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Localization

• General robotic task

– “Where am I?”

• Techniques generalize to 

many estimation tasks

– System parameter estimation

– Noisy signal smoothing

– Weather system modeling



Localization Problem Definition

• Goal: Estimate state given a history of 

observations and actions

– State: Information sufficient to predict observations

– Observation: Information derived from state

– Actions: Inputs that affect the state

• State is important, but what is it?



State

• Any parameterization to 

describe our system

• Examples

– Car / Planar Robot

• Minimal (x, y, ϴ)

• Could be (x, y, ϴ, 

temperature, time of day, 

Google stock, favorite 

color, etc.) 

– Consider slot car

• Only 1D problem!



Action / Control Input

• “Things we can do”

• Can be discrete set:

– Pacman left, right, up, down

• Or continuous inputs:

– Helicopter throttles



Observation

• Information derive from a sensor

• Examples

– Time (from a clock)

– Temperature (thermoater)

– Encoder

• Good vs. Bad (really strong vs. weak 

correlations)

– ie. Temperature at a city for estimating a weather

system



Absolute vs. Relative

• Absolute Localization

– Defines state relative to a common (usually 

fixed) reference frame

– Useful for coordination, navigation, etc.

• Relative Localization

– Defines state relative to a local (non-shared) 

reference frame

– Useful for exploration, displacement estimation



Why not GPS/Vicon?

• Signal-denied environments

• Insufficient performance

– Accuracy

– Bandwidth (update rate)

– Bias

– Receiver size



Why not odometry?

• Uncertainty and error accumulation!

– Unmodeled environmental factors

– Integration errors

– Modeling errors

• Bottom line: 

Uncertainty is a part of life. 

We have to deal with it!



Localization Problem Definition

• Goal: Estimate state given a history of noisy

observations and noisy actions
– State: Information sufficient to predict observations

– Observation: Information derived from state

– Actions: Inputs that affect the state



Localization Problem Definition

• Goal: Estimate state given a history of noisy

observations and noisy actions
– State: Information sufficient to predict observations

– Observation: Information derived from state

– Actions: Inputs that affect the state



Localization: Estimate State

• Move: Motion Model

• Observe: Observation Model

Motion Model

Observation 

Model

Initial 

State

Estimate 



Example

Moving only in one dimension

Known map of flower garden

Simple flower detector

Beeps when you are in front of a flower

Gaussian distribution of a flower given a beep



Example

Initially, no idea where we are



Example

First observation update



Example

New belief about location



Example

Robot moves, motion update



Example

Observation update



Example

Final Belief



Differential Drive Motion Model

• State: (x, y, ϴ) SE2 pose

• Actions: 

– Drive forward, angle  --OR--

– Drive wheel 1, drive wheel 2

• Measurements: Wheel rotation 

ticks

2-wheeled 

Lego Robot



Differential Drive Example

• Run the same trajectory many times

– They’re all different!

– Why?

Trial 1

Trial 2

Trial 3

…

Trial n



Differential Drive Example

• Run a 10 cm straight trajectory many 

times

• Look at the results as a distribution
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Differential Dive Example

• Run a 10 cm straight trajectory many 

times

• Look at the results as a distribution
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Differential Drive Example

• Subtract out model contribution to 

determine noise component

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 + 𝜂𝑡
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Odometry Example

• Differential drive robot experiences 

uncertainty in distance traveled and 

heading

– Produces a “banana” distribution

– Hard to model!



Differential Drive Sensor Model

• Recall our odometry equations:

=

=

effect on 

state

observations

“initial” state



Differential Drive Sensor Model

• Recall our odometry equations:

=

=

effect on 

state

observations

“initial” state

Motion



PROBABILITY

A Brief Overview of



Discrete Probability Distribution

• Let X be the value of a die roll

• X is unknown (a Random Variable)

• P(X = v) means “Probability that we sample X and it equals v”

v P(X=v)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6



Discrete Probability Distribution

v P(X=v)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Sums to 1

• Let X be the value of a die roll

• X is unknown (a Random Variable)

• P(X = v) means “Probability that we sample X and it equals v”



Discrete Probability Distribution

• This time, X is a weighted die

• This is a different distribution for the same variable

v P(X=v)

1 0.1

2 0.1

3 0.1

4 0.2

5 0.25

6 0.25



Discrete Probability Distribution

• Consider a sum of dice

v P(X1=v)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

v P(X1 + X2 = v)

2 P(X1 = 1) * P(X2 = 1)

3 P(X1 = 1) * P(X2 = 2) + 

P(X1 = 2) * P(X2 = 1)

4 P(X1 = 1) * P(X2 = 3) + 

…

5

6

7

8

9

10

11

12

v P(X2=v)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

And = x       Or = + 



Discrete Probability Distribution

• Can we separate the probabilities?

