
PID Controls 

(Part II)  

 
Howie Choset 

(thanks to George Kantor and Wikipedia) 

 

http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm 



Overview 
• Mass-Spring-Damper System 

• Second order ODE 
– Definition 

– Vary parameters 

– Forcing functions 

• Different feedback meaning 
– Proportional 

– Derivative 

• Control for Error – block diagram 

• Integral Control 

• Different Affects of Varying PID 

• Feed Forward Term 

• Vehicle Controls 



Big Dog Quadruped 

Boston Dynamics  



Nathan Michael Quadrotors 

Controls 

 

Estimation 



RC Airplane - Adaptive Control 

Chowdhary G., Johnson E., Chandramohan R., Kimbrell M. S., Calise A. 



Mass Spring          



Solutions/Responses 

Let 

Under-damped (0 < z < 1) 
Oscillation, damped natural frequency decay 



Step Response 

 

,  

 

As time goes on, x(t) goes to 1 



Open Loop Controller 

controller tells your system to do something, but 

doesn’t use the results of that action to verify the 

results or modify the commands to see that the job is 

done properly 

Plant Output 



Closed Loop Controller 

 
Controller Evaluation 
Steady State Error 

Rise Time (to get to ~90%) 

Overshoot 

Settling Time (Ring) (time to steady state) 

Stability 

Give it a velocity command 

     and get a velocity output 

Plant Controller 
- 

+ Ref error voltage 



Closed Loop Response (Proportional Feedback) 

Plant Controller 
- 

+ R error voltage 

Proportional Control  

 
Easy to implement 

Input/Output units agree 

Improved rise time 

 

Steady State Error (true) 

 

P: Rise Time vs.  Overshoot* 

P: Rise Time vs.  Settling time* 
P: Steady state error vs. other problems 

pK

Voltage = Kp error *In some other systems, not mass-spring 



Closed Loop Response (PI Feedback) 

Plant 
- 

+ Ref error voltage 

Proportional/Integral Control  
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No Steady State Error 

 

Bigger Overshoot and Settling 

Saturate counters/op-amps 

 

P: Rise Time vs.  Overshoot 

P: Rise Time vs.  Settling time 

 

I:  Steady State Error vs. Overshoot 

 

Voltage = (Kp+1/s Ki) error 
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Closed Loop Response (PID Feedback) 

Plant 
- 

+ R error voltage 

Proportional/Integral/Differential 
 

Quick response 

Reduced Overshoot 
 

Sensitive to high frequency noise 

Hard to tune 
 

P: Rise Time vs.  Overshoot 

P: Rise Time vs.  Settling time 
 

I:  Steady State Error vs. Overshoot 
 

D: Overshoot vs. Steady State Error  
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Voltage = (Kp+1/s Ki + sKd) error 



Quick and Dirty Tuning 

• Tune P to get the rise time you want 

• Tune D to get the setting time you want 

• Tune I to get rid of steady state error 

• Repeat 

 

• More rigorous methods – Ziegler Nichols, Self-
tuning,  

• Scary thing happen when you introduce the I term 
– Wind up (example with brick wall) 

– Instability around set point 



Feed Forward 
Decouples Damping from PID 

 

To compute  

 Try different open loop inputs and measure output velocities 

 For each trial i,  

 Tweak from there. 
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Mobile Robot 

• planar workspace 
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Mobile Robot 

• planar workspace 

• position of robot and goal are 

known 

• omni-directional robot 

• control input is velocity: 

 

 

 

    (boldface lie, we’ll relax this 

later, too) 



Proportional (P) Control: 

• the equation above is called a control law 

• kp is called the proportional gain 

• kp is a tunable parameter 

• physically, kp is the stiffness of the spring 



Proportional-Derivative (PD) control: 

Fill the world with honey! 

• kd is called the derivative gain 

• kp and kd are tunable parameters 

• physically, kd is the damping term 

• all of the stuff about P control still applies 

In direction of arrow opposite 



Robot Inputs 
So far we’ve assumed something like 

But really, we control the velocities of the left and  

right wheels, which can easily be mapped to forward 

and turning velocities: 



Nonholonomic Constraints 

The equations of motion using these controls are: 

The fact that the robot can’t move sideways is a  

nonholonomic constraint (we will see this again). 



The Problem: 

P or PD control won’t work. 

 

No smooth control law will! 



A Simple Solution: 

Like a rigid trailor 

hitch (not driving 

to point) 



A Simple Solution (cont.): 

If we ignore orientation: 

so we can implement the PD control law as: 

p 

p 

Did not get rid of nh constraint, but moved it to something we don’t care about 

(theta, angular and linear velocities)  - trailor hitch story 



Follow a straight line with differential drive 

or at least get to a point 

Make both wheels spin the same speed 

 asynchronous – false start 

 wheels can have slight differences (radius, etc) 

Make sure both wheels spin the same amount and speed 

 false start 

  

Error can be difference in wheel velocities or accrued distances 



Line following 

More complicated control laws – track orientation 

 

    m1vref = vref + K1 * thetaerror + K2 * offset error 

    m2vref = vref - K1 * thetaerror - K2 * offset error 

offset 



Really, there is a sensor 



Encoders 



Encoders – Incremental 

LED Photoemitter 

Photodetector 

Encoder disk 



Encoders - Incremental 



Encoders - Incremental 

• Quadrature (resolution enhancing)  

 



To be continued 

• Maps • Bayesian Localization 


