s technical support
folks and the online venues where the Stamp is
discussed. But I’d be grateful for your
suggestions and questions. Contact me at:

Scott Edwards Electronics
964 Cactus Wren Lane
Sierra Vista, AZ 85635
phone: 602-459-4802; fax 602-459-0623
Internet: 72037.2612@compuserve.com
Compuserve: 72037,2612

Stamp Applications no. 2 (April ’95):

Thermometer-on-a-Chip
Simplifies Temperature Measurement

Using the DS1620, by Scott Edwards

DESIGNING a temperature-measurement appli-
cation for the BASIC Stamp is a lot like voting;
you end up selecting the lesser of three evils,
shown in figure 1. Cost, calibration, or too many
components make these solutions less than
ideal.

Now, there’s a fourth candidate. It’s the Dallas
Semiconductor DS1620 digital thermometer/
thermostat chip, shown in figure 2. The DS1620

measures temperature in units of 0.5 degrees
Centigrade from -55° to +125° C. The DS1620 is
calibrated at the factory for exceptional accur-
acy: ±0.5° C from 0 to +70° C, which, is the
Stamp’s operating temperature range.

(For fans of the familiar Fahrenheit scale,
those °C temperatures convert to: range, -67° to
+257° F; resolution, 0.9° F; accuracy, ±0.9° F
from 32° to 158° F.)

Analog-to-
Digital

Converter

BASIC
Stamp

3-wire
interface

linear, voltage-mode
temperature sensor

precision voltage
reference

Program:
Synchronous serial
protocol for ADC;
conversion of data
to temperature

Traditional Method: Requires several external components and three I/O lines
(little or no calibration needed)

Voltage-to-
Frequency
Converter

BASIC
Stamp

1-wire
interface

linear, voltage-mode
temperature sensor

Program:
Period measurement;
conversion of data to
temperature

Timing Method: Requires external components and one I/O line
(slight calibration needed)

BASIC
Stamp

precision thermistor Program: Pot routine to
measure resistance;
linearization and
conversion of data to
temperature

Gonzo Minimalist Method: Requires thermistor, capacitor and one I/O line
(must be calibrated to work properly)

1-wire
interface

Figure 1. Three methods for measuring temperature with the Stamp.

Stamp Applications no. 2, April 1995

2

The chip makes its temperature data available
as a 9-bit number conveyed over a three-wire
serial interface. The DS1620 can be set to
operate continuously, taking one temperature
measurement per second, or intermittently,
conserving power by measuring only when told
to.

The DS1620 can also operate as a standalone
thermostat. A temporary connection to a Stamp
or other controller establishes the mode of
operation and high/low-temperature setpoints.
Thereafter, the chip independently controls
three outputs: T(high), which goes active at
temperatures above the high-temperature
setpoint; T(low), active at temperatures below
the low setpoint; and T(com), which goes active
at temperatures above the high setpoint, and
stays active until the temperature drops below
the low setpoint.

Let’s concentrate on applications using the
DS1620 as a Stamp peripheral, as shown in the
listing. Later, we’ll talk about adapting the code
for configuring it as a thermostat.

Using the DS1620 requires sending a
command (what Dallas Semi calls a “protocol”)
to the chip, then listening for a response (if
applicable). The code under “DS1620 I/O
Subroutines” in the listing shows how this is
done. In a typical temperature-measurement
application, the program will set the DS1620 to
thermometer mode, configure it for continuous
conversions, and tell it to start. Thereafter, all
the program must do is request a temperature
reading, then shift it in, as shown in the listing’s
Again loop.

+5

0.1µF

1k

pin 2

pin 1

pin 0

Stamp Pins

DQ

CLK

RST

GND

VDD

T(hi)

T(lo)

T(com)

DS1620

1

DQ—Data input/output
CLK—Clock for shifting data in/out (active-low conversion start in thermostat/
1-shot mode)
RST—Reset; high activates chip, low disables it
GND—Ground connection
VDD—Supply voltage; +4.5 to 5.5 Vdc
T(hi)—In thermostat mode, outputs a 1 when temp is above high setpoint
T(lo)—In thermostat mode, outputs a 1 when temp is below low setpoint
T(com) —In thermostat mode, outputs a 1 when temp exceeds high setpoint
and remains high until temp drops below low setpoint

Figure 2. DS1620 pinout and connection.

The DS1620 delivers temperature data in a
nine-bit, two’s complement format, shown in the
table. Each unit represents 0.5° C, so a reading
of 50 translates to +25°C. Negative values are
expressed as two’s complement numbers. In
two’s complement, values with a 1 in their
leftmost bit position are negative. The leftmost
bit is often called the sign bit, since a 1 means -
and a 0 means +.

To convert a negative two’s complement value
to a positive number, you must invert it and add
1. If you want to display this value, remember to
put a minus sign in front of it.

Rather than mess with two’s complement
negative numbers, the program converts
DS1620 data to an absolute scale called DSabs,
with a range of 0 to 360 units of 0.5° C each. The
Stamp can perform calculations in this all-
positive system, then readily convert the results
for display in °C or °F, as shown in the listing.

Going Further. Once you have configured
the DS1620, you don’t have to reconfigure it
unless you want to change a setting. The
DS1620 stores its configuration in EEPROM
(electrically erasable, programmable read-only
memory), which retains data even with the
power off. In memory-tight Stamp applications,
you might want to run the full program once for
configuration, then strip out the configuration
stuff to make more room for your final
application.

If you want to use the DS1620 in its role as a
standalone thermostat, the Stamp can help
here, too. The listing includes protocols for
putting the DS1620 into thermostat (NoCPU)
mode, and for reading and writing the
temperature setpoints. You could write a Stamp
program to accept temperature data serially,
convert it to nine-bit, two’s complement format,
then write it to the DS1620 configuration
register. An example program that does this is
available from the source listed below.

Be aware of the DS1620’s drive limitations in
thermostat mode; it sources just 1 mA and sinks
4 mA. This isn’t nearly enough to drive a relay—
it’s barely enough to light an LED. You’ll want
to buffer this output with a Darlington

Stamp Applications no. 2, April 1995

3

Nine-Bit Format for DS1620 Temperature Data

-Temperature- -DS1620 Data-
°F °C Binary Hexadecimal Decimal

+257 +125 0 11111010 00FA 250
+77 +25 0 00110010 0032 50
+32.9 +0.5 0 00000001 0001 1
+32 0 0 00000000 0000 0
+31.1 -0.5 1 11111111 01FF 511
-13 -25 1 11001110 01CE 462
-67 -55 1 10010010 0192 402

Example conversion of a negative temperature:
-25°C = 1 11001110 in binary. The 1 in the leftmost bit indicates that this is a negative number.
Invert the lower eight bits and add 1: 11001110 -> 00110001 + 1 = 00110010 = 50. Units are
0.5°C, so divide by 2. Converted result is -25°C.

or MOSFET switch in serious applications.

For Your Convenience

Dallas Semiconductor offers data and samples
of the DS1620 at reasonable cost. Call them at
214-450-0448 or contact your distributor. For a
copy of the program listing (plus a thermostat
programming example and PIC assembly

language source code) on disk, a sample
DS1620, and DS1620 documentation, you may
order the DS1620 App Kit from Scott Edwards
Electronics, 964 Cactus Wren Lane, Sierra
Vista, AZ 85635; phone, 520-459-4802; fax 520-
459-0623. Price is $20 postpaid. Visa,
Mastercard, American Express, checks, and
qualified purchase orders accepted.

Stamp Applications no. 2, April 1995

4

' Program Listing For Interfacing To DS1620 Digital Thermometer
' Program: DS1620.BAS
' This program interfaces the DS1620 Digital Thermometer to the
' BASIC Stamp. Input and output subroutines can be combined to
' set the '1620 for thermometer or thermostat operation, read
' or write nonvolatile temperature setpoints and configuration
' data.
' ===================== Define Pins and Variables ================
SYMBOL DQp = pin2 ' Data I/O pin.
SYMBOL DQn = 2 ' Data I/O pin _number_.
SYMBOL CLKn = 1 ' Clock pin number.
SYMBOL RSTn = 0 ' Reset pin number.
SYMBOL DSout = w0 ' Use bit-addressable byte for DS1620 output.
SYMBOL DSin = w0 ' " " " word " " input.
SYMBOL clocks = b2 ' Counter for clock pulses.
' ===================== Define DS1620 Constants ===================
' >>> Constants for configuring the DS1620
SYMBOL Rconfig = $AC ' Protocol for 'Read Configuration.'
SYMBOL Wconfig = $0C ' Protocol for 'Write Configuration.'
SYMBOL CPU = %10 ' Config bit: serial thermometer mode.
SYMBOL NoCPU = %00 ' Config bit: standalone thermostat mode.
SYMBOL OneShot = %01 ' Config bit: one conversion per start request.
SYMBOL Cont = %00 ' Config bit: continuous conversions after start.
' >>> Constants for serial thermometer applications.
SYMBOL StartC = $EE ' Protocol for 'Start Conversion.'
SYMBOL StopC = $22 ' Protocol for 'Stop Conversion.'
SYMBOL Rtemp = $AA ' Protocol for 'Read Temperature.'
' >>> Constants for programming thermostat functions.
SYMBOL RhiT = $A1 ' Protocol for 'Read High-Temperature Setting.'
SYMBOL WhiT = $01 ' Protocol for 'Write High-Temperature Setting.'
SYMBOL RloT = $A2 ' Protocol for 'Read Low-Temperature Setting.'
SYMBOL WloT = $02 ' Protocol for 'Write Low-Temperature Setting.'
' ===================== Begin Program ============================
' Start by setting initial conditions of I/O lines.
low RSTn ' Deactivate the DS1620 for now.
high CLKn ' Initially high as shown in DS specs.
pause 100 ' Wait a bit for things to settle down.

