PID Controls (Part II)

Howie Choset

(thanks to George Kantor and Wikipedia)

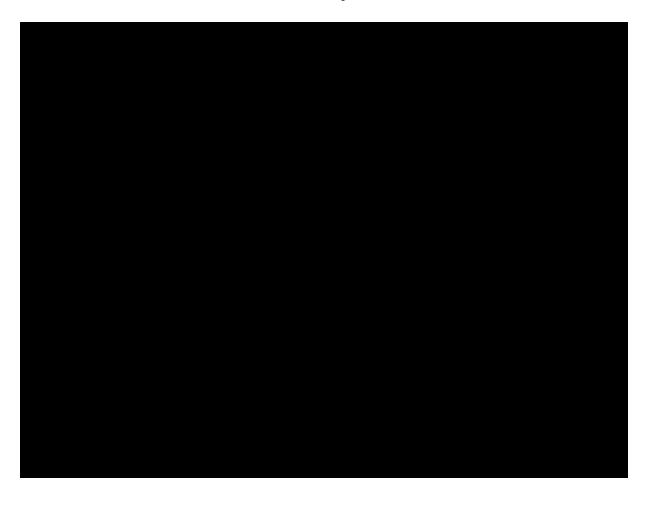
http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm

Overview

- Mass-Spring-Damper System
- Second order ODE
 - Definition
 - Vary parameters
 - Forcing functions
- Different feedback meaning
 - Proportional
 - Derivative
- Control for Error block diagram
- Integral Control
- Different Affects of Varying PID
- Feed Forward Term
- Vehicle Controls

Big Dog Quadruped

Boston Dynamics



Nathan Michael Quadrotors

Controls

Estimation

RC Airplane - Adaptive Control

Chowdhary G., Johnson E., Chandramohan R., Kimbrell M. S., Calise A.

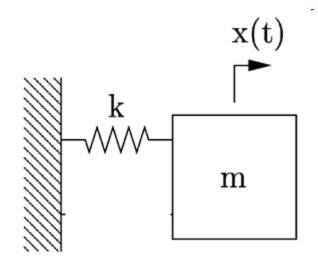
Mass Spring

$$F_{\rm s} = -kx$$

$$F_{\text{tot}} = ma = m\frac{d^2x}{dt^2} = m\ddot{x}.$$

$$F_{\text{tot}} = F_{\text{s}}$$

$$m\ddot{x} = -kx$$



$$\ddot{x} + \frac{\kappa}{m}x = 0$$

Solutions/Responses

Critical damping ($\zeta = 1$)

$$x(t) = (A + Bt) e^{-\omega_0 t}$$

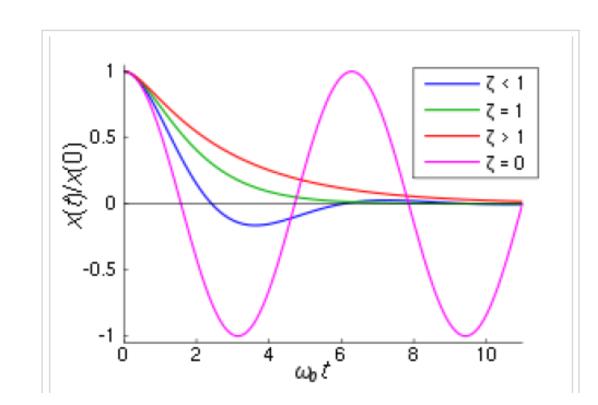
$$A = x(0)$$

$$B = \dot{x}(0) + \omega_0 x(0)$$

Over-damping $(\zeta > 1)$

$$x(t) = Ae^{\gamma_{+}t} + Be^{\gamma_{-}t}$$
$$A = x(0) + \frac{\gamma_{+}x(0) - \dot{x}(0)}{\gamma_{-} - \gamma_{+}}$$

$$B = -\frac{\gamma_{+}x(0) - \dot{x}(0)}{\gamma_{-} - \gamma_{+}}.$$



Under-damped $(0 < \zeta < 1)$

$$x(t) = \frac{\frac{\text{decay}}{e^{-\zeta \omega_0 t}} \frac{\text{Oscillation, damped natural frequency}}{(A \cos(\omega_{\text{d}} t) + B \sin(\omega_{\text{d}} t))}$$

$$\omega_{\rm d} = \omega_0 \sqrt{1 - \zeta^2}$$
 $A = x(0)$
 $B = \frac{1}{\omega_0} (\zeta \omega_0 x(0) + \dot{x}(0)).$

