Reinforcement Learning
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What is ML

Machine learning algorithms build a model based on training data to make
predictions or decisions without being explicitly programmed for a particular task.

This can be seen as learning a function which is characterized by a training
dataset, which performs well on data points never seen before.
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What is ML

Machine learning algorithms build a model based on training data to make
predictions or decisions without being explicitly programmed for a particular task.

This can be seen as learning a function which is characterized by a training
dataset, which hopefully performs well on data points never seen before.
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Parametric vs. non-parametric learning

Generally, the two types of ML are parametric and non-parametric learning
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refresher: Decision tree is an algorithm where a tree is created where each node represents a question about the datapoint. the leaves are then classifications…  example of a fruit classified, is it yellow? Is is round? Banana or lemon.  If not yellow, is it orange, etc.       Obtain a training data set (somehow), the data set has attribute, derive questions from the attribute for the decision.  An example of an attribute is yellow, round, etc.  A label is an orange, banana, etc. 

SVM - support vector machines

kNN is a model which, when presented with a new datapoint, looks at the k most similar datapoints in training, and gives the classification of the majority. 


Parametric vs. non-parametric learning

Generally, the two types of ML are parametric and non-parametric learning

Parametric learning: The function approximator is parameterized by numeric
parameters, changes to which change the function that is approximated.
Examples include regression, neural networks, etc. Most modern machine
learning is focused on parametric learning.
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Parametric vs. non-parametric learning

Generally, the two types of ML are parametric and non-parametric learning

Parametric learning: The function approximator is parameterized by numeric
parameters, changes to which change the function that is approximated.
Examples include regression, neural networks, etc. Most modern machine
learning is focused on parametric learning.

Nonparametric learning; Where your model of the approximated function does not
have implicit parameters. Examples include decision trees, k-nearest neighbors,
etc.
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SVM - support vector machines

kNN is a model which, when presented with a new datapoint, looks at the k most similar datapoints in training, and gives the classification of the majority. 


Supervised Learning

Within ML, there are distinctions based on the
type of training dataset used.

airplane

automobile

Supervised learning is learning when the training bird
data includes the ground truth for each datapoint cat
(these are called /abels for each instance of e

FRAIEIIL

N AR EREEE
i [ B 5 B4 R

Pl RS E T

e EHE

Es liEESNE&

ENFEEEENEE

(O 3805 I
T
NEEFI= N

training data). dog Z‘
. o . f

Examples include: Image classification, speech "9 E .

recognition, etc. horse ' '

- B 2

See truck d

https://en.wikipedia.org/wiki/Supervised_learning


Presenter
Presentation Notes
https://en.wikipedia.org/wiki/Supervised_learning

What is image classification? (The students sorted Waldos from Boxes in Homework 2 using a neural net.) Assume for the moment there are a set of classes for an image - say dog, cat, elephant, bird, and a set of images of animals. These animal images are labeled. Train on the labeled data to create a classifier and then when a new image is presented, the classifier selects the correct type of animal.  Not all image classification techniques are supervised learning. 

Image: https://medium.com/@tifa2up/image-classification-using-deep-neural-networks-a-beginner-friendly-approach-using-tensorflow-94b0a090ccd4



Unsupervised learning

Unlike supervised learning, no labels are included with the training data.

Since there are no labels, the model must find patterns in the training dataset
purely from the examples.
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Autoencoder: A neural network which has smaller and smaller layers, until it reaches a layer with size equal to the encoding size. Then, the neural network has repeated layers until there is an output layer with the same size as the input layer. To train, the network is presented with images, and then trained so that its output is the same as its input. (Note this requires no labeling). This forces the network to learn a size-efficient representation of the input, as well as providing both an encoding and decoding network (by splitting the network at the “code” layer).


*a form of unsupervised learning

Gaussian Mixture Models

Mixture model: probabilistic model about a subpopulation without having additional
information about the subpopulation

Example: housing cost estimation based on location without knowing information
about neighborhoods, etc.

Gaussian Models (Iter = 100)



Presenter
Presentation Notes
Gaussian mixture model: If you have a collection of datapoints, which you know come from k different gaussians, GMM learns what the most likely means/variances are for the k different gaussians. 

House example: Suppose we know there are around 10 neighborhoods in a city, with different average house prices in each neighborhood. We can use a GMM to find the highest probability placement of the 10 different price ranges (i.e. we can place each gaussian, which corresponds with a price range, over each neighborhood). 

 https://en.wikipedia.org/wiki/Mixture_model

http://yulearning.blogspot.com/2014/11/einsteins-most-famous-equation-is-emc2.html



Reinforcement learning

Reinforcement learning can be viewed as somewhere in between unsupervised
and supervised learning, with regards to the data given with training data.