' Now configure the DS1620 for thermometer operation. The
' configuration register is nonvolatile EEPROM. You only need to
' configure the DS1620 once. It will retain those configuration
' settings until you change them--even with power removed. To
' conserve Stamp program memory, you can preconfigure the DS1620,
' then remove the configuration code from your final program.
' (You'll still need to issue a start-conversion command, though.)
let DSout=Wconfig ' Put write-config command into output byte.
gosub Shout ' And send it to the DS1620.
let DSout=CPU+Cont ' Configure as thermometer, continuous conversion.
gosub Shout ' Send to DS1620.
low RSTn ' Deactivate '1620.
Pause 50 ' Wait 50ms for EEPROM programming cycle.
let DSout=StartC ' Now, start the conversions by
gosub Shout ' sending the start protocol to DS1620.
low RSTn ' Deactivate '1620.

Stamp Applications no. 2, April 1995

5

' The loop below continuously reads the latest temperature data from
' the DS1620. The '1620 performs one temperature conversion per second.
' If you read it more frequently than that, you'll get the result
' of the most recent conversion. The '1620 data is a 9-bit number
' in units of 0.5 deg. C. See the ConverTemp subroutine below.
Again:
 pause 1000 ' Wait 1 second for conversion to finish.
 let DSout=Rtemp ' Send the read-temperature opcode.
 gosub Shout
 gosub Shin ' Get the data.
 low RSTn ' Deactivate the DS1620.
 gosub ConverTemp ' Convert the temperature reading to absolute.
 gosub DisplayF ' Display in degrees F.
 gosub DisplayC ' Display in degrees C.
goto Again
' ===================== DS1620 I/O Subroutines ==================
' Subroutine: Shout
' Shift bits out to the DS1620. Sends the lower 8 bits stored in
' DSout (w0). Note that Shout activates the DS1620, since all trans-
' actions begin with the Stamp sending a protocol (command). It does
' not deactivate the DS1620, though, since many transactions either
' send additional data, or receive data after the initial protocol.
' Note that Shout destroys the contents of DSout in the process of
' shifting it. If you need to save this value, copy it to another
' register.
Shout:
high RSTn ' Activate DS1620.
output DQn ' Set to output to send data to DS1620.
for clocks = 1 to 8 ' Send 8 data bits.
 low CLKn ' Data is valid on rising edge of clock.
 let DQp = bit0 ' Set up the data bit.
 high CLKn ' Raise clock.
 let DSout=DSout/2 ' Shift next data bit into position.
next ' If less than 8 bits sent, loop.
return ' Else return.

' Subroutine: Shin
' Shift bits in from the DS1620. Reads 9 bits into the lsbs of DSin
' (w0). Shin is written to get 9 bits because the DS1620's temperature
' readings are 9 bits long. If you use Shin to read the configuration
' register, just ignore the 9th bit. Note that DSin overlaps with DSout.
' If you need to save the value shifted in, copy it to another register
' before the next Shout.
Shin:
input DQn ' Get ready for input from DQ.
for clocks = 1 to 9 ' Receive 9 data bits.
 let DSin = DSin/2 ' Shift input right.
 low CLKn ' DQ is valid after falling edge of clock.
 let bit8 = DQp ' Get the data bit.
 high CLKn ' Raise the clock.
next ' If less than 9 bits received, loop.
return ' Else return.

Stamp Applications no. 2, April 1995

6

' ================= Data Conversion/Display Subroutines ===============
' Subroutine: ConverTemp
' The DS1620 has a range of -55 to +125 degrees C in increments of 1/2
' degree. It's awkward to work with negative numbers in the Stamp's
' positive-integer math, so I've made up a temperature scale called
' DSabs (DS1620 absolute scale) that ranges from 0 (-55 C) to 360 (+125 C).
' Internally, your program can do its math in DSabs, then convert to
' degrees F or C for display.
ConverTemp:
if bit8 = 0 then skip ' If temp > 0 skip "sign extension" procedure.
 let w0 = w0 | $FE00 ' Make bits 9 through 15 all 1s to make a

' 16-bit two's complement number.
skip:
 let w0 = w0 + 110 ' Add 110 to reading and return.
return
' Subroutine: DisplayF
' Convert the temperature in DSabs to degrees F and display on the
' PC screen using debug.
DisplayF:
let w1 = w0*9/10 ' Convert to degrees F relative to -67.
if w1 < 67 then subzF ' Handle negative numbers.
 let w1 = w1-67
 Debug #w1, " F",cr
return
subzF:
 let w1 = 67-w1 ' Calculate degrees below 0.
 Debug "-",#w1," F",cr ' Display with minus sign.
return

' Subroutine: DisplayC
' Convert the temperature in DSabs to degrees C and display on the
' PC screen using debug.
DisplayC:
let w1 = w0/2 ' Convert to degrees C relative to -55.
if w1 < 55 then subzC ' Handle negative numbers.
 let w1 = w1-55
 Debug #w1, " C",cr
return
subzC:
 let w1 = 55-w1 ' Calculate degrees below 0.
 Debug "-",#w1," C",cr ' Display with minus sign.
return

Stamp Applications no. 3 (May ’95):

Adapt a Keypad for Pro-Quality Data Entry;
Included Software Lets Stamp “Type” on a PC

Hacking a Commercial Keypad, by Scott Edwards

THIS month’s applications make an off-the-shelf
numeric keypad for PCs do double duty; first as
a serial data-entry terminal for the Stamp, then
as a sneaky software method of getting Stamp
data into your favorite PC applications, like
spreadsheets and word processors.

I’ve wanted to manufacture a Stamp-
compatible keypad, but the cost of starting from
scratch is daunting. A decent keypad requires
good switches and a sturdy enclosure, both of
which are very expensive in the small quantities
that the Stamp aftermarket might use. There
are occasional surplus bargains, but there’s also
the risk that the supply will dry up on the very

day that Ultra-Mega Industries Inc. places a big
order.

I recently found an accessory keypad for
laptop computers—an ORTEK MCK-18S/N,
made in Taiwan. It communicates with and is
powered by a PC’s serial port. Included software
redirects data from the keypad to the keyboard
buffer, so that it functions just like keys on the
standard keyboard. The pad has 18 buttons,
consisting of the numbers 0 through 9, decimal
point, Escape, Num Lock, Enter, and the math
operators (/, *, -, +). The keys are quality Alps
switches with standard PC-style keycaps. The
unit is enclosed in a nice flat-black case.

Esc Num
Lock

/ *

7 –

+

*

*

8 9

5

Home Pg Up

4 6

1
End

2 3
Pg Dn

.
Del

0
Ins

Enter

DB9
Female

DB9
Male

DB9 Pin

6

Stamp

2

5

3

+5V

pin 0

GND

GND

ORTEK Serial Keypad

Figure 1. Connecting the serial keypad to the Stamp for data entry requires
just one I/O pin plus a few microamps from the Stamp’s power supply.

Stamp Applications no. 3, May 1995

2

At $49 (see the source list), the keypad isn’t
cheap, but it’s not unreasonably expensive
either. So I bought one and proceeded to hack it.
Here’s what I found:

The heart of the keypad circuitry is a PIC
microcontroller, just like the Stamp’s own
processor. This one runs at a leisurely 38.4 kHz;
less than 1/100th the speed of a Stamp. This
limits current draw to the 10s of microamps. It
also helps the keypad meet FCC limits on radio
interference.

When you press one of the pad’s keys, its PIC
sends a one-byte code (generally a lower-case
letter) to the PC via an AT-style DB-9 serial
connector. The serial data is sent at 1200 baud,
with no parity, 8 data bits, and 1 stop bit (N81).
If you hold down a key, the PIC waits a moment,
then transmits a string of the same one-byte key
code in rapid-fire fashion to simulate the
“typeamatic” response of the standard keyboard.
When you release a key, the PIC sends a
different one-byte code (generally the upper-case
version of the key-down code). Table 1
summarizes the codes.

Table 1. Key Codes Used
by Unmodified ORTEK Keypad

Key
Key-Down
(ASCII)

Key-Up
(ASCII)

1 ‘ (96) @ (64)
2 a (97) A (65)
3 b (98) B (66)
4 c (99) C (67)
5 d (100) D (68)
6 e (101) E (69)
7 f (102) F (70)
8 g (103) G (71)
9 h (104) H (72)
Esc i (105) I (73)
/ j (106) J (74)
* k (107) K (75)
- l (108) L (76)
+ m (109) M (77)
. (point) n (110) N (78)
0 (zero) o (111) O (79)
Enter t (116) T (84)
Num Lock y (121) Y (89)

From an electrical standpoint, the keypad is
wired to derive power from and send signals to
the PC serial port. Its interface generates
bipolarity RS-232 signals from the stolen port
output voltages. However, the pad will work just
fine with a single-ended 5-volt supply, like that
of the Stamp. See table 2 for connections.

Table 2. ORTEK Keypad Wiring

DB-9 Color PC Function Stamp

2 orange receive data serial in
3 yellow transmit data ground
6 white DSR handshake +5 volts
5 black ground ground

Armed with nothing more than the
information above, you could make use of the
ORTEK keypad for Stamp data entry. Figure 1
shows the hookup, while listing 1 demonstrates
how to make sense of the data. However,
I couldn’t leave well enough alone.

PC Keypad + PIC Program = “Stamp Pad”

The SERIN command can convert strings of
ASCII text like “123” into equivalent numbers
without the additional programming effort of
listing 1. If only the keypad generated terminal-
style output...

Instead of wishing, I picked up a soldering
iron and removed the keypad’s PIC controller. I
probed the remaining keypad circuitry and
determined the following:

• Like most keypads, this one is wired as a
matrix of row and column connections. When a
key is pressed, it shorts one row to one column.
The processor looks up the row and column
coordinates of the short in a table stored in
ROM to translate it to a key code.

• The pad’s column connections go to the four
bits of PIC port RA, which are configured as
inputs. (On the Stamp, RA is used to
communicate with the PC and manage the
EEPROM. It isn’t accessible to the user.) When
no key is pressed, all bits of RA are pulled high
(reading 1s) by four resistors.