Let
$$\gamma = \omega_0 \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right)$$

Step Response

$$\omega_{\rm d} = \omega_0 \sqrt{1 - \zeta^2}$$

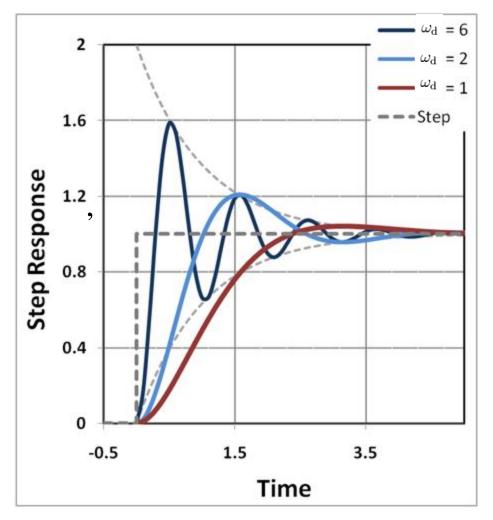
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\zeta\omega_0 \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = \frac{F(t)}{m}$$

$$\frac{F(t)}{m} = \begin{cases} \omega_0^2 & t \ge 0\\ 0 & t < 0 \end{cases}$$

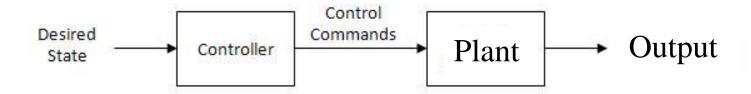
$$x(t) = 1 - e^{-\zeta\omega_0 t} \frac{\sin\left(\sqrt{1-\zeta^2} \,\omega_0 t + \varphi\right)}{\sin(\varphi)}.$$

$$\cos \varphi = \zeta$$

As time goes on, x(t) goes to 1



Open Loop Controller



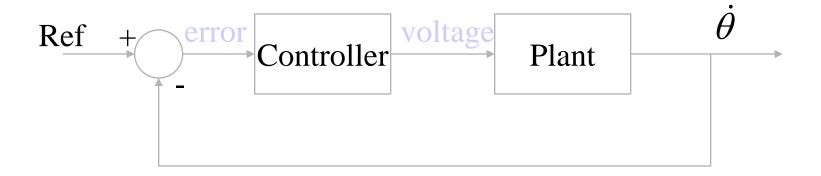
controller tells your system to do something, but doesn't use the results of that action to verify the results or modify the commands to see that the job is done properly

Closed Loop Controller

Give it a velocity command and get a velocity output

Controller Evaluation

Steady State Error
Rise Time (to get to ~90%)
Overshoot
Settling Time (Ring) (time to steady state)
Stability



Closed Loop Response (Proportional Feedback) Step response with Proportion Control

Proportional Control K

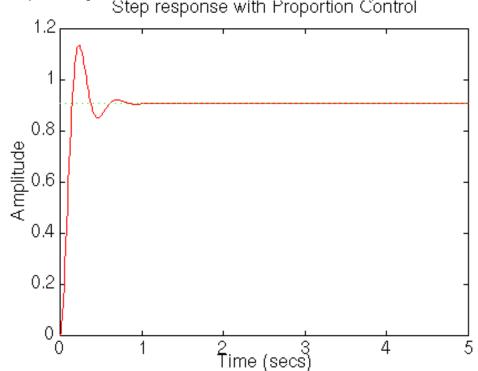
Easy to implement Input/Output units agree Improved rise time