Reinforcement learning is more structured, with the goal of training some “agent”
to act in an environment.



What is RL

Generally speaking, RL is training some “agent” to map sequences of
“observations” (of the environment) to actions, for the purpose of achieving a
particular goal. We represent the agent’s policy as a function, which takes a state
as an input, and outputs a probability distribution over the possible actions as an

output.
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Reinforcement learning setup

The goal is characterized by some reward, which is given to the agent by the
environment, signalling when the agent achieves the goal. You want to the reward
to accurately reflect what you want. Note the the goal, say self-balance the robaot,
may not be well-represented by the reward.

agent learns which action to select
given the current state, with the purpose of maximizing the long-term reward.
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Reinforcement learning setup

The goal is characterized by some reward, which is given to the agent by the
environment, signalling when the agent achieves the goal. You want to the reward
to accurately reflect what you want. Note the the goal, say self-balance the robaot,
may not be well-represented by the reward.

agent (typically represented by a neural network) learns which action to select
given the current state, with the purpose of maximizing the long-term reward.
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The action can be a table with a list of all of the states that exist and the corresponding actions to take 

State - x, xdot, theta pole, theta dot  - can be what ever you select.  Can be error, error dot    error = current angle - zero angle + x value * small amount to keep it in the center

Actions are encoded into the neural net. Eg, we can hard left, soft left, nothing, soft right, hard right (really there should be numbers) Should chose more actions, just an example. This is a design choice. Bill got it working with has few as 5 and had it working quite well with 20 actions. Why would this give better performance?

Input to the network is the state

Reward is +1 for upright.   Loss = -(Discounted Reward - E(discounted reward)) * p(A) 

If we had an action that resulted in better - than - expected action then the p(A) will be higher
Likewise, it will be lower if worse.

E(discounted reward) - in this example, it can be anything you want, like a constant.  Take the average of your discounted rewards summed over all steps over the last 3 or so episodes.




Updating the Policy

Remember that the neural net update equation:

QFQ—QVQL

Also, remember our loss function mentioned earlier:

L(0,s,a) = —(R — E|R|)( (0, s)|a]])



Reinforcement learning execution

The goal is characterized by some reward, which is given to the agent by the
environment, signalling when the agent achieves the goal. You want to the reward
to accurately reflect what you want. Note the the goal, say self-balance the robaot,
may not be well-represented by the reward.

agent (typically represented by a neural network) learns which action to select
given the current state, with the purpose of maximizing the long-term reward.
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Episodic RL

Episode - a sequence of observations, rewards, and corresponding actions which
start a designated start state and terminate at an ending state as determined by

environment.
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Episode - a sequence of observations, rewards, and corresponding actions which
start a designated start state and terminate at an ending state as determined by

environment.

Environment is the environment, start, goal, reward, state transition



Episodic RL

Episode - a sequence of observations, rewards, and corresponding actions which
start a designated start state and terminate at an ending state as determined by
environment.

In other words, the agent interacts with the environment through an “episode”,
where the agent starts at some initial state, and attempts to maximize reward by
picking the best action after each state transition, until a terminal state is reached.



Episodic RL

Episode - a sequence of observations, rewards, and corresponding actions which
start a designated start state and terminate at an ending state as determined by
environment.

In other words, the agent interacts with the environment through an “episode”,
where the agent starts at some initial state, and attempts to maximize reward by
picking the best action after each state transition, until a terminal state is reached.

An example of an episodic RL task would be a robot which balances a pole in the
upright position--it receives reward for each second the pole is upright, but the
episode ends when the pole falls over (or when it times out). (HW 4, Lab 4!!)
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State - x, xdot, theta pole, theta dot  - can be what ever you select.  Can be error, error dot    error = current angle - zero angle + x value * small amount to keep it in the center

Actions are encoded into the neural net. Eg, we can hard left, soft left, nothing, soft right, hard right (really there should be numbers) Should chose more actions, just an example. This is a design choice. Bill got it working with has few as 5 and had it working quite well with 20 actions. Why would this give better performance?

Input to the network is the state

Reward is +1 for upright.   Loss = -(Discounted Reward - E(discounted reward)) * p(A) 

If we had an action that resulted in better - than - expected action then the p(A) will be higher
Likewise, it will be lower if worse.

E(discounted reward) - in this example, it can be anything you want, like a constant.  Take the average of your discounted rewards summed over all steps over the last 3 or so episodes.


Time Discrete RL

In an episode, time is broken up into discrete time steps.
At each time step, the environment provides the current state and a reward signal.

The agent can then choose an action, which affects the environment in some way,

and the process repeats.
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Episode
Single episode of n time steps

(S1, @4, Iy), (Sp, @, I2),-.(S) @, 1)

Each tuple contains a state, an action made by the agent, and the reward given by
the environment immediately after the action was made.