• The pad addresses the row connections with

Stamp Applications no. 3, May 1995

3

the outputs of a 74HCT138 eight-channel
multiplexer. This chip accepts a three-bit
address from the lower bits of PIC port RB, and
outputs a low on one of its eight outputs.
Another bit of RB is used to activate and
deactivate the ‘138. Bit RB.7 serves as the serial
output. The remaining three bits of RB are
unused.

Based on these observations, I coded a
replacement PIC in assembly language. Thanks
to the clever design of the hardware, this was
extremely easy to do. Most of the effort went
into preparing tables that unscrambled the
row/column coordinate system of the pad, which
was apparently designed to permit an
inexpensive, one-sided circuit-board layout.

In addition to changing the data format with
my new program, I added a hardware feature; a
key-acknowledgment beeper. If an inexpensive
piezo beeper is connected between pin RB.4 of
the PIC and circuit ground, the beeper will
make a short “bink” sound to acknowledge each
key press. For applications that lack a display to
confirm the numbers being entered, this is a
tremendous help.

The modified keypad acts like a micro
terminal that transmits one ASCII character
per keypress (as shown in table 3). The
characters correspond to the Stamp’s internal
table of the ASCII character set. That is, the
following line of Stamp code will respond to the
code sent by pressing the “*” key:

IF theKey = “*” THEN Asterisk

My keypad PIC program has a strict debounce
function that requires keys to be pressed and
released in a deliberate manner. Speed isn’t
compromised, as long as users don’t roll from
one key to the other. The first key has to be
released before the next will register.

You can make your own Stamp Pad. Figure 2
shows details of the modification. To use the
modified pad, connect it to the Stamp as shown
in listing 1, then use Serin to collect the data. If,
for instance, you want a 16-bit number to be
stored to variable w1, use:

SERIN 0,N1200,#W1

Table 3. Key Codes for “Stamp Pad”

Key
Transmitted Text
(ASCII value)

1 1 (49)
2 2 (50)
3 3 (51)
4 4 (52)
5 5 (53)
6 6 (54)
7 7 (55)
8 8 (56)
9 9 (57)
Esc <ESC> (27)
/ / (47)
* * (42)
- - (45)
+ + (43)
. (point) . (46)
0 (zero) 0 (48)
Enter <RETURN> (13)
Num Lock <SPACE> (32)

The # symbol before the variable name tells
the Stamp to interpret up to five keystrokes as a
number ranging from 0 to 65,535 (the range of a
16-bit number). The user must press Enter or
any other non-numeric key to finish the entry. If
you just want to know which key was pressed,
use a byte variable without the #:

SERIN 0,N1200,B2

After the instruction executes, B2 will contain
the ASCII value of the key pressed, as shown in
table 3. If you have used SERIN before to accept
data from a PC or other computer, this stuff is
old hat by now.

You can obtain the Stamp Pad PIC from me,
either by buying it outright, or by obtaining the
source code free with purchase of my PIC Source
Book. This is a collection of assembly language
routines for the PIC that mimic the functions of
the BASIC Stamp, helping users to move their
programs into faster, more efficient PIC
hardware. See the source box at the end of this
column.

Stamp Applications no. 3, May 1995

4

Carefully desolder and remove the
original PIC from the board. Replace
with the custom “Stamp Pad” PIC,
using a socket if desired.

Install a piezo beeper (Radio Shack no.
273-074) for a “bink” response to each
keypress. Attach hookup wire close to the
body of the beeper, then trim excess lead
length. Glue the beeper in place.

Beeper – lead.

Beeper + lead.

Connect the beeper wires to
pin 10 of the PIC (+) and
circuit ground (–) as shown.

Figure 2. Details of the Stamp Pad modification.

But Wait, There’s More!

There’s an expression about sausage makers
using “every part of the pig except the squeal.”
In that spirit, I couldn’t ignore the software that
came with the keypad. It redirects codes from
the serial port to the keypad buffer, allowing
you to use numeric input from the pad in any
DOS or Windows application.

It occurred to me that if the Stamp were
programmed to mimic the key codes, and the
keypad software were installed, then the Stamp
could “type” data at the keyboard. Think about
it--Stamp-collected data magically appears in
your spreadsheet, database, or word processor
document. No fumbling with terminal software
or file transfers.

There are general-purpose software utilities
and hardware devices sold for this very purpose,
with prices from $100 to $500. They accept any
kind of serial input, not just numbers. But if
numbers are all you need, check out listing 2. To
use the program, install the keypad software
according to the instructions that come with the
pad. Temporarily disable the keypad driver by
typing “KEYPAD OFF” at the DOS prompt.
Connect a Stamp programmed with listing 2 as

shown in table 4, but don’t connect power to the
Stamp yet. Next, turn on the keypad driver by
typing “KEYPAD” at the DOS prompt.

Table 4. Stamp-to-PC Connections
for Listing 2

Pin DB9 DB25

pin 0 2 3
GND 5 7

You’re ready to go. For a test drive, boot the
BASIC Stamp host program STAMP.EXE, but
don’t load a program. Reconnect power to the
Stamp. A column of numbers will be typed onto
the screen. That’s the Stamp, communicating
with your keyboard buffer through the keypad
software. Now you can write data-acquisition
programs for the Stamp that can communicate
directly with any piece of PC software you own!

By the way, the reason for the somewhat
roundabout setup procedure above is to avoid
trashing your work. When I wrote the program
in listing 2, I already had the keypad driver
resident in my PC’s memory, and the Stamp
connected to the serial port. As soon as I ran the
program, it began typing into my just-finished
Stamp program listing. I had to quickly

Stamp Applications no. 3, May 1995

5

disconnect the Stamp, and erase all of the
numbers it had added to the listing.

Conclusion

If you’re interested in other keypad solutions
for the Stamp, make sure to get Parallax
application note no. 3, which shows how to
connect a 74C922 16-key pad and an LCD to the
Stamp. Looking for an interesting application
for our serial keypad? Try Parallax application
note no. 6, a stepper-motor driver that can be
controlled directly from the Stamp Pad.

Sources

The ORTEK keypad is available from Jameco
(part no. 114841) for $49.95, plus applicable
shipping and handling charges. To order or
request a catalog: Jameco Electronic Com-
ponents, 1355 Shoreway Drive, Belmont, CA
94002-4100; phone 1-800-831-4242 or 415-592-
8097.

The Stamp Pad PIC required to modify the
keypad is $10 postpaid from Scott Edwards
Electronics. Source code for the Stamp Pad PIC
is free with purchase of The PIC Source Book, a
cookbook of assembly language PIC routines
based on the instruction set of the BASIC
Stamp. Prototype your ideas with the Stamp,
then convert them into fast, professional, one-
chip solutions with the help of the cut-and-paste
routines from the Source Book. Price is $39
postpaid. Order from Scott Edwards Electronics,
964 Cactus Wren Lane, Sierra Vista, AZ 85635;
phone 520-459-4802; fax 520-459-0623. Use Visa
or Mastercard for phone/fax orders; checks,
money orders, or POs from approved insti-
tutions also accepted. CODs and foreign orders
incur additional charges.

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101.

Stamp Applications no. 3, May 1995

6

' Listing 1: OR_KEYS.BAS (interpret ORTEK MCK-18S/N keypad codes)
' This program accepts serial data from the ORTEK MCK-18S/N numeric
' keypad and converts it into a 16-bit value in variable w1. Users
' must be careful not to hold keys down, or they will activate the
' pad's autorepeat function, causing entry errors.

' Main program loop.
Loop:
gosub GetKeys ' Getkeys does all the work.
debug w1 ' Show the result on the PC screen.
goto Loop ' Do it forever.

' Subroutine to receive the serial data, filter out extraneous key-up
' codes, and convert received data bytes to a 16-bit value. GetKeys
' will keep accepting and interpreting digits until the user presses
' a non-numeric key, like <Enter>. The routine takes advantage of the
' fact that the key codes for the numbers 1-9 are sequential;
' subtracting 95 from them leaves you with the number itself.
' Although0 (zero) is out of sequence, an additional IF/THEN
' statement recognizes its code ("o").
GetKeys:
let w1 = 0 ' Clear w1 to start.
Again:
 Serin 0,N1200,b0 ' Get code from the keypad.
 if bit5 = 0 then Again ' Bit5 is 0 in key-up codes; ignore em.
 if b0 <> "o" then skip ' Change 0 code from "o" (111) to 95.
 let b0 = 95
skip:
 if b0 > 104 then done ' Non-numeric key pressed; we're done.
 let b0 = b0 - 95 ' Otherwise convert to 0-9, multiply
 let w1 = w1 * 10 + b0 ' old total by 10, add new value, and
goto Again ' get the next digit.
done:
 return ' Done: return to main program.

Stamp Applications no. 3, May 1995

7

' Listing 2: FAKE_PAD.BAS (imitate the ORTEK keypad codes)
' This program mimics the codes produced by the ORTEK keypad,
' allowing a PC running the ORTEK software to receive Stamp data
' to its keyboard buffer. The Stamp "types" directly into programs
' that are incapable of normal serial input. To demonstrate this
' capability, the Stamp will count upward by 1 and type the result
' of each calculation to the PC. Remember that the keypad software
' must be installed on the PC for this to work. Before running
' this program, make sure that this program is saved, since the
' Stamp may begin typing numbers into it, if the keypad software
' is active.

SYMBOL nonZero = bit0 ' Leading-zero suppression flag.
SYMBOL code = b1 ' Key code to send.
SYMBOL decade = w2 ' Power-of-10 divisor for conversion.
SYMBOL count = w3 ' Counter for demo.

' Main program loop.
Loop:
 let w1 = count ' Transfer value of copy to w1.
 gosub typeData ' "Type" the data to PC.
 pause 100 ' Wait briefly
 let count = count + 1 ' Increment counter.
goto Loop ' Do it forever.

