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(thanks to George Kantor, Nathan Michael and Wikipedia)

http://www .library.cmu.edu/ctms/ctms/examples/motor/motor.htm
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What is a feedback control system?

System

+
Input —-:O—- Controller — (or Plant)

= Qutput

Feedback
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Feedback Control System Example

Goal (or reference or input)
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Feedback Control System Example

Error between current position and desired position (or goal)
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Feedback Control System Example

»

Error (overshoot)
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Feedback Control System Example
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Error (undershoot)
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Feedback Control System Example
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Converge to goal
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Feedback Control System Example
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Error
= Time
&
.
\0 . J
Error betwes position and desired position (or goal)
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Feedback Control System Example
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Feedback Control System Example

Error

= Time
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Feedback Control System Example

. What is the . ;
+ What is the output
What is the O controller in the .| What is the system P

input in the example? - example? in the example? " inthe example?

What is the feedback in the example?
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Feedback Control System Example

Goal - .
wsmwe —0— & & - oo
or setpoint) - w

Operator observations (e.g., vision-based tracking)
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Feedback Control System Example

Goal

(or reference —»()—»

or setpoint)

+

Error

&

-

} ~4

1 @

Position

{or state)

Operator observations (e.q., vision-based tracking)
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Feedback Control System Example

¥

Goal Byror - »
womwe FOT v -
or setpoint) _4 w

Negative feedback Operator observations (e.g., vision-based tracking)
{error = goal - position = reference - state)
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Feedback Control System Example

Input

-0

Positive feedback
(amplifies disturbance)

Controller

System

= QOutput

Feedback
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Force Balance

d
Fe L ime) = ms
o (mx) = mx

Force = Mass x acceleration
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Force Balance

d
Fe L ime) = ms
o (mx) = mx

Force = Mass x acceleration

x(t)
’—D>

m

%

7%

Force = spring constant x displacement
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Force Balance

d
Fe L ime) = ms
o (mx) = mx

Force = Mass x acceleration

x(t)
’—D>

m

%

7%

Force = spring constant x displacement
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Force Balance

F = i (mx) = mx Force = Mass x acceleration
dt
l x(t)
k =
F = —kx

Force = spring constant x displacement
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Standard Form of DEQ

x + —ax=10
m
_ [k Natural frequency (rads/sec)
win — v m
\/ ®
) - .;;_:ﬂ? T =

z(t) = (Acostwyt) + Bsin { wot)) n,
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Standard Form of DEQ

®
F.=0
x=0
F
L @
=<0
© F

el x(t) = (Acostwyt) + Bsin ( wpt)) r\‘.'



Vary Natural Frequency

modified by O Russell, 1497
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Different Frequencies

x(t) = Acos(wyt) + B sin(wyt)
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Can we go forever
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Mass Spring Damper

F, = —kx N ’_b

s N x

F=—cv=—cd—x=—cx %

d dt § m

Ftot—ma=m£§—mx § l

dt C

C k

m¥ = —kx — cx > ¥+—x+—x=0
m m
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20d Order ODE

.. C . k
X+—x+—x=0
m m
k
wozwa
Voo o=—
2\Vmk

X+ 20wex + wix = 0

Natural (undamped)
frequency (rads/sec)

Damping ratio
(unitless)
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20d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo Natural (undamped) frequency

¢{ Damping ratio
Solutions:
Critically damped (¢ = 1)

Overdamped (¢ > 1)

(¢ <1

0.8 p

06+

-1

FAY

— Undamped
Underdamped

Cwerdamped

— Critically darmped | |

[\

yAY

a 5 10
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20d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo Natural (undamped) frequency

¢ Dampingratio | R
. Unt!erdamped
Solutions: 06| _S‘d”:;j J”” |
0.4F
02t \
N
02+
0.4+
06+
08+
(( < 1) K 15

x(t) = e‘ff‘)ot(A cos(wgyt) + B,sm(a)dt))
| |
Decay Oscillation, damped natural frequency ) d = ) 0 /1 — ( 2 ﬁ
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20d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo Natural (undamped) frequency

¢{ Damping ratio

Solutions:

Overdamped (¢ > 1)

x(t) = Ae’+t + Be¥-t
Y+ = wo(=¢ /(% —1)

(¢ <1

-1

FAY

— Undamped
Underdamped

D dmpd

— Critically darmped | |

\

ATA

0

x(t) = eY_ff‘)Ot(A cos(wgyt) + B,sm(a)dt))

|
Decay Oscillation, damped natural frequency () d = Wo /1 — ( 2
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20d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo Natural (undamped) frequency
¢{ Damping ratio

I
— Undamped

Underdamped

— Critically darmped | |

Solutions: o8 o dmpd
Critically damped (¢ = 1) 02|

x(t) = (A + Bt)e~«ot o—

Overdamped ({ > 1) Ej

x(t) = Ae’+t + Be¥-t 05
Y+ = wo(—=¢ £+/{*—1) s}

(< 1) " :
x(t) = e‘ff‘)ot(A cos(wgyt) + B,sm(a)dt))

|
Decay Oscillation, damped natural frequency 0 d = W 0 /1 —_ ( 2 ﬁ
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Resonance

b T
] £ 1
:| ;] !| - - envelope
¥ £ N maxima
| — =01
1 !_ — =02
— =03
: — =05
=1
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Step Response
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PN — Y

d?x dz F(t) 2
ap T Hgy T =T |
1.6 m
F(t) Jwi t=0 o
m 0 t<0 2 1.2
(@] 9
g |
[o}]
5'11'1(-.!1—(;2 wﬂt—l—tp) e 0.8 :
r(t) =1 — e oot , > I
sin(y) = :
0.4 |1
cosip = ( 18
0
-0.5 1.5 3.5

As time goes on, x(t) goes to 1
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Open Loop Controller

Desired I:Cuntmld Actual Robot

esire ommands Rohot -

state ——* Controller p| nobot |  , State(Position,
. Kinematics Velocity, etc.)