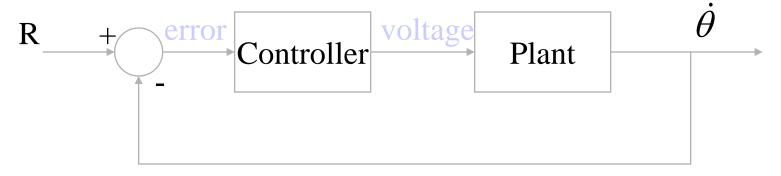
Steady State Error (true)

↑P: ↓Rise Time vs. ↑ Overshoot*

 \uparrow P: \lor Rise Time vs. \lor Settling time*

 \uparrow P: \lor Steady state error vs. other problems





Closed Loop Response (PI Feedback)

Proportional/Integral Control

No Steady State Error

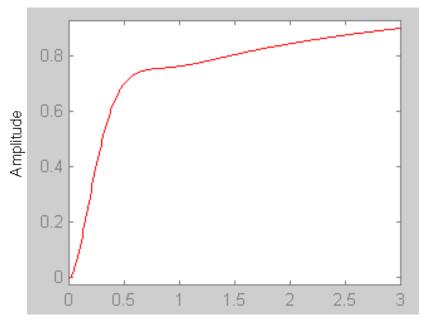
 $K_p + \frac{1}{s} K_I$

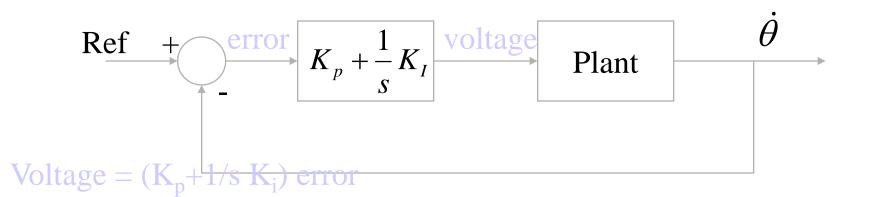
Bigger Overshoot and Settling Saturate counters/op-amps

 \uparrow P: \downarrow Rise Time vs. \uparrow Overshoot

 \uparrow P: \lor Rise Time vs. \lor Settling time

↑I: ↓Steady State Error vs. ↑Overshoot





2.5

Closed Loop Response (PID Feedback)

0.8

0.6

0.4

0.2

Proportional/Integral/Differential

$$K_p + \frac{1}{s}K_I + sK_D$$

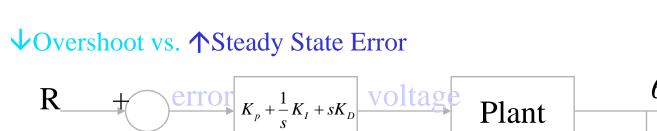
Sensitive to high frequency noise Hard to tune

 \uparrow P: \downarrow Rise Time vs. \uparrow Overshoot

 \uparrow P: \lor Rise Time vs. \lor Settling time

↑I: ↓Steady State Error vs. ↑Overshoot

↑D: **V**Overshoot vs. ↑Steady State Error



$$R \xrightarrow{\text{error}} K_p + \frac{1}{s} K_i + s K_D \text{ voltage}$$
Plant
$$P = (K_p + 1/s K_1 + s K_d) \text{ error}$$

Quick and Dirty Tuning

- Tune P to get the rise time you want
- Tune D to get the setting time you want
- Tune I to get rid of steady state error
- Repeat
- More rigorous methods Ziegler Nichols, Selftuning,
- Scary thing happen when you introduce the I term
 - Wind up (example with brick wall)
 - Instability around set point