' Subroutine to convert the value stored in w1 to ORTEK keypad codes.
typeData:
let nonZero = 0 ' Clear flag that indicates first non-0 digit.
let decade = 10000 ' Start with highest digit of w1.
nextDigit:
 let code = w1/decade ' Get value of current digit.
 let w1 = w1//decade ' Leave remainder in w1.
 if code=0 AND nonZero=0 AND decade <> 1 then skip3 ' No leading 0s.
 if code=0 then skip1
 let nonZero = 1
 goto skip2
skip1:
 let code = 16 ' Code for 0, minus 95.
skip2:
 let code = code + 95
 serout 0,N1200,(code) ' Send key-down code of digit.
 let bit13 = 0 ' Clear bit5 of b1 (bit13) for key-up code.
 serout 0,N1200,(code) ' Send key-up code.
skip3:
 let decade = decade/10 ' Get ready for next lower digit
 if decade > 0 then nextDigit
 serout 0,N1200,("tT") ' Done. Send <Enter> key.
return

Stamp Applications no. 4 (June ’95):

High-Precision Measurement Made Easy
With New 12-bit Analog-to-Digital Converter

Using the LTC1298, by Scott Edwards

MANY popular applications for the Stamp
include analog measurement, either using the
built-in Pot (resistance measurement) command
or an external analog-to-digital converter (ADC).
These measurements are limited to eight-bit
resolution, meaning that a 5-volt full-scale
measurement would be broken into units of
5/256 = 19.5 millivolts (mV).

That sounds pretty good until you apply it to a
real-world sensor. Take the LM34 and LM35
temperature sensors as an example. They
output a voltage proportional to the ambient
temperature in degrees Fahrenheit (LM34) or
Centigrade (LM35). A 1-degree change in
temperature causes a 10-mV change in the
sensor’s output voltage. An eight-bit conversion

gives lousy 2-degree resolution. By reducing the
ADC’s range, or amplifying the sensor signal,
you can improve resolution at the expense of
more components and a less-general design.

The easy way out is to switch to an ADC with
10- or 12-bit resolution. Until recently, that
hasn’t been a decision to make lightly, since
more bits = more bucks. However, the new
LTC1298 12-bit ADC is reasonably priced at less
than $10, and gives your Stamp projects two
channels of 1.22-millivolt resolution data. It’s
available in a Stamp-friendly 8-pin DIP, and
draws about 250 microamps (uA) of current.

The figure shows how to connect the LTC1298
to the Stamp, and the listing supplies the
necessary driver code.

1k

+5

10µF
tantalum

+

5k
pot

5k
pot

+5

pin 0 pin 2 pin 1

Connections to BASIC Stamp I/O pins

Variable Voltage
Source for Demo

0–5V in

CS

CH0

CH1

GND

Vcc

CLK

Dout

Din

LTC1298

1

Pinout and connection details for the LTC1298.

Stamp Applications no. 4, June 1995

2

If you have used other synchronous serial
devices with the Stamp, such as EEPROMs,
other ADCs or the DS1620 thermometer
described in a previous column, there are no
surprises here. We have tied the LTC1298’s data
input and output together to take advantage of
the Stamp’s ability to switch data directions on
the fly. The resistor limits the current flowing
between the Stamp I/O pin and the 1298’s data
output in case a programming error or other
fault causes a “bus conflict.” This happens when
both pins are in output mode and in opposite
states (1 vs. 0). Without the resistor, such a
conflict would cause large currents to flow
between pins, possibly damaging the Stamp
and/or ADC.

You may have noticed that the LTC1298 has
no voltage-reference (Vref) pin. The voltage
reference is what an ADC compares its analog
input voltage to. When the analog voltage is
equal to the reference voltage, the ADC outputs
its maximum measurement value; 4095 in this
case. Smaller input voltages result in
proportionally smaller output values. For
example, an input of 1/10th the reference
voltage would produce an output value of 409.

The LTC1298’s voltage reference is internally
connected to the power supply at pin 8. This
means that a full-scale reading of 4095 will
occur when the input voltage is equal to the
power-supply voltage, nominally 5 volts. Notice
the weasel word “nominally,” meaning “in name
only.” The actual voltage at the +5-volt rail of
the full-size (pre-BS1-IC) Stamp with the
LM2936 regulator can be 4.9 to 5.1 volts
initially, and can vary by 30 mV.

In some applications you’ll need a calibration
step to compensate for the supply voltage.
Suppose the LTC1298 is looking at a source of
2.00 volts. If the supply is 4.90 volts, the
LTC1298 will measure (2.00/4.90) * 4095 =
1671. If the supply is at the other extreme, 5.10
volts, the LTC1298 will measure (2.00/5.10) *
4095 = 1606.

How about that 30-millivolt deviation in
regulator performance, which cannot be
calibrated away? If calibration makes it seem as
though the LTC1298 is getting a 5.000-volt
reference, a 30-millivolt variation means that

the voltage would vary 15 millivolts high or low.
Using the 2.00-volt example, the LTC1298
measurements can range from (2.00/4.985) *
4095 = 1643 to (2.00/5.015) * 4095 = 1633.

The bottom line is that the measurements you
make with the LTC1298 will be only as good as
the stability of your +5-volt supply.

I suppose the reason for leaving off a separate
voltage-reference pin was to make room for the
chip’s second analog input. The LTC1298 can
treat its two inputs as either separate ADC
channels, or as a single, differential channel. A
differential ADC is one that measures the
voltage difference between its inputs, rather
than the voltage between one input and ground.

A final feature of the LTC1298 is the sample-
and-hold capability. At the instant your
program requests data, the ADC grabs and
stores the input voltage level in an internal
capacitor. It measures this stored voltage, not
the actual input voltage.

By measuring this voltage snapshot, the
LTC1298 avoids the errors that can occur when
an ADC tries to measure a changing voltage.
Without going into the gory details, most
common ADCs are successive approximation
types. That means that they zero in on a voltage
measurement by comparing a guess to the
actual voltage, then determining whether the
actual is higher or lower. They formulate a new
guess and try again. This game becomes very
difficult if the voltage is constantly changing!

ADCs that aren’t equipped with sample-and-
hold circuitry should not be used to measure
noisy or fast-changing voltages. The LTC1298
has no such restriction.

The program listing is thoroughly commented,
so I won’t waste ink by repeating that stuff here.
Instead, I want discuss a subtlety that trips up
many Stamp users: the difference between an
I/O pin number and a pin variable .

Look at the beginning of the listing, under
ADC Interface Pins. We’ve assigned names
(SYMBOLs) to each of the pins that the Stamp
uses to talk to the LTC1298. CS is 0, CLK is 1,
and DIO (data in/out) is 2. DIO actually has two
SYMBOLs: DIO_n (2) and DIO_p (pin2). Why?

PBASIC refers to the I/O pins in one of two
ways; as numbers (0 through 7) or as bit

Stamp Applications no. 4, June 1995

3

variables with preassigned names (pin0 through
pin7). The following commands use pin
numbers:

High, Low, Toggle, Input, Output, Reverse,
Pot, Pulsin, Pulsout, PWM, Serin, Serout, Sound

Take High for example. The following are
valid PBASIC commands:

High 3 ' Make pin 3 output high.

High b2 ' Make the pin number (0-7)

' contained in b2 output high.

High bit7 ' Make pin 0 high if bit7 = 0;

' make pin 1 high if bit7 = 1.

You can specify the pin as either a constant like
“3” or as a variable like b2 or bit7.

On the other hand, the math and logic
instructions look at the pins as bit variables
with a value of 0 or 1. Suppose pin 1 is set up as
an input, and the following instruction executes:

Let b2 = b2 + pin1 ' Add pin 1 to b2.

If there’s a 0 at pin 1, 0 is added to b2. If there’s
a 1 at pin 1, 1 is added to b2. This example
points out why we sometimes refer to pins by
their numbers, and sometimes by their variable
names. Would the following instruction have the
same result as the one above?

Let b2 = b2 + 1 ' Add 1 to b2.

Nope. We have to make the distinction
between 1 and pin1.

Back to the question I originally posed: Why
assign two SYMBOLs for the DIO pin? The

reason is that this pin is used with High, which
requires a pin number, and also with a Let
expression, which requires a variable name. The
listing’s convention for this is to add the ending
“_n” for the number and “_p” for the pin-variable
name.

The common bug that arises from the two
ways of referring to pins looks like this:

High pin3 ' Usually a bug!

The programmer believes that he or she is
making pin 3 output high. PBASIC interprets
this line to mean, “if pin3 = 0 then make pin 0
high; if pin3 = 1 then make pin 1 high.”
Probably not what the programmer had in mind.

Conclusion. The LTC1298 is a Stamp-
friendly peripheral for precision sensing
applications. It’s available from Digi-Key (800-
344-4539) for $8.89 in single quantity as part
number LTC1298CN8-ND (8-pin DIP) or
LTC1298CS8-ND (surface-mount). Be sure to
request a data sheet or order the data book
(9210B-ND, $9.95) when you order.

For a copy of the program listing (plus a
thermostat programming example and PIC
assembly language source code) on disk, a
sample LTC1298, and LTC1298documentation,
you may order the LTC1298App Kit from Scott
Edwards Electronics, 964 Cactus Wren Lane,
Sierra Vista, AZ 85635; phone, 520-459-4802;
fax 520-459-0623. Price is $25 postpaid. Visa,
Mastercard, American Express, checks, and
qualified purchase orders accepted.