The episode starts at a starting state and finishes in a terminal state.



Time Discrete RL

In an episode, time is broken up into discrete time steps (not continuous).

At each time step, the environment provides the current state and a reward signal.

The agent can then choose an action, which affects the environment in some way,

and the process repeats.
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Rewards: Challenge in Interpreting Reward Signal

1. (temporal) The reward for a good action or set of actions may not be received
until well into the future, after the action is given (long-term reward)

2. (sparse) The reward may be sparse (e.g. receiving a reward of 1 for hitting a
bullseye with a dart, but a reward of O for hitting anything else)

3. (quality) Reward may not guide the agent on each step of the way.

So, in learning, we must be careful not to make many assumptions about the
reward function.


Presenter
Presentation Notes
Making the rewards is HARD

If you have a good action or sequence of actions, you may not get the reward until far into the future.
If you do some poor actions, you may not get the negative feedback until the future.

Eg. Lunar lander - you dont know that you screwed up until you crash -or- you have to undergo a bunch of actions in the future that are super critical for stabalizing the robot, but dont get the reward until you land

Eg. Turning am maze, first turn is left but you dont know that was a good turn until the goal

------------------------------------------------------------------------------------------------------------------------------------------------
If the reward accurately representing the goal may be sparse. This means that the agent may not get reward indicating good or bad performance for many of its actions. This is also a problem.  

For example, for a self balancing robot, you get a +1 reward for staying alive but not saying you are straighteer, etc. 


Interpreting Rewards

However, there is one assumption that is made:
A given reward is the result of actions made earlier in time

In other words, when we receive a reward, any of the actions we have chosen up
to this point could have been responsible for our receiving of that reward.

In addition, we often assume that the closer to an action we receive a reward, the
more responsible that action was.


Presenter
Presentation Notes
We are assuming that the environment cannot predict the future. The environment will only give us rewards based on what we have done so far (including what we do now). Our reward is based on everything we have done and in this moment (not just this moment which is a Markovian assumption). 

So, our future choice of actions do not affect our current rewards.

This is a casual system. 




Episode (reminder)
Single episode of n time steps

(S1, @y, 1), (Sp, @y, I2),-...(S) @y, Tpy)

Each tuple contains a state, an action made by the agent, and the reward given by
the environment immediately after the action was made.

The episode starts at a starting state and finishes in a terminal state.



Interpreting Reward: Discounted Rewards

These assumptions gives rise to the idea of the discounted reward.
With the discounted reward, we choose a discount factor (y), which tells how

correlated in time rewards are to actions.

gt = Z VT
t=T

As you can see, at time T, the discounted reward is the decaying sum of the
rewards which are received after the current time step until the end of the episode.



Episode with Discounted Rewards (roll out)

Single episode of n time steps

(S1, @4, 91), (S2, @2, 92),----(Spy @py 1) g1 =" T 792
Calculating the discounted rewards can easily be done g2 =r2 793
in reverse-order, starting from the terminal state and g3 =73 + Vg4

calculating the discounted reward at each step using the
discounted reward for the next step to simplify the sum.

9n—1 =Tn—1 + Ydn
9n =Tn



Imitation Learning: Circumventing Reward Function difficulties

Tasks may be interpreted as a reinforcement learning problem can often be
solved reasonably well with Imitation Learning

Imitation learning is a supervised learning technique where an agent is trained to
mimic the actions of an expert as closely as possible.

Why bother training an agent if we already have an expert?
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If a reward function is hard to find, then maybe we can do something else, but there are caveats.

See these slides for more in-depth imitation learning
http://www.andrew.cmu.edu/course/10-703/slides/Lecture_Imitation_supervised-Nov-5-2018.pdf


Imitation Learning: Circumventing Reward Function difficulties

Tasks may be interpreted as a reinforcement learning problem can often be
solved reasonably well with Imitation Learning

Imitation learning is a supervised learning technique where an agent is trained to
mimic the actions of an expert as closely as possible.

Why bother training an agent if we already have an expert?

The expert may be expensive to use, or perhaps there is only one expert, or we
need to query the expert more often than it can respond.

In general, imitation learning is useful when it is easier for the expert to
demonstrate the desired behavior than it is to directly create the policy or create a
suitable reward function.
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Presentation Notes
If a reward function is hard to find, then maybe we can do something else, but there are caveats.

See these slides for more in-depth imitation learning
http://www.andrew.cmu.edu/course/10-703/slides/Lecture_Imitation_supervised-Nov-5-2018.pdf


Imitation Learning + Reinforcement Learning

In the case we have an expert whose performance we want to exceed, and we
can create a good reward-function, we can get benefits from both imitation
learning and reinforcement learning.