Feed Forward

Volt

Decouples Damping from PID

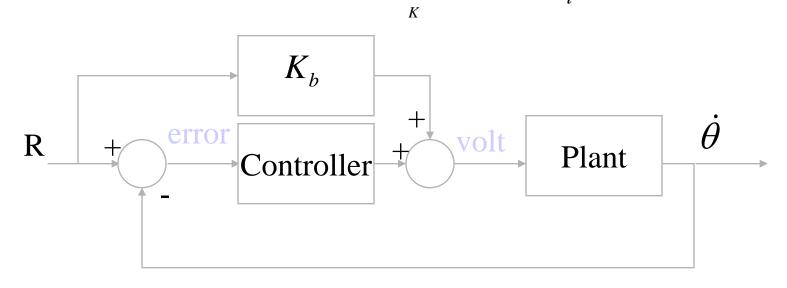
To compute K_b

Try different open loop inputs and measure output velocities

For each trial i,

Tweak from there.

$$K_b^i = \frac{u_i}{\dot{\theta}_i}, \quad K_b = \operatorname{avg} K_b^i$$



• planar workspace

- planar workspace
- position of robot and goal are known

- planar workspace
- position of robot and goal are known
- omni-directional robot

- planar workspace
- position of robot and goal are known
- omni-directional robot
- control input is velocity:

$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

- planar workspace
- position of robot and goal are known
- omni-directional robot
- control input is velocity:

$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

(boldface lie, we'll relax this later, too)

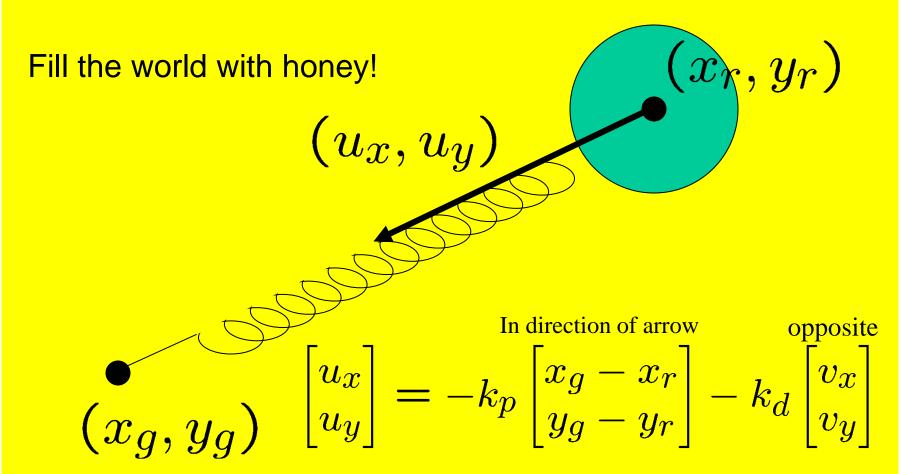
Proportional (P) Control:

$$\begin{bmatrix} u_x, u_y \\ x_r, y_r \end{bmatrix}$$

$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = -k_p \begin{bmatrix} x_g - x_r \\ y_g - y_r \end{bmatrix}$$

- the equation above is called a **control law**
- k_p is called the **proportional gain**
- k_p is a tunable parameter
- physically, k_p is the stiffness of the spring

Proportional-Derivative (PD) control:



- k_d is called the **derivative gain**
- k_p and k_d are tunable parameters
- physically, k_d is the damping term
- all of the stuff about P control still applies

Robot Inputs

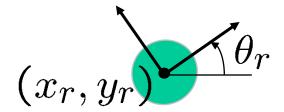
So far we've assumed something like

$$\begin{bmatrix} \dot{x}_r \\ \dot{y}_r \end{bmatrix} = \begin{bmatrix} u_x \\ u_y \end{bmatrix}$$

But really, we control the velocities of the left and right wheels, which can easily be mapped to forward and turning velocities:

$$\begin{bmatrix} v_l \\ v_r \end{bmatrix} \Rightarrow \begin{bmatrix} v_f \\ \omega \end{bmatrix}$$

