
PID Controls

(Part II)

Howie Choset

(thanks to George Kantor and Wikipedia)

http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm

Overview
• Mass-Spring-Damper System

• Second order ODE
– Definition

– Vary parameters

– Forcing functions

• Different feedback meaning
– Proportional

– Derivative

• Control for Error – block diagram

• Integral Control

• Different Affects of Varying PID

• Feed Forward Term

• Vehicle Controls

Big Dog Quadruped

Boston Dynamics

Nathan Michael Quadrotors

Controls

Estimation

RC Airplane - Adaptive Control

Chowdhary G., Johnson E., Chandramohan R., Kimbrell M. S., Calise A.

Mass Spring

Solutions/Responses

Let

Under-damped (0 < z < 1)
Oscillation, damped natural frequency decay

Step Response

,

As time goes on, x(t) goes to 1

Open Loop Controller

controller tells your system to do something, but

doesn’t use the results of that action to verify the

results or modify the commands to see that the job is

done properly

Plant Output

Closed Loop Controller

Controller Evaluation
Steady State Error

Rise Time (to get to ~90%)

Overshoot

Settling Time (Ring) (time to steady state)

Stability

Give it a velocity command

 and get a velocity output

Plant Controller
-

+ Ref error voltage

Closed Loop Response (Proportional Feedback)

Plant Controller
-

+ R error voltage

Proportional Control

Easy to implement

Input/Output units agree

Improved rise time

Steady State Error (true)

P: Rise Time vs.  Overshoot*

P: Rise Time vs.  Settling time*
P: Steady state error vs. other problems

pK

Voltage = Kp error *In some other systems, not mass-spring

Closed Loop Response (PI Feedback)

Plant
-

+ Ref error voltage

Proportional/Integral Control

Ip K
s

K
1

 
No Steady State Error

Bigger Overshoot and Settling

Saturate counters/op-amps

P: Rise Time vs.  Overshoot

P: Rise Time vs.  Settling time

I: Steady State Error vs. Overshoot

Voltage = (Kp+1/s Ki) error

Ip K
s

K
1

 

Closed Loop Response (PID Feedback)

Plant
-

+ R error voltage

Proportional/Integral/Differential

Quick response

Reduced Overshoot

Sensitive to high frequency noise

Hard to tune

P: Rise Time vs.  Overshoot

P: Rise Time vs.  Settling time

I: Steady State Error vs. Overshoot

D: Overshoot vs. Steady State Error

DIp sKK
s

K 
1

DIp sKK
s

K 
1

Voltage = (Kp+1/s Ki + sKd) error

Quick and Dirty Tuning

• Tune P to get the rise time you want

• Tune D to get the setting time you want

• Tune I to get rid of steady state error

• Repeat

• More rigorous methods – Ziegler Nichols, Self-
tuning,

• Scary thing happen when you introduce the I term
– Wind up (example with brick wall)

– Instability around set point

Feed Forward
Decouples Damping from PID

To compute

 Try different open loop inputs and measure output velocities

 For each trial i,

 Tweak from there.

bK

Plant
-

+ R error
Controller

+
+ volt

K

bK

i

bb

i

ii

b KK
u

K avg , 

.

Volt

Mobile Robot

• planar workspace

Mobile Robot

• planar workspace

• position of robot and goal are

known

Mobile Robot

• planar workspace

• position of robot and goal are

known

• omni-directional robot

Mobile Robot

• planar workspace

• position of robot and goal are

known

• omni-directional robot

• control input is velocity:

Mobile Robot

• planar workspace

• position of robot and goal are

known

• omni-directional robot

• control input is velocity:

 (boldface lie, we’ll relax this

later, too)

Proportional (P) Control:

• the equation above is called a control law

• kp is called the proportional gain

• kp is a tunable parameter

• physically, kp is the stiffness of the spring

Proportional-Derivative (PD) control:

Fill the world with honey!

• kd is called the derivative gain

• kp and kd are tunable parameters

• physically, kd is the damping term

• all of the stuff about P control still applies

In direction of arrow opposite

Robot Inputs
So far we’ve assumed something like

But really, we control the velocities of the left and

right wheels, which can easily be mapped to forward

and turning velocities:

Nonholonomic Constraints

The equations of motion using these controls are:

The fact that the robot can’t move sideways is a

nonholonomic constraint (we will see this again).

The Problem:

P or PD control won’t work.

No smooth control law will!

A Simple Solution:

Like a rigid trailor

hitch (not driving

to point)

A Simple Solution (cont.):

If we ignore orientation:

so we can implement the PD control law as:

p

p

Did not get rid of nh constraint, but moved it to something we don’t care about

(theta, angular and linear velocities) - trailor hitch story

Follow a straight line with differential drive

or at least get to a point

Make both wheels spin the same speed

 asynchronous – false start

 wheels can have slight differences (radius, etc)

Make sure both wheels spin the same amount and speed

 false start

Error can be difference in wheel velocities or accrued distances

Line following

More complicated control laws – track orientation

 m1vref = vref + K1 * thetaerror + K2 * offset error

 m2vref = vref - K1 * thetaerror - K2 * offset error

offset

Really, there is a sensor

Encoders

Encoders – Incremental

LED Photoemitter

Photodetector

Encoder disk

Encoders - Incremental

Encoders - Incremental

• Quadrature (resolution enhancing)

To be continued

• Maps • Bayesian Localization