• P(X2 = hot | X1 = summer) is high; P(X2 = hot | X1 = winter) is low

• P(X2 = v | X1 = 1) means “Probability that roll 2 is v if roll 1 is 1”

• Independent variables

v P(X2=v | X1 = 1)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6



Discrete Probability Distribution

• Using conditional probabilities allows us to easily combine:

𝑃 𝑥, 𝑦 =෍

𝑥

෍

𝑦

𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃 𝑦|𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)

Bayes theorem



Putting it Together

• At time step 0:

1. Robot takes an action

𝑥1 = 𝑓 𝑥0, 𝑢0 + 𝜂0

2. Robot makes an observation

𝑧1, ℎ 𝑥1

Distribution of measurement at time step 1:
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Putting it Together

• At time step 0:

1. Robot takes an action

𝑥1 = 𝑓 𝑥0, 𝑢0 + 𝜂0

2. Robot makes an observation

𝑧1, ℎ 𝑥1

Distribution of position at time step 1:

𝑝 𝑥1 𝑢0, 𝑧1) ∝ 𝑝 𝑧1 𝑥1) 𝑝 𝑥1 𝑥0, 𝑢0) 𝑝(𝑥0)

Observation Model Transition Model Prior



Putting it Together

• At time step 1:

1. Robot takes an action

𝑥2 = 𝑓 𝑥1, 𝑢1 + 𝜂1

2. Robot makes an observation

𝑧2, ℎ 𝑥2

Distribution of position at time step 1:



Putting it Together

• At time step 1:

1. Robot takes an action

𝑥2 = 𝑓 𝑥1, 𝑢1 + 𝜂1

2. Robot makes an observation

𝑧2, ℎ 𝑥2

Distribution of position at time step 1:
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Putting it Together

• At time step 1:

1. Robot takes an action

𝑥2 = 𝑓 𝑥1, 𝑢1 + 𝜂1

2. Robot makes an observation

𝑧2, ℎ 𝑥2

Distribution of position at time step 1:

𝑝 𝑥2 𝑢0, 𝑧1, 𝑢1, 𝑧2)
∝ 𝑝 𝑧2 𝑥2) 𝑝 𝑥2 𝑥1, 𝑢1) 𝑝 𝑧1 𝑥1) 𝑝 𝑥1 𝑥0, 𝑢0) 𝑝(𝑥0)

New trans. & obs. model Previous result



Putting it Together

• At time step 1:

1. Robot takes an action

𝑥2 = 𝑓 𝑥1, 𝑢1 + 𝜂1

2. Robot makes an observation

𝑧2, ℎ 𝑥2

Distribution of position at time step 1:

𝑝 𝑥2 𝑢0, 𝑧1, 𝑢1, 𝑧2)
∝ 𝑝 𝑧2 𝑥2) 𝑝 𝑥2 𝑥1, 𝑢1) 𝑝(𝑥1| 𝑢0, 𝑧1)

New trans. & obs. model Previous result



Recursive Inference

• At time step t:

1. Robot takes an action

𝑥𝑡 = 𝑓 𝑥𝑡−1, 𝑢𝑡−1 + 𝜂𝑡−1

2. Robot makes an observation

𝑧𝑡 , ℎ 𝑥𝑡

Distribution of position at time step 1:
𝑝 𝑥𝑡 𝑢0, … , 𝑢𝑡 , 𝑧1, … , 𝑧𝑡)
∝ 𝑝 𝑧𝑡 𝑥𝑡) 𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡−1)𝑝 𝑥𝑡−1 𝑢0, … , 𝑢𝑡−1, 𝑧1, … , 𝑧𝑡−1)

New trans. & obs. model Previous result



Filtering Algorithm for Localization

For each possible location:

Apply motion model

For each possible location:

Apply observation model

Loop forever



Filtering Algorithm for Localization

For each possible location:

Apply motion model

For each possible location:

Apply observation model

Loop forever

Too slow!

Let’s use discrete hypotheses instead



Sampling From the Motion Model



Example Revisited

Same flower-happy robot

Same map

This time, track samples (particles)



Example  Revisited

Initially, no idea where we are

The particles. Height represents the weight 

(probability or confidence) of a given particle



Example

First observation update



Example

First observation update

Evaluate model at particles



Example

New belief



Example

New belief

Too few Too many



Example

Resample particles

Higher weight particles get more particles

allocated near them during the resample



Example

Reset weights

Density of particles is related to 

weight of particles previously



Example

Robot moves, motion update

Particles spread out



Example

Observation update



Example

Observation update



Example

Estimate is best particle



Example



Discrete Bayes Filter



Discrete Bayes Filter