Nonholonomic Constraints

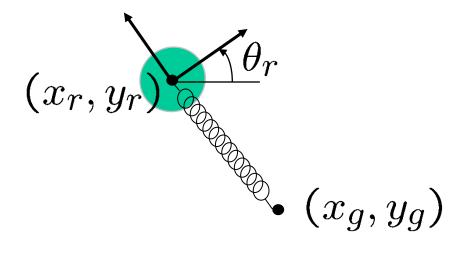


The equations of motion using these controls are:

$$\left[\begin{array}{c} \dot{x}_r \\ \dot{y}_r \\ \dot{\theta}_r \end{array} \right] = \left[\begin{array}{c} v_f \mathrm{cos}\theta \\ v_f \mathrm{sin}\theta \\ \omega \end{array} \right]$$

The fact that the robot can't move sideways is a **nonholonomic constraint** (we will see this again).

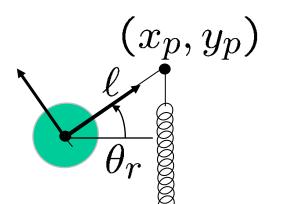
The Problem:



P or PD control won't work.

No smooth control law will!

A Simple Solution:



Like a rigid trailor hitch (not driving to point)

$$\begin{bmatrix} x_p \\ y_p \\ \theta_r \end{bmatrix} = \begin{bmatrix} x_r + \ell \cos \theta \\ y_r + \ell \sin \theta \\ \theta_r \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \dot{x}_p \\ \dot{y}_p \\ \dot{\theta}_r \end{bmatrix} = \begin{bmatrix} \dot{x}_r - \ell \dot{\theta}_r \sin \theta_r \\ \dot{y}_r + \ell \dot{\theta}_r \cos \theta_r \\ \omega_r \end{bmatrix} = \begin{bmatrix} v_f \cos \theta_r - \omega \ell \sin \theta_r \\ v_f \sin \theta_r + \omega \ell \cos \theta_r \\ \omega \end{bmatrix}$$

A Simple Solution (cont.):

 (x_p,y_p)

If we ignore orientation:

$$\begin{bmatrix} \dot{x}_p \\ \dot{y}_p \end{bmatrix} = \begin{bmatrix} \cos\theta_r & -\sin\theta_r \\ \sin\theta_r & \cos\theta_r \end{bmatrix} \begin{bmatrix} v_f \\ \omega\ell \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} v_f \\ \omega\ell \end{bmatrix} = \begin{bmatrix} \cos\theta_r & \sin\theta_r \\ -\sin\theta_r & \cos\theta_r \end{bmatrix} \begin{bmatrix} \dot{x}_p \\ \dot{y}_p \end{bmatrix} \qquad (x_g, y_g)$$

so we can implement the PD control law as:

$$\begin{bmatrix} v_f \\ \omega \ell \end{bmatrix} = \begin{bmatrix} \cos \theta_r & \sin \theta_r \\ -\sin \theta_r & \cos \theta_r \end{bmatrix} \left(-k_p \begin{bmatrix} x_g - x_p \\ y_g - y_p \end{bmatrix} - k_d \begin{bmatrix} v_x \\ v_y \end{bmatrix} \right)$$

Did not get rid of nh constraint, but moved it to something we don't care about (theta, angular and linear velocities) - trailor hitch story

Follow a straight line with differential drive or at least get to a point

Error can be difference in wheel velocities or accrued distances

Make both wheels spin the same speed

asynchronous – false start

wheels can have slight differences (radius, etc)