Stamp Applications no. 4, June 1995

4

' Program: LTC1298 (LTC1298 analog-to-digital converter)
' The LTC1298 is a 12-bit, two-channel ADC. Its high resolution, low
' supply current, low cost, and built-in sample/hold feature make it a
' great companion for the Stamp in sensor and data-logging applications.
' With its 12-bit resolution, the LTC1298 can measure tiny changes in
' input voltage; 1.22 millivolts (5-volt reference/4096).
' ==
' ADC Interface Pins
' ==
' The 1298 uses a four-pin interface, consisting of chip-select, clock,
' data input, and data output. In this application, we tie the data lines
' together with a 1k resistor and connect the Stamp pin designated DIO
' to the data-in side of the resistor. The resistor limits the current
' flowing between DIO and the 1298's data out in case a programming error
' or other fault causes a "bus conflict." This happens when both pins are
' in output mode and in opposite states (1 vs 0). Without the resistor,
' such a conflict would cause large currents to flow between pins,
' possibly damaging the Stamp and/or ADC.
SYMBOL CS = 0 ' Chip select; 0 = active.
SYMBOL CLK = 1 ' Clock to ADC; out on rising, in on falling edge.
SYMBOL DIO_n = 2 ' Pin _number_ of data input/output.
SYMBOL DIO_p = pin2 ' Variable_name_ of data input/output.
SYMBOL ADbits = b1 ' Counter variable for serial bit reception.
SYMBOL AD = w1 ' 12-bit ADC conversion result.
' ==
' ADC Setup Bits
' ==
' The 1298 has two modes. As a single-ended ADC, it measures the
' voltage at one of its inputs with respect to ground. As a differential
' ADC, it measures the difference in voltage between the two inputs.
' The sglDif bit determines the mode; 1 = single-ended, 0 = differential.
' When the 1298 is single-ended, the oddSign bit selects the active input
' channel; 0 = channel 0 (pin 2), 1 = channel 1 (pin 3).
' When the 1298 is differential, the oddSign bit selects the polarity
' between the two inputs; 0 = channel 0 is +, 1 = channel 1 is +.
' The msbf bit determines whether clock cycles _after_ the 12 data bits
' have been sent will send 0s (msbf = 1) or a least-significant-bit-first
' copy of the data (msbf = 0). This program doesn't continue clocking after
' the data has been obtained, so this bit doesn't matter.
' You probably won't need to change the basic mode (single/differential)
' or the format of the post-data bits while the program is running, so
' these are assigned as constants. You probably will want to be able to
' change channels, so oddSign (the channel selector) is a bit variable.
SYMBOL sglDif = 1 ' Single-ended, two-channel mode.
SYMBOL msbf = 1 ' Output 0s after data transfer is complete.
SYMBOL oddSign = bit0 ' Program writes channel # to this bit.

Stamp Applications no. 4, June 1995

5

' ==
' Demo Program
' ==
' This program demonstrates the LTC1298 by alternately sampling the two
' input channels and presenting the results on the PC screen using Debug.
high CS ' Deactivate the ADC to begin.
Again: ' Main loop.
 For oddSign = 0 to 1 ' Toggle between input channels.
 gosub Convert ' Get data from ADC.
 debug "ch ",#oddSign,":",#AD,cr ' Show the data on PC screen.
 pause 500 ' Wait a half second.
 next ' Change input channels.
goto Again ' Endless loop.

' ==
' ADC Subroutine
' ==
' Here's where the conversion occurs. The Stamp first sends the setup
' bits to the 1298, then clocks in one null bit (a dummy bit that always
' reads 0) followed by the conversion data.
Convert:
 low CLK ' Low clock--output on rising edge.
 high DIO_n ' Switch DIO to output high (start bit).
 low CS ' Activate the 1298.
 pulsout CLK,5 ' Send start bit.
 let DIO_p = sglDif ' First setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = oddSign ' Second setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = msbf ' Final setup bit.
 pulsout CLK,5 ' Send bit.
 input DIO_n ' Get ready for input from DIO.
 let AD = 0 ' Clear old ADC result.
 for ADbits = 1 to 13 ' Get null bit + 12 data bits.
 let AD = AD*2+DIO_p ' Shift AD left, add new data bit.
 pulsout CLK,5 ' Clock next data bit in.
 next ' Get next data bit.
 high CS ' Turn off the ADC
return ' Return to program.

Stamp Applications no. 5 (July ’95):

Checking Battery Condition
and Multiplexing I/O Lines

Two Mini Applications, by Scott Edwards

THIS month’s first application was contributed
by Guy Marsden of ART TEC, Oakland,
California. Guy, a former visual effects
specialist for the movies (Star Trek the Motion
Picture, Ghostbusters, 2010) makes his living
helping artists incorporate electronics into their
work. One such work was powered by 12-volt
lead-acid battery, and Guy devised a simple,
effective way for the Stamp to monitor the
battery and sound an alarm at charging time.

Figure 1 and listing 1 show Guy’s method.
He’s using the brightness of the LED as a
relative indication of battery voltage. The Stamp
reads this brightness as a variable resistance
across the photocell. When the photocell
resistance exceeds a preset limit, the Stamp
sounds an alarm.

To Stamp
Pin 0

0.1µF

12-volt battery

100k

LED

CdS
Photocell

47k

light-tight
container

Figure 1. Battery-monitor setup.

Although Guy used a commercially made
optoisolator, you should get similar results with
a roll-your-own version. Just mount an LED

facing a photocell and cover the assembly to
block outside light.

This approach can be used more generally to
convert a variable voltage into a form that can
be read with the Pot command. Just keep a
couple of LED characteristics in mind:

• LEDs have a relatively high forward voltage
of approximately 1.5 to 2.1 volts. They don’t
light at all if the input voltage is below their
forward voltage. They require a series resistor to
make sure that the current through them is
reasonable (usually up to 25 mA continuous). To
calculate the value of this resistor, use the
following formula:

Series Resistor = (Input Voltage–LED
Forward Voltage) / LED current

For example, suppose your input is 9 volts.
Just guessing, you figure the LED forward
voltage at 1.9 volts. And you decide that 10
milliamperes is a safe bet for current.
(Remember that most electronic formulas
involving current want the value in amperes; 10
mA = 0.01 amperes.) The series resistor should
be (9-1.9)/0.01 = 710 ohms. Pick the closest
standard value (or the closest value that you
have on hand) and you’re done.

• An LED’s forward voltage decreases with
temperature, increasing the current that will
pass through it with a given series resistance.
More current usually means more light output,
but brightness decreases with temperature. To
make matters worse, data isn’t available for
most common LEDs. Even when data is

Stamp Applications no. 5, July 1995

2

4051

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

I/O 4

I/O 6

COMMON

I/O 7

I/O 5

INHIBIT

ANALOG—

GND

+ SUPPLY

I/O 2

I/O 1

I/O 0

I/O 3

CTL 0

CTL 1

CTL 2

+5

From
Stamp
Pins

1

2

0

To Stamp
Pin 3

10k pots

0.1µF

10k pots

0.1µF

4

6

7

5

2

1

0

3

Figure 2. Four Stamp pins read eight pots through a 4051 analog multiplexer.

available, it doesn’t usually provide much detail
on these effects.

So I’m wondering: Is Guy’s circuit usable
across a wide range of temperatures, or is it
restricted to the great indoors? I started to set
up an experiment to find out, then decided that
a contest would be more fun.

Here’s the deal: Design and construct a Stamp
project to test the output of Guy’s circuit over a
range of at least 32 to 90 degrees F with a
steady input voltage. (Temperature control can
be as simple as an ice bucket in which the ice is
allowed to melt.) Send me a drawing of the
circuit, the BASIC program listing, a brief
description of your procedure, and a copy of the
data generated by it. I’ll accept entries until
October 31, 1995.

The reader who submits the best entry (my
call) will receive the newest version of the LCD
Serial Backpack display with 16x1 LCD. This
latest model features switchable 2400- or 9600-
baud operation, low-voltage reset circuit,
improved contrast control, and an easy-to-read
16-character display. All runners-up will receive
a coupon good for 10 percent off anything I sell;
see the Sources box.

Double Your I/O

The next application is for those of you who
can never have enough input/output (I/O) lines.
Although I’m demonstrating it with the Pot
command, the same method will work with
almost any Stamp input or output statment.

Take a look at figure 2 and listing 2. It’s based
around a 4051 multiplexer/demultiplexer chip.
This device works like a digitally controlled
rotary switch, shown conceptually in figure 3.
Depending on the binary number on its control
bits, the chip connects one of eight I/Os to a
single common pin. This connection is analog
and bidirectional, so you can use it for input,
output, or both. The Pot command is a good
example of both, since it switches back and forth
between input and output as it measures the
time required to discharge a capacitor through
an unknown resistance.

120Ω

control lines
inhibit

(1 = open)

common

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

Figure 3. The 4051 multiplexer works like a
digitally controlled rotary switch. The three

control bits select I/O 0 (000 binary)
through 7 (111 binary).

For an investment of four pins--three control
bits and one common—you receive a dividend of
eight I/Os. Better than Wall Street most days.

There are a few limitations to this trick. The
first is evident if you try the pot demonstration.
You can never quite get a reading of zero; the

Stamp Applications no. 5, July 1995

3

lowest the readings will go is about 8. This is
because the 4051’s electronic rotary switch isn’t
perfect--it has a resistance of approximately 120
ohms.

A second limitation is that inputs to the 4051
must never exceed 0.5 volts above the supply
voltage or below ground. This means that the
4051 can’t be used to directly receive RS-232
serial signals through a series resistor as the
Stamp’s I/O pins can.

The last restriction is common to both the
4051 and the Stamp, so it really isn’t much of a
limitation: Current through the 4051 should
never exceed 25 mA.

If you like the 4051, but still need more I/O,
try the 4067. It provides 16 I/Os for five Stamp
pins. Check your favorite data book (such as the

CMOS Cookbook by Don Lancaster) for details.

Sources

Enter the LCD Serial Backpack contest and
win a new LCD display for your Stamp projects
(a $40 value) or 10 percent off Stamp accessories
and microcontroller projects seen here in Nuts &
Volts. Entries (or questions, suggestions,
requests) to: Scott Edwards Electronics, 964
Cactus Wren Lane, Sierra Vista, AZ 85635;
phone 520-459-4802; fax 520-459-0623; e-mail
(Compuserve) at 72037,2612; or via Internet
72037.2612@compuserve.com.

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101.