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Open Loop Controller

T I:Cuntmld Actual Robot

esire ommands e

ctate —* Controller > Pl ant —— State (Position,
Velocity, etc.)

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Desired
State
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Open Loop Controller

Control
Commands

—»| Controller * Plant —— Output

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Closed Loop Controller

Controller Evaluation
Steady State Error

Give 1t a velocity command

and get a velocity output Rise Time (to get to ~90%)
Overshoot
Settling Time (Ring) (time to steady state)
Stability

Ref + 0

Controller Plant
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PID Feedback

P dr -u(t)

1 _
u(t) = Kpe(t) + K; /e(f}dt + fi’ﬂme{t).z
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P Feedback

dfz —I—QQ::.: g7 —|—|::.:ﬂ:1: —m -Kx

T + 2CwoT (.:;.:{,2+K)x=0

It 1s like changing the spring constant
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Proportional Feedback

§—3 “ c-tee |-+ plant T@«é

Set desired position to zero

—

Note that the oscillation dies out at
approximately the same rate but has
higher frequency. This can be thought of
as “stiffening the spring”.
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Proportional/Damping

BSOS T <l L We can increase the
% i__ TP plant | | ) damping (i.e., increase
, | the rate at which the

oscillation dies out)

08 single joint trajecory under PD corttrol. kp =5 kd -1 single joint trajecory under PD control. kp =5k, =5
o T T T T T T T T

0.6

04

0.2r-

joint angle
joint angle

Ob—b———b e

0.2k

0.4

-0.6
0

2 4 3] 8 10 12 14 16 18 20 010 2 4 3 8 10 12 14 16 18 20
time (seconds) time (seconds) @,
. . . .. . . . . . HE
Increasing damping slows everything down (note deriv is an approx and turning the gain high, can cause problems because in a sense it amp AC
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PD works well if desired point is an equilibrium of system, which makes
sense because when you are at target, PD does not exert force

Non-zero desired PD

single joint trajecory under PD control. kp =5k, =5
1.6

X, =16

121

1h

0.8

joint angle

Settle time same

Steady state error!

0.2

0

I I | i I I I 1 i
0 2 4 6 8 10 12 14 16 18 20

At set point, applying no force so end up settling at equilibrium
that balances force due to error and force due to spring (damper
goes away 1n steady state because depends on derivative).
Crank up P gain, steady state error gets smaller, but that causes

overshoot, oscillations, etc which you don’t want =
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PID Control

ec .[’t;re-} oé + h;iteﬁ*uf—-—}: plant ’

D
;

—

14 N 14 /” \
12 — 12 il ,‘J \\
Eo.e— ,’C i‘é'“ ’\” %15 [ \
- g E
/ g / 1 /
0.47( H . 0470 : 1 |
] ] |
u‘z,( 3 4 OZJ : | 05 |
uo : ) ) ’ "me(w cis) * h * * “ D; 2 ¢ ¢ Qs tim (;: ds) ” ¥ * * 20 00"“‘ 2 .‘n 6 e; 1lo 12 14 1‘5 1‘5 20
. time (seconds) .
System does its As increase I gain, gets Integral gets so bad, it starts
dynamic thing and - -
faster, good response to interfere with other
then gradually . .
: dynamics, lead to unintended
Integrates to correct i ;
for steady state error motions which could lead to h
instability
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Closed Loop Response (Proportional Feedback)

Proportional Control

p

Easy to implement
Input/Output units agree
Improved rise time

Steady State Error (true)

NP: N Overshoot*
NP: .\ Settling time*
NP: . other problems

Controller

Amplitude

1.2

1

=
o

=
o)

_'::2'
I=
1

=
P

=

=tep response with Froportion Control

it

2

?ime (secs%

%
Plant

*In some other systems, not mass-spring
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Closed Loop Response (PI Feedback)

Proportional/Integral Control
K, +—K,

Amplitude

Bigger Overshoot and Settling
Saturate counters/op-amps

NP N Overshoot
NP: .\ Settling time

N: b . NOvershoot

; 1 Z
Ref K +-K, Plant
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Closed Loop Response (PID Feedback)

Proportional/Integral/Differential

1
Kp+;K,+sKD

Sensitive to high frequency noise
Hard to tune

NP: N Overshoot

NP: .\ Settling time

M . NOvershoot

ND: N Steady State Error
R iy K, +1K ; +sK,

CarnegieMellon

Plant
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Quick and Dirty Tuning

* Tune P to get the rise time you want
 Tune D to get the settling time you want
* Tune I to get rid of steady state error

* Repeat

* More rigorous methods — Ziegler Nichols, Self-
tuning,
e Scary thing happen when you introduce the I term
— Wind up (example with brick wall)
— Instability around set point
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Feed Forward
Decouples Damping from PID

Volt

To compute K,
Try different open loop inputs and measurg-output velocities
For each trial 1, | |
Tweak from there. K,=—/, K,=avgk,

K,

Controller Plant
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Series Elastic Module
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Series Elastic Actuator

Torque
ommand & Controller Motor [T
g - Gearbox

Spring

Torgue Feedback
(from spring displacement)

THE
ROBOTICS
INSTITUTE



CarnegieMellon

Module Control

Om
Postion
O PID
Om,
7 __,| Velocity *+ | Torque Motor
O D 9 P PWM
Tm
Td —
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Snake Monster
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Snake Monster
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