Make sure both wheels spin the same amount and speed false start

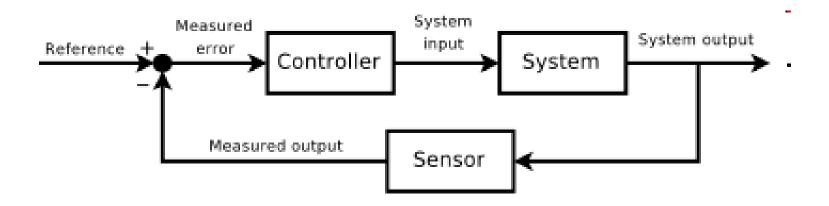
Line following

More complicated control laws – track orientation

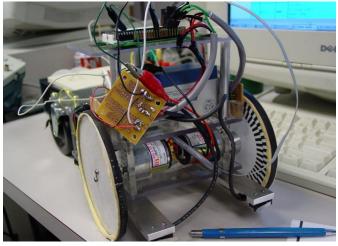
m1vref = vref + K1 * thetaerror + K2 * offset error

m2vref = vref - K1 * thetaerror - K2 * offset error

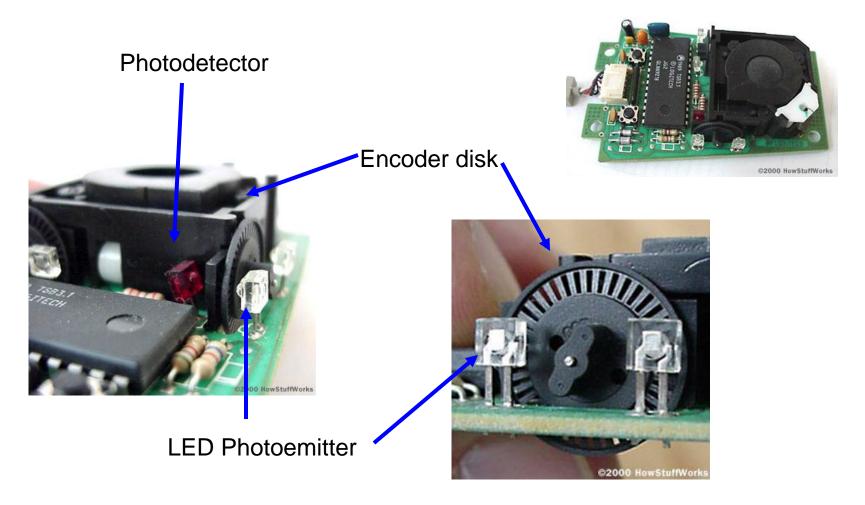
Really, there is a sensor



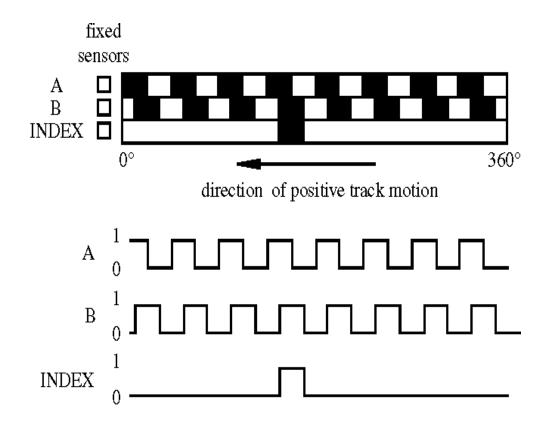
Encoders

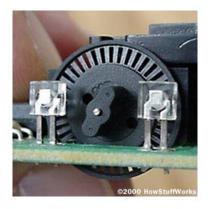


Encoders – Incremental



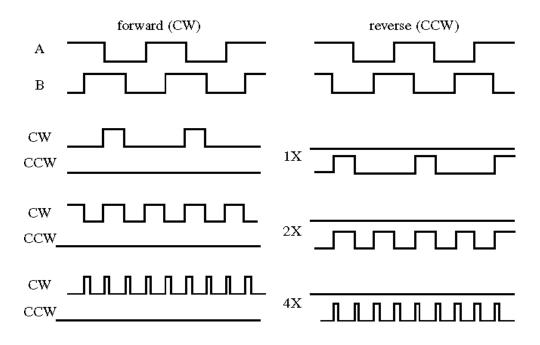
Encoders - Incremental





Encoders - Incremental

• Quadrature (resolution enhancing)



To be continued

Maps

• Bayesian Localization

