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PID Controls
(Part 1)

Howie Choset
(thanks to George Kantor and Wikipedia)

http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm
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Overview

Mass-Spring-Damper System
Second order ODE

— Definition

— Vary parameters

— Forcing functions

Different feedback meaning
— Proportional
— Derivative

Control for Error — block diagram
Integral Control

Different Affects of Varying PID
Feed Forward Term

Vehicle Controls
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Big Dog Quadruped

Boston Dynamics
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Nathan Michael Quadrotors

Controls

Estimation
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RC Airplane - Adaptive Control

Chowdhary G., Johnson E., Chandramohan R., Kimbrell M. S., Calise A.
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Mass Spring
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Solutions/Responses

Critical damping ({=1)
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Desired
State
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Open Loop Controller

Control
Commands

— Controller » Plant ——— OUtpUt

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Closed Loop Controller

Give it a velocity command
and get a velocity output

Ref +

Controller

Controller Evaluation

Steady State Error

Rise Time (to get to ~90%)

Overshoot

Settling Time (Ring) (time to steady state)
Stability

Plant
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Closed Loop Response (Proportional Feedback)

=lep response with Froportion Control

1.2
Proportional Control /\
p 1L
Easy to implement 0sl
Input/Output units agree S
Improved rise time 990
I
04|
Steady State Error (true)
02|
NP: N Overshoot* ; | | |
NP: .\ Settling time* 0 1 Zime (secd 4 5
NP: . other problems
R + 0
Controller Plant
@

*In some other systems, not mass-spring AOROTICS
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Closed Loop Response (Pl Feedback)

Proportional/Integral Control .

Kp+gK|

Amplitude

Bigger Overshoot and Settling
Saturate counters/op-amps

NP: AN Overshoot
NP: .\ Settling time

N . NOvershoot

Ref + K+

1 0
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Closed Loop Response (PID Feedback)

Proportional/Integral/Differential

KIOJr%KI +sKp

Sensitive to high frequency noise
Hard to tune

NP: N Overshoot
NP N7 Settling time 15 y 2_I5 3
M; . NOvershoot
ND: NSteady State Error
R T Kp+%K,+sKD Plant

B
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Quick and Dirty Tuning

Tune P to get the rise time you want
Tune D to get the setting time you want
Tune | to get rid of steady state error
Repeat

More rigorous methods — Ziegler Nichols, Self-
tuning,

Scary thing happen when you introduce the | term
— Wind up (example with brick wall)
— Instability around set point
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Feed Forward ot

Decouples Damping from PID

To compute Ky
Try different open loop inputs and measure-output velocities
For each trial I, o |
Tweak from there. K,==, K,=avgK;

Ky

+
R Controller Plant
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Mobile Robot

 planar workspace
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Mobile Robot

 planar workspace

* position of robot and goal are
known

B
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Mobile Robot

 planar workspace

* position of robot and goal are
known

e omni-directional robot
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Mobile Robot

planar workspace

position of robot and goal are
known

omni-directional robot
control input is velocity:

Uy (V%%
Uy Uy

CarnegieMellon

B

ROBOTICS
INSTITUTE



Mobile Robot

planar workspace

position of robot and goal are
known

omni-directional robot
control input is velocity:

Uy Uy

Uy Uy

(boldface lie, we’ll relax this
later, too)
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Proportional (P) Control:

7y7°)

fL'g_CUr
Yg — Yr

the equation above is called a control law
k, Is called the proportional gain

K, Is a tunable parameter
physically, ki, is the stiffness

of the spring
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Proportional-Derivative (PD) control:

7y7°)

Fill the world with honey!

(Uxauy)

In direction of arrow opposite

./ Ur I Lg — Lr k,‘d (0%
—kp _

(:Ug, yg) | Ly Yg — Yr Vy |

kg is called the derivative gain

k, and kg are tunable parameters

physically, k4 is the damping term

all of the stuff about P control still applies ROBCTICS
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Robot Inputs

So far we've assumed something like

C'Ufr Ur
Yr Uy

But really, we control the velocities of the left and
right wheels, which can easily be mapped to forward
and turning velocities:

(V]
— f
(V% w
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Nonholonomic Constraints

illl;is r
(chH Yr

The equations of motion using these controls are:

vfcose
= ’UfSiI"IQ

w

ir
I
6,

The fact that the robot can't move sideways is a
nonholonomic constraint (we will see this again).
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The Problem:

0,

(35'7“7 Yr

(3797 yg)

P or PD control won’t work.

No smooth control law will!
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A Simple Solution:

(CL‘p, yp) Like a rigid trailor
hitch (not driving

¢

to point)
0,
Tp Ty + £Cosh L (3397 yg)
yp| = | yr + £sind
| Or O

Ur + £0-COSO; v ¢5iN6yr + wlcosh;

_ ;i:p
?)p —
Wy w

iy — £0,5in0, } {ufcoser — wésiner}
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A Simple Solution (cont.):

(Zp, Yp) [Ci}‘p]
If we ignore orientation: 14 Yp
| ip | _ [cosf, —singr| [vf] 0
 Up | o sinfr  costy | |wl] r
= | o] = | oot sinon] fin L
SR ' 1P (3797 yg)
so we can implement the PD control law as:

Uf‘ COSQT S|n9r B Lg — I p B (0%

Did not get rid of nh constraint, but moved it to something we don’t care about

(theta, angular and linear velocities) - trailor hitch story =
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Follow a straight line with differential drive
or at least get to a point

Error can be difference in wheel velocities or accrued distances

Make both wheels spin the same speed
asynchronous — false start
wheels can have slight differences (radius, etc)
Make sure both wheels spin the same amount and speed
false start
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Line following

More complicated control laws — track orientation

mlvref = vref + K1 * thetaerror + K2 * offset error
m2vref = vref - K1 * thetaerror - K2 * offset error

offset
\g\
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Beference
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Really, there Is a sensor

Measured

1

errar
)|C|:|ntrlzlller

Measured output

Systemn
inpuk

system

System autput

Sensor

> .
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Encoders

THj
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Encoders — Incremental

Photodetector

Encoder disk

LED Photoemitter

B
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Encoders - Incremental

fixed
SENSOrs
A 0O
B O
INDEX O
0° — 360°

direction of positive track motion

.

1
0
1
BOJ
1
0

A

INDEX
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Encoders - Incremental

 Quadrature (resolution enhancing)

forward (CW) reverse {CCW)
A L[ L1 [ I .
B _| L | | [ 1 [ ]
cw [1 [1
cow X M 1 .
ccw X MoIrrorrnrnr
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To be continued

* Maps  Bayesian Localization
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