This can stabilize learning, and allow the agent to learn an optimal policy much
quicker.

For example, a policy for the self-balancing robot lab can be learned with imitation
learning, and then further trained with reinforcement learning.



Imitation Learning Example: Self-Piloting Drone

First, a human drives a drone, recording the video from the drone’s camera and
the corresponding human commands.

Then, a neural network is trained, such that when given a frame, it outputs the
action the human would have performed.

Now the drone can autonomously navigate like a human!



Imitation Learning Example: Self-Piloting Drone

DAgger here reacts dynamically to an untrained obstacle



http://www.youtube.com/watch?v=hNsP6-K3Hn4

Imitation learning: Caveats

However, imitation learning is not perfect.

1. the agent cannot exceed the performance of the expert (i.e. it can not improve
better than a human)

2. it requires a significant amount of training examples, which may be difficult to
acquire (suppose there is only 1 human expert which can do the task)

3. it does not learn how to act in situations for which the expert never demonstrated.

4. the agent does not easily learn how to account for error accumulation from small
differences in the learned policy vs expert policy



Imitation learning: Error accumulation

Suppose we train a self-driving car using
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Imitation learning: Error accumulation

Suppose we train a self-driving car using
imitation learning.

In the expert dataset, the expert would
never intentionally drive off the side of
the road. (does not make a mistake)

However, there will be small differences
in the learned policy, causing the car's
trajectory to drift.

As the car drifts, the more its input differs
from training data, causing a buildup of
policy mismatch (approximation gets
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Alternative Approach: Policy-based RL

So, while imitation learning can learn a decent policy, we would ideally like to be

able to improve the learned policy, or possibly even learn a policy with no expert
demonstrations.

However, to do this, we need to know how to interpret the reward signal, and we
need to know how to update our policy.

To perform policy improvement, we need to have a parameterizable policy, such
as a neural network.


Presenter
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See these slides for more in-depth
http://www.andrew.cmu.edu/course/10-703/slides/Lecture_PG-10-1-2018.pdf


Evaluating Action Performance

We can judge whether an action was “good” or “bad” by comparing the discounted
reward to some baseline. (Don’t worry about how we get the baseline yet).

Remember that the policy is a mapping from state to a probability distribution over
the possible actions.

If the discounted reward was higher than the baseline, then we want to increase
the probability of the action being selected (for that state).

If the discounted reward was higher than the baseline, then we want to decrease
the probability of the action being selected (for that state).



Updating the Policy
Remember that the neural net update equation:

QFQ—OJVQL

Also, remember our loss function mentioned earlier:

L(0,s,a) = —(R — E|R|)( (0, s)|a]])

We will replace the R term with the discounted reward, and the E[R] with our
baseline, giving the following loss function:

L(#,s,a) = —(Gy — B)(w(0, 5)|a)))



Updating the Policy

Remember that the neural net u Edate equation:

We will replace the R term with the discounted reward, and the E[R] with our
baseline, giving the foIIowinE; loss function:

L(Qa S, CL) — Gt o B)(?T(@, S)[CLD)
We can combine these to create a new update equation:

0 < 0 — a(—Vo((Gy — B)(m(0,s)|a])))

Since neither the rollout or the baseline depend on 0, we can rewrite this equation:

0 < 0+ a((Gy — B)Vy(m(0,s)]al))



Updating the Policy

If we let 1(8,s) be the policy, G; is the discounted return for state s, B is the
baseline, a, is the action which was chosen, and 0 is the parameters of the policy,
we can update the policy as follows:

0« 0+ a((Gy — B)Vy(r(0,s)]a]))

Intuition: If the action was “good”, we increase the probability of that action being
picked in similar situations. If it were “bad”, we decrease the probability, which will
in turn increase the probabilities of all other actions being chosen in similar
situations.



Further Readings

One presentation is barely enough to chip away at all there is to learn in RL and
ML (There are entire courses, even degrees, which go more in-depth).

Not mentioned in this presentation, but are common in RL is Q-learning, Actor-
Critic methods, and more.

Additionally, there are several topics not discussed which can be very important
for RL tasks. The most important thing is the idea of exploration vs. exploitation
(When learning a task, when should the agent stop trying to figure out which
actions are good actions, and start exploiting what it knows? [Problem of local
minimaj).

There are also methods which use models of the environment, allow for
continuous action space, and more.
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Presentation Notes
https://en.wikipedia.org/wiki/Q-learning
Fun tutorial on actor-critic methods https://medium.freecodecamp.org/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d
https://en.wikipedia.org/wiki/Reinforcement_learning#Comparison_of_reinforcement_learning_algorithms
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