' Listing 1. BASIC Stamp Battery Monitor
' CHEAP AND SIMPLE LOW BATTERY WARNING
' Guy Marsden, March 1995. tekart@well.com
'
' Uses a Cds opto coupler with LED input such as: CLM6000.
' Put a 33 or 47K resistor across cell and a .1uF cap to gnd.
' Use a high value resistor in series with the LED wired directly
' to the battery. I used 100k for a 12volt system. This value is
' enough to produce a resistance of 20k at nominal battery voltage.
'
' When the voltage drops, the Cds resistance increases. By setting
' the SCALE of the POT function under a low battery condition, you
' will then have a range to work with. Determine your setpoint
' using a variable bench supply and a DVM.

symbol Batt = b2
symbol LoBatt = 220

CheckBatt:
 pot 0,76,Batt ' check battery voltage
 if Batt > LoBatt Alarm ' if less than established value
goto CheckBatt

Alarm:
 sound 1,100,100 ' beep piezo alarm
 pause 100
goto Alarm

Stamp Applications no. 5, July 1995

4

' Listing 2. Multiplexing Stamp I/O Lines
' Program: MULTIPOT.BAS (Multiple pots using a 4051 multiplexer)
' This program demonstrates how to connect and measure multiple
' pots using a 4051 multiplexer chip. The 4051's control inputs
' (11,10,9) connect to Stamp pins 0, 1, and 2 respectively.
' The common I/O pin (3) of the 4051 goes to Stamp pin 3.
' By writing a value between 0 and 7 to its pins, the Stamp can
' select one of eight variable-resistance inputs through the
' 4051. See the schematic for details.

SYMBOL pot_sel = b2 ' Pot number 0-7 selected through 4051.
SYMBOL pot_val = b3 ' Result of the pot measurement.

Let dirs = %0111 ' Make the lower 3 pins outputs to drive 4051.
Again:
 for pot_sel = 0 to 7 ' For each of the eight pots:
 let pins = pot_sel ' Write pot number to the 4051.
 pot 3,150,pot_val ' Perform pot measurement on selected pot.
 debug "pot #",#pot_sel," ",#pot_val,cr ' Display result.
 next pot_sel ' Read the next pot.
 pause 2000 ' Wait two seconds.
 debug cr ' Insert a carriage return on screen.
goto Again ' Do it again (endless loop).

Stamp Applications no. 6 (August ’95):

Silicon Steroids for the Stamp
Help Your Projects Heft Big Loads

Using Switching Trasistors, by Scott Edwards

ONE of the outstanding characteristics of the
PIC microcontroller used in the BASIC Stamp is
its ability to directly drive loads like LEDs
through its input/output pins. The Stamp can
source (conduct to +5) up to 20 mA and sink
(conduct to ground) up to 25 mA. Total current
sourced or sunk by all eight pins should not
exceed 40 or 50 mA, respectively.

Now I’ll grant that 25 mA doesn’t sound like a
lot of current. But shop around. Other
microcontrollers make a big deal out of having a
few “high-current” pins capable of sourcing 2
mA and sinking 10.

OK, so the Stamp is a muscle-bound brute by
microcontroller standards. It still gets sand
kicked in its face by applications that need to
drive motors, incandescent bulbs, relays,

solenoids, etc. In today’s column we’re going to
pump up the Stamp to new levels of power.

Let’s start with the basic transistor switch. To
keep matters simple, we will limit our
discussion to current-sink capability--switching
current to ground.

The tools for the job are simple and easy to
obtain; a resistor and an NPN transistor. Figure
1 shows the capabilities of a common 2N2222, a
high-gain transistor, and a low-power
Darlington transistor.

In figure 1, you can think of the collector (C)
and emitter (E) of the transistor as forming a
switch to ground. Current at the base turns the
switch on. If Stamp pin 0 were connected to this
circuit, the instruction High 0 would turn on
current to the load; Low 0 would turn it off.

RB B
C

E

Stamp pin

NPN
Switching
Transistor or
Darlington

LOAD

+Supply

Transistor
Load
Current

Max
+Supply

C–E
Voltage Drop Remarks

Base
CurrentRB

2N2222 100 mA 30 V 0.5 V Common 11 mA390Ω
ZTX689B 2 A 12 V 0.5 V High-gain11 mA390Ω
ZTX605 1 A 100 V 1.5 V Darlington1 mA3.3k

Figure 1. Simple one-transistor switch boosts the Stamp’s current-switching capability.

Stamp Applications no. 6, August 1995

2

ULN2003 ULN2803

12

1

2

18

3

17

4

16

5

15

6

14

7

13

8

IN1

IN2

IN3

IN4

IN5

IN6

IN7

GROUND + SUPPLY
(see text)

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7
7

9 10

11

1

2

16

3

15

4

14

5

13

6

12

7

11

10

8 9

IN1

IN2

IN3

IN4

IN5

IN6

IN7

GROUND + SUPPLY
(see text)

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

Figure 2. Handy power switches on-a-chip: the ULN 2x03 ICs.

Transistors switches are good, but not perfect.
See the column in figure 1 that says C-E Voltage
Drop? The voltage across the load will be that
much smaller than the supply voltage. For
example, if you’re driving a flashlight bulb with
a 2N2222 transistor and a 6-volt supply, the
bulb will actually see only 5.5 volts. The other
half volt will be lost, “dropped,” across the
transistor.

The voltage drop, multiplied by the current
drawn by the load, gives you the power in watts
wasted by the switching transistor. Where does
the wasted power go? It produces heat,
sometimes lots of it. For example, the Zetex
ZTX689B can conduct as much as 2 amperes of
current with a 0.5-volt drop, losing 1 watt to
waste heat in the process. When you consider
that a small soldering iron has a 15-watt
heating element, you can imagine how hot that
little transistor can get. Larger switching
transistors have metal tabs on their cases for
attachment to heat sinks. The large surface area
and other properties of the heat sink help
spread and dissipate all that waste heat. (A 15-
watt soldering iron is very hot; an electric
blanket with the same wattage is barely warm.)

All three transistors in the figure-1 table are
compatible with Stamp output capabilities, but
the third--the Darlington transistor--looks
especially good from the Stamp’s point of view.
It requires only 1 mA to drive a 1-ampere load.

But whoa, the C-E voltage drop is terrible at 1.5
volts. Can’t we get a Darlington with better C-E
specs?

In a word, no. Darlingtons consist of two NPN
transistor in the same case wired in a way that
multiplies their overall gain (ratio of current in
to current controlled). In the process, the
Darlington adds one base-to-emitter junction
worth of voltage drop, approximately 0.7 volts,
to the C-E drop.

Despite this drawback, Darlingtons are so
handy for interfacing logic to loads that IC
manufacturers offer arrays of seven or eight
Darlington switches, complete with appropriate
base resistors and protective diodes, in neat IC
packages. Figure 2 shows two such units, the
ULN2003 and ULN2803. These interface
directly to a Stamp pin to drive loads of up to
500 mA per output.

The input pins of the ULN2x03s can connect
directly to Stamp I/O pins. They’re equivalent to
connecting the pin to the left of RB in figure 1.
The output pins of the ULN2x03s are equivalent
to the collector (C) connection of the transistor
switch in figure 1. They provide a switched
ground connection for the load.

The ULN2x03s also feature something not
shown in figure 1, a series of diodes connected to
their outputs. When the devices are used to
power inductive loads like relays and motors,
these diodes should be connected to the positive

Stamp Applications no. 6, August 1995

3

supply that powers the load. When one of the
ULN2x03 switches cuts power to the inductive
load, the load’s magnetic field collapses,
generating a nasty negative power spike. The
diodes short out this spike, preventing it from
damaging the transistor switch.

If you construct your own switches with
discrete transistors, you’d do well to copy this
protective feature. Just add a common rectifier
diode like a 1N4002 with its banded end
(cathode; the negative connection when the
diode is conducting) to the + connection of the
relay or motor. The diode won’t interfere with
the normal operation of the motor or relay, but
it’ll snub those spikes!

A real-world example

Francis Rogers of Sun City West, Arizona
wrote me to describe an application he’d like to
build with the Stamp. He has a PC with barcode
software that can read membership cards for his
S.C.W. Metals Club. The barcode software
generates a code through the PC serial port
when it’s presented with a valid card. Mr.
Rogers would like the Stamp to read this code
and energize a relay to unlatch a door.

This fits perfectly with the theme of this
month’s column. Figure 3 is the schematic. I’ve
made some assumptions about Mr. Rogers’
barcode software: that it can be set to output at
2400 baud, and that all valid cards output some
common code for the Stamp to recognize.

Thanks to the serial-input (Serin) command’s
built-in “qualifier” feature, the entire program
takes just a few lines of Stamp code:

loop:

 low 7 ' Pin 7 low to latch door

' (relay open)

 serin 0,N2400,("OK") ' Watch serial input

' until "OK" rec'd.

 high 7 ' Pin 7 high to unlatch door

' (relay closed).

 pause 5000 ' Wait 5 seconds.

goto loop ' Latch door and resume

' watching serial input.

Of course, Mr. Rogers will have to substitute
the actual password for “OK” in the program
above.

That’s it for this month. Next time, we’ll look
at a nifty IC that lets the Stamp transmit and
receive DTMF tones (telephone touch tones). In
addition to obvious telephone applications,
DTMF can be used as a form of low-speed, high-
reliability data transfer. Stay tuned!

Sources

For switching transistors and ULN2x03 ICs
get a catalog from Jameco Electronic Compon-
ents, 1355 Shoreway Road, Belmont, CA 94002-
4100; phone 1-800-831-4242.

Questions, suggestions or comments about
this column? Contact Scott Edwards Electronics,
964 Cactus Wren Lane, Sierra Vista, AZ 85635;
phone 520-459-4802; fax 520-459-0623; e-mail
(Compuserve) at 72037,2612; or via Internet
72037.2612@compuserve.com.

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101.

22k

PC running barcode software,
serial output: 2400 baud, N81

com port data out
(DB25 = pin 2
DB9 = pin 3)

com port signal ground
(DB25 = pin 7
DB9 = pin 5)

pin0 pin7

390

+12V

Barcode ID reader

2N2222

1N4002

Relay

Figure 3. When the Stamp receives the proper code from the PC bar-code reader,
it activates a relay to unlock the door.

Stamp Applications no. 7 (September ’95):

DTMF “Touch” Tones are Music to the Ears
of this Stamp Transmit/Receive Circuit

Working with the CM8880 DTMF Transceiver, by Scott Edwards

ENCODING and decoding DTMF tones—those
musical “touch tones” you hear when you dial
the phone—is the current fad in electronics
projects. There are gadgets that capture and
display or store dialed digits, others that dial
stored numbers, and still others that use the
hardy dual-tone, multifrequency digits for data
transmission or remote control.

Stamp users are an independent lot, so we’re
going to buck the trend of one-trick DTMF
projects. In this edition of Stamp Applications,
we’ll look at a universal DTMF send/receive
solution that can serve as the basis for decoders,
loggers, dialers, and even data transceivers.

A Quick Review of DTMF Principles

All the recent excitement over the decades-old
DTMF signaling method makes the first part of
my job easy. I can breeze through the

explanation of the signals themselves with
confidence that the curious reader who wants
more background can find it his or her recent-
magazine stack, for example, DTMF IR Remote
Control System, N&V June ‘95.

A DTMF signal consists of a mixture of two
sinewave tones, often called the row and column
frequencies because of their correspondence to
the layout of the phone keypad (figure 1).
Engineers at then-mighty Ma Bell chose these
tones carefully to ensure that none had a
harmonic relationship with the others and that
mixing the frequencies would not produce sum
or product frequencies that could mimic another
valid tone. They specified that the tones be free
of distortion, and that the high-group
frequencies (the column tones) be slightly louder
than the low-group to compensate for the high-
frequency rolloff of voice audio systems.

1 2 3 A

54 6 B

87 9 C

0 # D

1209 1336 1477 1633

697

770

852

941

Column (high-group)
Frequencies (Hz)

Row (low-group)
Frequencies (Hz)

Phantom column (not present on
phone keypads, but used in other

applications)

Figure 1. The DTMF tone that’s generated
when you press a button on the phone keypad
consists of a mixture of the row and column
frequencies. For example, pressing 9 mixes a
column frequency of 1477 Hz with a row
frequency of 852 Hz.

Stamp Applications no. 7, September 1995

2

Because DTMF was devised in the days before
you could hear a pin drop or appreciate Whitney
Houston’s singing over long distance, it’s an
exceptionally noise-resistant signaling method.
If a properly designed DTMF decoder thinks
there’s a valid DTMF signal present in some
lousy audio, there almost surely is.

DTMF tones can represent one of 16 different
states or symbols, as shown in figure 1. That is
equivalent to four bits of data, also known as a
nibble. Most DTMF decoders can process at
least 10 tones per second under the worst of
conditions, so DTMF can easily convey 40 bits (5
bytes) of data per second. That’s nowhere near
the performance of a good communications
modem, which can operate nearly 600 times as
fast (28,800 bits per second), but it’s a lot more
robust under noisy line conditions.

Note that the numbers and symbols on the
phone keypad don’t always match the binary
values of the DTMF nibbles. Most notably, the
“0” on the keypad is represented in DTMF by a
value of 10 (decimal) or 1010 binary. Table 1
summarizes the rest of the four-bit values.

A DTMF Transceiver: the CM8880

All you need to generate DTMF tones are two
precise, low-distortion sine-wave oscillators and
a mixer. To decode DTMF takes just eight tone
decoders and a little glue logic. The circuit board
to accommodate all this stuff shouldn’t be much
more than 4 by 6 inches and $50.

Don’t like those numbers? Then you will like
the California Micro Devices CM8880 Integrated
DTMF Transceiver. For $10 or less in single
quantity, this chip does everything associated
with sending and receiving DTMF tones. The
schematic in figure 2 shows a Stamp hookup for
both send and receive applications. Listing 1
demonstrates DTMF dialing. Listing 2 shows
DTMF reception and display.

Rather than rehash the comments from the
program listings, I’d like to show you how to set
up and use the CM8880 in your own
applications.

Table 1. DTMF Values, Keypad Symbols

Binary
Value

Decimal
Value

Keypad
Symbol

0000 0 D
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 0
1011 11 *
1100 12 #
1101 13 A
1110 14 B
1111 15 C

Communication with the 8880 takes place
over a 4-bit bus, consisting of D0 through D3,
with three additional bits selecting modes of
operation. Those bits are chip select (CS),
read/write (RW) and register select (RS0). Table
2 summarizes the effects of all combinations of
CS, RW, and RS0.

To sum up the table, the 8880 is active only
when CS is 0. The RW bit determines the data
direction; 1 = read (data from 8880 to Stamp)
and 0 = write (data from Stamp to 8880). The
RS bit determines whether the transaction
involves data (DTMF tones) or internal CM8880
functions (instructions or status); 1 =
instructions/status and 0 = data.

Once the CM8880 is set up, the Stamp writes
000 to CS, RW, and RS0 to send DTMF; or 010
to read DTMF. Simple as that.

Setting up the CM8880

Before you can use the CM8880, you have to
set it up. The device has two control registers, A
and B. When you put 001 in bits CS, RW and
RS0, the data on D0 through D3 is written to

Stamp Applications no. 7, September 1995

3

Table 2. Effects of the CS, RW, and RS0 Bits

CS RW RS0 Description
0 0 0 Active: write data (i.e., send DTMF)
0 0 1 Active: write instructions to 8880
0 1 0 Active: read data (i.e., receive DTMF)
0 1 1 Active: read status from 8880
1 0 0 Inactive
1 0 1 Inactive
1 1 0 Inactive
1 1 1 Inactive

Table 3. Functions of Control Register A

Bit Name Function
0 Tone Out 0 = tone generator disabled

1 = tone generator enabled
1 Mode Control 0 = Send and receive DTMF

1 = Send DTMF, receive call-progress tones
(DTMF bursts lengthened to 104 ms)

2 Interrupt Enable 0 = Make controller check for DTMF rec’d
1 = Interrupt controller via pin 13 when DTMF rec’d

3 Register Select 0 = Next instruction write goes to CRA.
1 = Next instruction write goes to CRB.

Table 4. Functions of Control Register B

Bit Name Function
0 Burst 0 = Output DTMF bursts of 52 or 104 ms

1 = Output DTMF as long as enabled
1 Test 0 = Normal operating mode

1 = Present test timing bit on pin 13
2 Single/ Dual 0 = Output dual (real DTMF) tones.

1 = Output separate row or column tones
3 Column/ Row 0 = If above = 1, select row tone.

1 = If above = 1, select column tone.

control register A (CRA). Table 3 summarizes
the functions of the four bits of CRA.

Looking at listing 1, the dialer, we see that
1011 was written to CRA. That works out to
(right to left) 1 (tone generator on), 1 (Send
DTMF, long tones), 0 (don’t generate
interrupts), and 1 (next write to CRB). Listing 2
writes 1000 to CRA: 0 (tone-generator off), 0

(receive DTMF), 0 (don’t generate interrupts)
and 1 (next write to CRB).

Although we don’t use it in our applications,
the 8880 has a call-progress detection feature,
which can be enabled via bit 1 of CRA. Call-
progress is a collective term for the dial tone,
busy signal, and ringing signal. These tones are
all around 400 Hz. The CM8880’s call-progress

Stamp Applications no. 7, September 1995

4

Stamp
Pin

+5

+5

+5

10k

100k

0.1µF

Audio In
(from DTMF
source)

3.58MHz

10k

0.1µF

Audio Out
(to amplifier, etc.)

+5

390k

0.1µF

3.3k

IN+

CM8880

IN– StGt

GS ESt

VREF D3

VSS D2

OSC1 D1

OSC2 D0

TONE IRQ/CP

R/W f2

VDD

CS RS0

3

2

1

0

4

6

5

7

Backpack-equipped LCD module

10k

0.1µF

Figure 2.
Schematic diagram
for DTMF send
and receive
applications.

filter accepts audio from the normal input and
passes frequencies from 300 to 500 Hz to the
IRQ/CP pin. You could add hardware to further
filter and detect these tones.

Since both listings also set up register B
(CRB), take a look at table 4 to see how it works.

Listing 1 (dialer) writes 0s to all bits of CRB,
meaning burst mode, normal operation, real
DTMF, and (if DTMF weren’t selected) row
tones. Listing 2 (decoder) also clears CRB.
Although CRB has little or nothing to do with
DTMF reception, it’s wise to always initialize it
to a known state.

A Few Hardware Notes

To hear the DTMF tones generated by the
CM8880, I connected a small speaker/amplifier
(Radio Shack part no. 277-1008C) to the audio
output. The amplifier’s high gain and the 8880’s
healthy audio output quickly taught me to set
the volume control low! I was able to dial the
phone by holding the speaker close to the
mouthpiece.

I used two approaches to generate DTMF test
tones for the decoder application. The first was
to connect an old touch-tone phone to a 9V
battery and the audio-input coupling capacitor
(0.1µF shown in figure 2) to the positive
terminal. The polarity of the connection didn’t
matter, as phones are designed to tolerate

wiring mixups. However, this setup sucked
better than 50 mA from the battery.

I found a better DTMF generator at one of my
favorite surplus dealers. Marlin P. Jones and
Associates (MPJA) has a bunch of dialers that
were apparently made for one of those early
flash-in-the-pan long-distance services. It’s
preprogrammed to autodial an access number. If
you press the manual-dial button (MAN’L) on
the keypad, it works like a normal DTMF
keypad. Output is through a headphone speaker
built into the case.

MPJA also stocks a couple of other essentials
for this circuit. The decoder application uses an
LCD equipped with one of my LCD Serial
Backpacks. This allows the Stamp to display
data on it using a convenient one-wire serial
connection. MPJA stocks both the Backpack and
a range of LCDs from 1-line by 16 characters to
2x40. See Sources for more information.

DTMF and a glass of red...

It’s almost embarrassing to admit that that’s
all there is to designing DTMF send/receive
applications based on the CM8880 and the
Stamp. I deliberately skirted issues having to do
with direct connection to the phone line, since
that’s a subject worthy of two (or three!) articles
of this size. Your best bet is to see how others
have done it successfully, or to purchase a

Stamp Applications no. 7, September 1995

5

Figure 3. DTMF
send/receive setup.

BS1-IC
CM8880 DTMF
Transceiver

LCD Serial
Backpack with
16x1 LCD

commercially made Data Access Arrangement
(DAA) to serve as an interface. One man-
ufacturer of DAAs is Cermetek, Sunnyvale, CA,
408-752-5000.

Don’t limit yourself to phone applications.
Remember what I said about DTMF serving as a
reliable data-transfer method? You could con-
nect CM8880-equipped Stamps to inexpensive
two-way radios to create a wireless network for
data acquisition over a 1/4-mile radius.

I experimented briefly with this idea, using
the DTMF output from the amplified speaker to
trigger the voice-activated transmit feature of a
Radio Shack headset walkie-talkie (part no 21-
406). The voice activation was fast enough that
even the first tone got through. This means that
you wouldn’t need an additional pin to switch
between transmit and receive.

This is an application that a lot of Stamp
users have been clamoring for. I remember in
particular that grape growers need to gather
and evaluate “microclimate” data regarding
temperature and humidity among their
pampered vines, and would kill for a wireless
way to obtain it. Here it is: Cheers. (And I prefer
red, if you please, a Cabernet Sauvignon or
Merlot.)

Return of the Counterfeit

Many of you have called my order line to
purchase BASIC Stamps. It’s a natural
assumption: I’m cheerleading for a great
product—I’ve got to carry that product, right?

Unfortunately, I don’t. However, the
manufacturer (Parallax) makes PBASIC chips

available to those who want to build their own
controllers based on Stamp technology. I showed
how to do just that in my “Counterfeit Stamp”
article last spring (N&V , May ‘94).

In response to many requests, I’m making the
Counterfeit available again as a complete kit for
$29. The design incorporates features I have
found handy in developing applications you’ve
seen here: heavy-duty (100+ mA) voltage
regulator, socket for pull-up/pull-down resistors,
ground and +5V connections paired with every
I/O pin, and Turbo options for running the
Counterfeit at 8 or 16 MHz—two to four times
standard speed. The board is compact, but easy
to assemble; see the photo (figure 4).

I have also put together a Counterfeit
Development System for $69. This includes
everything required to program Counterfeits (or
BS1 Stamps, for that matter), including your
first Counterfeit kit. See the Sources listing for
further information.

Figure 4. A trio of Stamp-compatible
Counterfeit Controllers.

Stamp Applications no. 7, September 1995

6

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

The CM8880 is available from electronics
distributors who carry California Micro Devices'
product line (CMD phone, 602-961-6000), or
from Scott Edwards Electronics (see listing
below).

The DTMF box (part no. 5824-EN, $4.95),
LCD Serial Backpack (7074-SE, $29), and a
variety of LCD displays are available from
Marlin P. Jones and Associates, P.O. Box 12685,
Lake Park, FL 33403-0685; phone 407-848-8236;
fax 407-844-8764.

Scott Edwards Electronics:

Questions, suggestions, or requests for future
Stamp Applications to: Scott Edwards
Electronics, 964 Cactus Wren Lane, Sierra

Vista, AZ 85635; phone 520-459-4802; fax 520-
459-0623; e-mail (Compuserve) at 72037,2612;
Internet 72037.2612@compuserve.com. Scott
also offers the following Stamp-related kit
goodies:

The CM8880 is $10; an App Kit containing one
CM8880, the Stamp programs shown here (plus
PIC assembly language versions) on disk, and
complete documentation, is $22.

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits (also for programming
original BASIC Stamps, like the BS1-IC) is $69
and includes 150-page manual, downloading
cable kit, Parallax software, and one Counterfeit
controller kit.

Prices are postpaid (express shipping and
CODs extra). Visa, Mastercard, American
Express accepted for phone/fax orders. POs
accepted on approved credit. Personal checks,
money orders welcome for orders by mail.

' Listing 1. Stamp-Based Autodialer

' Program: DIAL.SRC (Sends a string of DTMF tones via the 8880)
' This program demonstrates how to use the CM8880 as a DTMF tone
' generator. All that's required is to initialize the 8880 properly,
' then write the number of the desired DTMF tone to the 8880's
' 4-bit bus.

' The symbols below are the pin numbers to which the 8880's
' control inputs are connected, and one variable used to read
' digits out of a lookup table.

SYMBOL RS_p = 4 ' Register-select pin (0=data).
SYMBOL RW_p = 5 ' Read/Write pin (0=write).
SYMBOL CS_p = 6 ' Chip-select pin (0=active).
SYMBOL digit = b2 ' Index of digits to dial.

' This code initializes the 8880 for dialing by writing to its
' internal control registers CRA and CRB. The write occurs when
' CS (pin 6) is taken low, then returned high. See the accompanying
' article for an explanation of the 8880's registers.

let pins = 255 ' All pins high to deselect 8880.
let dirs = 255 ' Set up to write to 8880 (all outputs).
let pins = %00011011 ' Set up register A, next write to register B.
high CS_p
let pins = %00010000 ' Clear register B; ready to send DTMF.
high CS_p

Stamp Applications no. 7, September 1995

7

' This for/next loop dials the seven digits of my fax number. For
' simplicity, it writes the digit to be dialed directly to the output
' pins. Since valid digits are between 0 and 15, this also takes RS,
' RW, and CS low--perfect for writing data to the 8880. To complete
' the write, the CS line is returned high. The initialization above
' sets the 8880 for tone bursts of 200 ms duration, so we pause
' 250 ms between digits. Note: in the DTMF code as used by the phone
' system, zero is represented by ten (1010 binary) not 0. That's why
' the phone number 459-0623 is coded 4,5,9,10,6,2,3.

for digit = 0 to 6
 lookup digit,(4,5,9,10,6,2,3),pins ' Write current digit to pins.
 high CS_p ' Done with write.
 pause 250 ' Wait to dial next digit.
next digit
end

' Listing 2. DTMF Decoder and Display

' Program: DTMF_RCV.BAS (Receives and display DTMF tones using the 8880)
' This program demonstrates how to use the 8880 as a DTMF decoder. As
' each new DTMF digit is received, it is displayed on an LCD Serial
' Backpack screen. If no tones are received within a period of time
' set by sp_time, the program prints a space (or other selected character)
' to the LCD to record the delay. When the display reaches the righthand
' edge of the screen, it clears the LCD and starts over at the left edge.

SYMBOL RS_p = 4 ' Register-select pin (0=data).
SYMBOL RW_p = 5 ' Read/Write pin (0=write).
SYMBOL CS_p = 6 ' Chip-select pin (0=active).
SYMBOL dtmf = b2 ' Received DTMF digit.
SYMBOL dt_Flag = bit0 ' DTMF-received flag.
SYMBOL home_Flag = bit1 ' Flag: 0 = cursor at left edge of LCD.
SYMBOL polls = w2 ' Number of unsuccessful polls of DTMF.
SYMBOL LCDw = 16 ' Width of LCD screen.
SYMBOL LCDcol = b3 ' Current column of LCD screen for wrap.
SYMBOL LCDcls = 1 ' LCD clear-screen command.
SYMBOL I = 254 ' LCD instruction toggle.
SYMBOL sp_time = 1000 ' Print space this # of polls w/o DTMF.

' This code initializes the 8880 for receiving by writing to its
' internal control registers CRA and CRB. The write occurs when
' CS (pin 6) is taken low, then returned high.

let pins = %01111111 ' Pin 7 (LCD) low, pins 0 through 6 high.
let dirs = %11111111 ' Set up to write to 8880 (all outputs).
let pins = %00011000 ' Set up register A, next write to register B.
high CS_p
let pins = %00010000 ' Clear register B.
high CS_p
let dirs = %11110000 ' Now make set the 4-bit bus to input.
high RW_p ' And set RW to "read."
serout 7,n2400,(I,LCDcls,I) ' Clear the LCD screen.

' In the loop below, the program checks the 8880's status register
' to determine whether a DTMF tone has been received (indicated by
' a '1' in bit 2). If no tone, the program loops back and checks

Stamp Applications no. 7, September 1995

8

' again. If a tone is present, the program switches from status to
' data (RS low) and gets the value (0-15) of the tone. This
' automatically resets the 8880's status flag.
again:
 high RS_p ' Read status register.
 low CS_p ' Activate the 8880.
 let dt_flag = pin2 ' Store status bit 2 into flag.
 high CS_p ' End the read.
if dt_Flag = 1 then skip1 ' If tone detected, continue.
let polls = polls+1 ' Another poll without DTMF tone.
if polls < sp_time then again ' If not time to print a space, poll again.
if LCDcol = LCDw then skip2 ' Don't erase the screen to print spaces.
let dtmf = 16 ' Tell display routine to print a space.
gosub Display ' Print space to LCD.
skip2:
let polls = 0 ' Clear the counter.
goto again ' Poll some more.
skip1: ' Tone detected:
let polls = 0 ' Clear the poll counter.
low RS_p ' Get the DTMF data.
low CS_p ' Activate 8880.
let dtmf = pins & %00001111 ' Strip off upper 4 bits using AND.
high CS_p ' Deactivate 8880.
gosub display ' Display the data.
goto again ' Do it all again.

Display:
if LCDcol < LCDw then skip3 ' If not at end of LCD, don't clear screen.
serout 7,n2400,(I,LCDcls,I) ' Clear the LCD screen.
let LCDcol = 0 ' And reset the column counter.
skip3: ' Look up the symbol for the digit.
if LCDcol=0 AND dtmf=16 then ret ' No spaces at first column.
lookup dtmf,("D1234567890*#ABC-"),dtmf
serout 7,n2400,(dtmf) ' Write it to the Backpack display.
let LCDcol = LCDcol + 1 ' Increment the column counter.
ret:
return

